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Control Theory

∙ Control theory is the mathematical study of methods to steer the evolution of
a dynamic system to achieve desired goals

∙ For example, stability or tracking a reference

∙ Optimal control is a branch of control theory that seeks to steer the evolution
so as to optimize a specific objective functional

∙ There are close connections with calculus of variations

∙ Mathematical study of control requires predictive models of the system
evolution

∙ Assume Markovian models: everything relevant to future evolution of the
system is captured in the current state

∙ Many classes of models, but we will talk primarily about deterministic,
continuous state, continuous time systems

∙ Other continuous models: stochastic DEs, delay DEs, differential algebratic
equations, differential inclusions, . . .

∙ Other classes of dynamic evolution: discrete time (eg: discrete event), discrete
state (eg: Markov chains), . . .
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System Models

∙ Deterministic, continuous state, continuous time systems are often modeled
with ordinary differential equations (ODEs)

ẋ(t) =
dx(t)

dt
= f(x(t), u(t))

with state x(t) ∈ ℝdx , input u ∈ U ⊆ ℝdu , and initial condition x(0) = x0

∙ To ensure that trajectories are well-posed (they exist and are unique), it is
typically assumed that f is bounded and Lipschitz continuous with respect to x
for fixed u

∙ The field of system identification studies how to determine f

∙ An important subclass of system dynamics are linear

ẋ(t) = Ax+ Bu

with A ∈ ℝdx×dx and B ∈ ℝdx×du

∙ Unless specifically described as “nonlinear control,” most engineering control
theory (academic and practical) assumes linear systems
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Optimal Control Objectives

∙ Choose input signal

u(⋅) ∈ U ≜ {u : [0,∞[→ U ∣ u(⋅) is measureable}

to minimize the cost functional J(x, u(⋅)) or J(x, t, u(⋅))
∙ Many possible cost functionals exist, such as:

∙ Finite horizon: given horizon T > 0, running cost ℓ and terminal cost g

J(x(t), t, u(⋅)) ≜
∫ T

t

ℓ(x(s), u(s)) ds+ g(x(T ))

∙ Minimum time: given target set T ⊂ ℝdx

J(x0, u(⋅)) ≜

{
min{t ∣ x(t) ∈ T }, if {t ∣ x(t) ∈ T } ∕= ∅;
+∞, otherwise

∙ Discounted infinite horizon: given discount factor � > 0 and running cost ℓ

J(x0, u(⋅)) ≜
∫ ∞
0

ℓ(x(s), u(s))e−�s ds

∙ Alternatively, “maximize payoff functionals” or “optimize objective functionals”
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Value Functions

∙ The value function specifies the best possible value of the cost functional
starting from each state (and possibly time)

V (x) = inf
u(⋅)∈U

J(x, u(⋅)) or V (x, t) = inf
u(⋅)∈U

J(x, t, u(⋅))

∙ Infimum may not be achievable
∙ If infimum is attained then the (possibly non-unique) optimal input is often

designated u∗(⋅), and sometimes the corresponding optimal trajectory is
designated x∗(⋅)

∙ Intuitively, to find the best trajectory from a point x, go to a neighbour x̂ of x
which minimizes the sum of the cost from x to x̂ and the cost to go from x̂.

∙ This intuition is formalized in the dynamic programming principle
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Dynamic Programming Principle

∙ For concreteness, we assume a finite horizon objective with horizon T , running
cost ℓ(x, u) and terminal cost g(x)

∙ Dynamic Programming Principle (DPP): for each ℎ > 0 small enough that
t+ ℎ < T

V (x, t) = inf
u(⋅)∈U

[∫ t+ℎ

t

ℓ(x(s), u(s)) ds+ V (x(t+ ℎ), t+ ℎ)

]

∙ Similar DPP can be formulated for other objective functionals

∙ Proof [Evans, chapter 10.3.2] in two parts: For any � > 0

∙ Show that V (x, t) ≤ infu(⋅)

[∫ t+ℎ
t

ℓ(x(s), u(s)) ds+ V (x(t+ ℎ), t+ ℎ)
]

+ �

∙ Show that V (x, t) ≥ infu(⋅)

[∫ t+ℎ
t

ℓ(x(s), u(s)) ds+ V (x(t+ ℎ), t+ ℎ)
]
− �
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Proof of DPP (upper bound part 1)

Consider V (x̂, t)

∙ Choose any u1(⋅) and define the trajectory

ẋ1(s) = f(x1(s), u1(s)) for s > t and x1(t) = x̂

∙ Fix � > 0 and choose u2(⋅) such that

V (x1(t+ ℎ), t+ ℎ) + � ≥
∫ T

t+ℎ

ℓ(x2(s), u2(s)) ds+ g(x2(T ))

where

ẋ2(s) = f(x2(s), u2(s)) for s > t+ ℎ and x2(t+ ℎ) = x1(t+ ℎ)

∙ Define a new control

u3(s) =

{
u1(s), if s ∈ [t, t+ ℎ[;

u2(s), if s ∈ [t+ ℎ, T ]

which gives rise to trajectory

ẋ3(s) = f(x3(s), u3(s)) for s > t and x3(t) = x̂
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Proof of DPP (upper bound part 2)

∙ By uniqueness of solutions of ODEs

x3(s) =

{
x1(s), if s ∈ [t, t+ ℎ];

x2(s), if s ∈ [t+ ℎ, T ]

∙ Consequently

V (x̂, t) ≤ J(x̂, t, u3(⋅))

=

∫ T

t

ℓ(x3(s), u3(s)) ds+ g(x3(T ))

=

∫ t+ℎ

t

ℓ(x1(s), u1(s)) ds+

∫ T

t+ℎ

ℓ(x2(s), u2(s)) ds+ g(x2(T ))

≤
∫ t+ℎ

t

ℓ(x1(s), u1(s)) ds+ V (x1(t+ ℎ), t+ ℎ) + �

∙ Since u1(⋅) was arbitrary, it must be that

V (x̂, t) ≤ inf
u(⋅)∈U

[∫ t+ℎ

t

ℓ(x(s), u(s)) ds+ V (x(t+ ℎ), t+ ℎ)

]
+ �
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Proof of DPP (lower bound)

∙ Fix � > 0 and choose u4(⋅) such that

V (x̂, t) ≥
∫ T

t

ℓ(x4(s), u4(s)) ds+ g(x4(T ))− �

where
ẋ4(s) = f(x4(s), u4(s)) for s > t and x4(t) = x̂

∙ From the definition of the value function

V (x4(t+ ℎ), t+ ℎ) ≤
∫ T

t+ℎ

ℓ(x4(s), u4(s)) ds+ g(x4(T ))

∙ Consequently

V (x̂, t) ≥ inf
u(⋅)∈U

[∫ t+ℎ

t

ℓ(x(s), u(s)) ds+ V (x(t+ ℎ), t+ ℎ)

]
+ �

Optimal Control & Viscosity Solutions Ian M. Mitchell— UBC Computer Science 11/ 41



Outline

∙ Optimal control: models of system dynamics and objective functionals

∙ The value function and the dynamic programming principle

∙ A formal derivation of the Hamilton-Jacobi(-Bellman) equation

∙ Viscosity solutions and a rigorous derivation

∙ Other types of Hamilton-Jacobi equations in control

∙ Optimal control problems with analytic solutions

∙ References

Optimal Control & Viscosity Solutions Ian M. Mitchell— UBC Computer Science 12/ 41



A Formal Derivation of the Hamilton-Jacobi PDE (part 1)

∙ Assume that V (x, t) is smooth

∙ Start from rearranged DPP

inf
u(⋅)∈U

[
V (x(t+ ℎ), t+ ℎ)− V (x, t) +

∫ t+ℎ

t

ℓ(x(s), u(s)) ds

]
= 0

∙ Divide through by ℎ > 0

inf
u(⋅)∈U

[
V (x(t+ ℎ), t+ ℎ)− V (x, t)

ℎ
+

1

ℎ

∫ t+ℎ

t

ℓ(x(s), u(s)) ds

]
= 0

∙ Let ℎ→ 0

inf
u(⋅)∈U

[
d

dt
V (x, t) + ℓ(x(t), u(t))

]
= 0

∙ Apply chain rule on first term

inf
u(⋅)∈U

[
DtV (x, t) +DxV (x, t) ⋅ d

dt
x(t) + ℓ(x(t), u(t))

]
= 0
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A Formal Derivation of the Hamilton-Jacobi PDE (part 2)

∙ Introduce system dynamics ẋ = f(x, u)

inf
u(⋅)∈U

[DtV (x, t) +DxV (x, t) ⋅ f(x(t), u(t)) + ℓ(x(t), u(t))] = 0

∙ Observe that only dependence on u(⋅) ∈ U is u(t) = u ∈ U

inf
u∈U

[DtV (x, t) +DxV (x, t) ⋅ f(x, u) + ℓ(x, u)] = 0

∙ If U is compact, infimum becomes minimum

∙ Arrive at (time-dependent) Hamilton-Jacobi(-Bellman) PDE

DtV (x, t) +H (x,DxV (x, t)) = 0

with Hamiltonian

H(x, p) = inf
u∈U

[p ⋅ f(x, u) + ℓ(x, u)]

and terminal conditions (choose t = T in definition of V )

V (x, T ) = g(x)
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No Classical Solutions

∙ Unfortunately, even for smooth terminal conditions, running cost and
dynamics, solution of HJ PDE may not remain differentiable for all time

∙ A rigorous derivation must take into account that the value function may not be
differentiable, and that the optimal input and/or trajectory may not be unique
or may not exist

∙ Search for well-posed weak solutions included the vanishing viscosity solution

∙ For � > 0, the semilinear or quasilinear parabolic PDE

DtV (x, t) +H (t, x,DxV (x, t)) = �ΔV (x, t)

has a smooth solution for all time
∙ The vanishing viscosity solution is the limiting solution as �→ 0
∙ Unfortunately, it does not always exist
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Viscosity Solutions

∙ Crandall & Lions (1983) propose the “viscosity solution”
∙ Under reasonable conditions there exists a unique viscosity solution
∙ Anywhere that V is differentiable, it solves the HJ PDE in the classical sense
∙ If there exists a vanishing viscosity solution, then it is the same as the viscosity

solution

∙ Original definition has been supplanted by an equivalent definition from
Crandall, Evans & Lions (1984): V (x, t) is a viscosity solution of the
terminal value HJ PDE

DtV (x, t) +H(x,DxV (x, t)) = 0

V (x, T ) = g(x)

if V satisfies the terminal conditions and for each smooth �(x, t)
∙ if V (x, t)− �(x, t) has a local maximum then

Dt�(x, t) +H(x,Dx�(x, t)) ≥ 0

∙ if V (x, t)− �(x, t) has a local minimum then

Dt�(x, t) +H(x,Dx�(x, t)) ≤ 0

∙ For initial value HJ PDE, reverse the inequalities
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Assumptions and Bounds

∙ Assume that dynamics, running and terminal costs are bounded and Lipschitz
continuous: there exists a constant C such that for fixed u

∣f(x, u)∣ ≤ C ∣f(x, a)− f(x̂, a)∣ ≤ C∣x− x̂∣
∣ℓ(x, u)∣ ≤ C ∣ℓ(x, a)− ℓ(x̂, a)∣ ≤ C∣x− x̂∣
∣g(x)∣ ≤ C ∣g(x)− g(x̂)∣ ≤ C∣x− x̂∣

∙ This assumption implies continuity properties for the Hamiltonian, but more
generally we could assume such properties: there exists a constant C such that

∣H(x, p)−H(x, p̂)∣ ≤ C∣p− p̂∣
∣H(x, p)−H(x̂, p)∣ ≤ C∣x− x̂∣(1 + ∣p∣)

∙ Then it can be shown that the value function is bounded and Lipschitz
continuous: there exists a constant C

∣V (x, t)∣ ≤ C
∣V (x, t)− V (x̂, t̂)∣ ≤ C(∣x− x̂∣+ ∣t− t̂∣)
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Proof: Value Function is the Viscosity Solution
(terminal condition and local maximum part 1)

∙ From the definition of the value function and objective functional

V (x, T ) = inf
u(⋅)

J(x, T, u(⋅)) =

∫ T

T

ℓ(x(s), u(s)) ds+ g(x(T )) = g(x)

∙ Choose smooth � and assume that V − � has a local maximum at (x̂, t̂)
∙ Then we must show

Dt�(x̂, t̂) + min
u∈U

[
Dx�(x̂, t̂) ⋅ f(x̂, u) + ℓ(x̂, u)

]
≥ 0

∙ Since V − � has a local maximum, choose � > 0 such that for all
∣x− x̂∣+ ∣t− t̂∣ ≤ �

(V − �)(x, t) ≤ (V − �)(x̂, t̂)

∙ Proof proceeds by contradiction: if the inequality is false then there exist û ∈ U
and � > 0 such that for all ∣x− x̂∣+ ∣t− t̂∣ ≤ � we have

Dt�(x, t) +Dx�(x, t) ⋅ f(x, û) + ℓ(x, û) ≤ −� < 0

∙ Choose constant control u(⋅) = û and define the corresponding trajectory

ẋ(s) = f(x(s), û) for s > t̂ and x(t) = x̂
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Proof: Value Function is the Viscosity Solution
(local maximum part 2)

∙ Working on contradiction if V − � has a local maximum at (x̂, t̂)
∙ Choose ℎ ∈ [0, �] small enough that ∣x(s)− x̂∣ ≤ � for s ∈ [t̂, t̂+ ℎ] so that

Dt�(x(s), s) +Dx�(x(s), s) ⋅ f(x(s), û) + ℓ(x(s), û) ≤ −�

∙ Because V − � has a local maximum

V (x(t̂+ ℎ), t̂+ ℎ)− V (x̂, t̂) ≤ �(x(t̂+ ℎ), t̂+ ℎ)− �(x̂, t̂)

=

∫ t̂+ℎ

t̂

d

ds
�(x(s), s) ds

=

∫ t̂+ℎ

t̂

Dt�(x(s), s) +Dx�(x(s), s) ⋅ f(x(s), û) ds

∙ From the DPP

V (x̂, t̂) ≤
∫ t̂+ℎ

t̂

ℓ(x(s), û) ds+ V (x(t̂+ ℎ), t̂+ ℎ)

∙ Therefore we arrive at the contradiction

0 ≤
∫ t̂+ℎ

t̂

Dt�(x(s), s) +Dx�(x(s), s) ⋅ f(x(s), û) + ℓ(x(s), û) ds ≤ −�ℎ
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Proof: Value Function is the Viscosity Solution
(local minimum part 1)

∙ Choose smooth � and assume that V − � has a local minimum at (x̂, t̂)

∙ Then we must show

Dt�(x̂, t̂) + min
u∈U

[
Dx�(x̂, t̂) ⋅ f(x̂, u) + ℓ(x̂, u)

]
≤ 0

∙ Since V − � has a local minimum, choose � > 0 such that for all
∣x− x̂∣+ ∣t− t̂∣ ≤ �

(V − �)(x, t) ≥ (V − �)(x̂, t̂)

∙ Proof proceeds by contradiction: if the inequality is false then there exists � > 0
such that for all û ∈ U and ∣x− x̂∣+ ∣t− t̂∣ ≤ � we have

Dt�(x, t) +Dx�(x, t) ⋅ f(x, û) + ℓ(x, û) ≥ � > 0

∙ For any control u(⋅) ∈ U choose ℎ ∈ [0, �] small enough that ∣x(s)− x̂∣ ≤ � for
s ∈ [t̂, t̂+ ℎ] and the corresponding trajectory

ẋ(s) = f(x(s), u(s)) for s > t̂ and x(t) = x̂
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Proof: Value Function is the Viscosity Solution
(local minimum part 2)

∙ Working on contradiction if V − � has a local minimum at (x̂, t̂)

∙ Because V − � has a local minimum

V (x(t̂+ ℎ), t̂+ ℎ)− V (x̂, t̂) ≥ �(x(t̂+ ℎ), t̂+ ℎ)− �(x̂, t̂)

=

∫ t̂+ℎ

t̂

d

ds
�(x(s), s) ds

=

∫ t̂+ℎ

t̂

Dt�(x(s), s) +Dx�(x(s), s) ⋅ f(x(s), u(s)) ds

∙ From the DPP we can choose a control u(⋅) ∈ U such that

V (x̂, t̂) ≥
∫ t̂+ℎ

t̂

ℓ(x(s), u(s)) ds+ V (x(t̂+ ℎ), t̂+ ℎ)− �ℎ

2

∙ Therefore we arrive at the contradiction

�ℎ

2
≥
∫ t̂+ℎ

t̂

Dt�(x(s), s) +Dx�(x(s), s) ⋅ f(x(s), u(s)) + ℓ(x(s), u(s)) ds ≥ �ℎ
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Synthesizing an Optimal Control

∙ Given (viscosity) solution V (x, t), the optimal control is

u∗(x, t) ∈ arg min
u∈U

[DxV (x, t) ⋅ f(x, u) + ℓ(x, u)]

∙ Such a control is called a time-dependent feedback control since it depends on
the current time and state

∙ Optimal choice may not be unique
∙ Issues arise when V (x, t) is not differentiable, gradient is zero and/or

Hamiltonian is (locally) independent of input
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Hamilton-Jacobi Equations for Discounted Infinite Horizon

∙ Given discount factor � > 0 and running cost ℓ, objective is

J(x0, u(⋅)) =

∫ ∞
0

ℓ(x(s), u(s))e−�s ds

∙ The value function V (x) = infu(⋅)∈U J(x, u(⋅)) satisfies the dynamic
programming principle

V (x) = inf
u(⋅)∈U

[∫ ℎ

0

ℓ(x(s), u(s)e−�s ds+ V (x(ℎ))e−�ℎ

]
and static HJ PDE

�V (x)−min
u∈U

[DxV (x) ⋅ f(x, u) + ℓ(x, u)] = 0 for x ∈ ℝdx

∙ Another relatively well behaved problem

∙ Similar results to finite horizon problem: viscosity solution V (x) is bounded and
continuous but not necessarily differentiable

∙ Optimal feedback input is time-independent
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Hamilton-Jacobi Equations for Minimum Time

∙ Given target T , objective is

J(x0, u(⋅)) =

{
min{t ∣ x(t) ∈ T }, if {t ∣ x(t) ∈ T } ∕= ∅;
+∞, otherwise

∙ Let Ω = {x ∣ V (x) <∞} be the set of states that give rise to trajectories
which can reach the target set in finite time

∙ The value function V (x) = infu(⋅)∈U J(x, u(⋅)) satisfies the dynamic
programming principle for x ∈ Ω

V (x) = inf
u(⋅)∈U

[ℎ+ V (x(ℎ))] if ℎ < V (x)

and static boundary value HJ PDE

H(x,DxV (x)) = min
u∈U

[DxV (x) ⋅ f(x, u)− 1] = 0 for x ∈ Ω ∖ T

V (x) = 0 for x ∈ T
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Small Time Local Controllability and the Static HJ PDE

∙ A system is small time locally controllable (STLC) at a state x if the set of
states which give rise to trajectories which reach x contains x in its interior for
all positive times

∙ Intuitively, the system can move in any direction
∙ Many important types of system are not STLC

∙ If dynamics are STLC everywhere then the static HJ PDE is relatively well
behaved: the viscosity solution V (x) is bounded and continuous (but not
necessarily differentiable) and Ω = ℝdx

∙ If dynamics are not STLC then there may not be a bounded continuous
viscosity solution which solves the PDE and/or Ω must be determined
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Disturbance Parameters

Sometimes the dynamics are influenced by additional parameters

ẋ = f(x, u, v)

where v ∈ ℝdv are not known and are not controllable. There are two typical ways
of treating these disturbance inputs

∙ Stochastic: v(t) ∼ V where V is some distribution

∙ Modelled by stochastic differential equations (SDEs) in continuous case, or
various probabilistic models in discrete settings (Markov chains, discrete state
Poisson processes, etc)

∙ Optimal control of SDEs leads to Fokker-Plank or Kolmogorov PDEs: second
order versions of the HJ PDE

∙ Bounded value: v(t) ∈ V where V ⊆ ℝdv is a specified set

∙ Modelled by standard ODEs with multiple inputs
∙ Robust or worst-case treatment of disturbance input is modelled by two player

zero sum games and HJ PDE with nonconvex Hamiltonians
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Dynamics, Objective Functional and Player Knowledge
in Differential Games

∙ Dynamics and objective functional are almost the same as in the single input
case; for example

ẋ(t) = f(x(t), u(t), v(t))

J(x(t), t, u(⋅), v(⋅)) =

∫ T

t

ℓ(x(s), u(s), v(s)) ds+ g(x(T ))

∙ Control input u(⋅) ∈ U attempts to minimize
∙ Disturbance input v(⋅) ∈ V attempts to maximize

∙ In a differential setting, how much does each player know about the other’s
choice of input?

∙ A non-anticipative strategy allows one player to know the other player’s
current input value

∙ However, the player with the additional knowledge must declare their strategy
(reaction to every input) in advance

∙ For example, the disturbance can be given the advantage by permitting it a
non-anticipative strategy 

 ∈ Γ(t) =

{
� : U→ V

∣∣∣∣∣ u(r) = û(r) for almost every r ∈ [t, T ]

=⇒ �[u](r) = �[û](r) for almost every r ∈ [t, T ]

}
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Hamilton-Jacobi(-Isaacs) Equations for Differential Games

∙ Value function is then an optimization over the appropriate strategy and input
signal; for example

V (x, t) = sup
∈Γ(t)

inf
u(⋅)∈U

J(x, t, u(⋅), [u(⋅)](⋅))

∙ This choice is called the upper value function because the maximizing
disturbance is given the advantage of the non-anticipative strategy

∙ A dual lower value function can be defined
∙ If the upper and lower value functions are equivalent, then both optimal inputs

can be synthesized without strategies as pure state feedback

∙ The value function satisfies the DPP

V (x, t) = sup
∈Γ(t)

inf
u(⋅)∈U

[∫ t+ℎ

t

ℓ(x(s), u(s), [u](s)) ds+ V (x(t+ ℎ), t+ ℎ)

]
and the HJ PDE

DtV (x, t) +H (x,DxV (x, t)) = 0

H(x, p) = min
u∈U

max
v∈V

[p ⋅ f(x, u, v) + ℓ(x, u, v)]

∙ Optimization in Hamiltonian requires no special treatment of strategies, but it is
nonconvex
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Fokker-Planck or Kolmogorov Equations
for Optimal Stochastic Control

∙ For system dynamics given by the (Itô) stochastic ordinary differential
equation (SDE)

dx(t) = f(x(t), u(t))dt+ �(x(t))dW (t)

where the (controlled) “drift term” f is the same as in the deterministic ODE
case and the “diffusion term” providing the stochastic disturbance is
� : ℝdx → ℝdW and a dW dimensional Wiener process W (t)

∙ For the finite horizon objective, the value function satisfies a Fokker-Planck or
backward Kolmogorov PDE

DtV (x, t) + min
u∈U

[DxV (x, t) ⋅ f(x, u) + ℓ(x, u)] + 1
2�(x)�T (x)D2

xV (x, t) = 0

∙ If dW = dx and � is full rank then the PDE is semilinear or quasilinear and
under mild assumptions has a classical solution

∙ Otherwise the PDE is degenerate parabolic and a viscosity solution is the
appropriate weak solution

∙ Note that solution evolution is no longer governed entirely by characteristics

Optimal Control & Viscosity Solutions Ian M. Mitchell— UBC Computer Science 31/ 41



Other Control Applications with HJ PDEs

∙ State estimation / observation

∙ In most real systems we can only observe sensor outputs—the true state is not
directly observable

∙ State estimation can be formulated as various types of HJ PDE, depending on
the noise model

∙ Optimal control subject to state uncertainty can be formulated as an infinite
dimensional HJ equation

∙ Optimal stopping times

∙ In some problems the control (or disturbance) can choose the stopping time
∙ Can be formulated as a variational inequality; for example, for finite horizon

objective functional with stopping / terminal cost g(x)

max [DtV (x, t) +H(x,DxV (x, t)), V (x, t)− g(x)] = 0

∙ Reachability

∙ Next set of slides

∙ Many more. . .
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Outline

∙ Optimal control: models of system dynamics and objective functionals

∙ The value function and the dynamic programming principle

∙ A formal derivation of the Hamilton-Jacobi(-Bellman) equation

∙ Viscosity solutions and a rigorous derivation

∙ Other types of Hamilton-Jacobi equations in control

∙ Optimal control problems with analytic solutions

∙ References
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Finite Horizon: LQR Formulation

∙ In the Linear Quadratic Regulator (LQR) problem

∙ The dynamics are linear
ẋ = Ax+ Bu

with u ∈ U = ℝdu
∙ The finite horizon objective is quadratic

J(x, t, u(⋅)) = uT (T )Qfu(T ) +

∫ T

t

xT (s)Qx(s) + uT (s)Ru(s) ds

where Qf = QT
f ≥ 0, Q = QT ≥ 0, and R = RT > 0 are the terminal state

cost, the running state cost, and the input cost matrices respectively
∙ It can be shown that the value function is quadratic in the state

V (x, t) = inf
u(⋅)∈U

J(x, t, u(⋅)) = xTP(t)x
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Finite Horizon: LQR Solution (part 1)

∙ Analytic solution can be constructed from a dynamic programming argument

∙ Start at state x̂ and take u(s) = û fixed over a small time interval s ∈ [t, t+ ℎ]
∙ Cost incurred is∫ t+ℎ

t

xT (s)Qx(s) + uT (s)Ru(s) ds ≈ ℎ(x̂TQx̂+ ûTRû)

∙ State after that time period is x(t+ ℎ) ≈ x̂+ ℎ(Ax̂+ Bû)
∙ Value function at that new state is

V (x(t+ ℎ), t+ ℎ) = xT (t+ ℎ)P(t+ ℎ)x(t+ ℎ)

≈ (x̂+ ℎ(Ax̂+ Bû))T (P(t) + ℎṖ(t))(x̂+ ℎ(Ax̂+ Bû))

≈ x̂TP(t)x̂+ ℎ

(
(Ax̂+ Bû)TP(t)x̂

+x̂P(t)(Ax̂+ Bû) + x̂T Ṗ(t)x̂

)
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Finite Horizon: LQR Solution (part 2)

∙ Dynamic programming derivation of LQR solution
∙ Dynamic programming principle

V (x̂, t) = min
u(⋅)∈U

[∫ t+ℎ

t

xT (s)Qx(s) + uT (s)Ru(s) ds+ V (x(t+ ℎ), t+ ℎ)

]

x̂TP(t)x̂ = min
û∈ℝdu

⎡⎢⎢⎣
ℎ(x̂TQx̂+ ûTRû) + x̂TP(t)x̂

+ℎ

(
(Ax̂+ Bû)TP(t)x̂

+x̂P(t)(Ax̂+ Bû) + x̂T Ṗ(t)x̂

)⎤⎥⎥⎦
0 = min

û∈ℝdu
ℎ

[
x̂TQx̂+ ûTRû+ (Ax̂+ Bû)TP(t)x̂

+x̂P(t)(Ax̂+ Bû) + x̂T Ṗ(t)x̂

]
∙ Set derivative with respect to û to be zero to find optimal û

2ℎ(ûR + x̂TP(t)B) = 0

û∗ = −R−1BTP(t)x̂

∙ Substitute û∗ into dynamic programming equation and solve for Ṗ(t) to find
Riccati differential equation

−Ṗ(t) = ATP(t) + P(t)A−P(t)BR−1BTP(t) + Q

with terminal condition P(T ) = Qf
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(In)Finite Horizon: Steady State LQR

∙ In conclusion: LQR value function is V (x, t) = xTP(t)x where P(t) is the
solution to a terminal value (matrix) ODE

∙ In practice, P(t) and û∗ rapidly converge to steady state values

∙ Solve (continuous time) algebraic Riccati equation for steady state P

ATP + PA−PBR−1BTP + Q = 0

∙ Time-independent state feedback given by

u(t) = Kx(t) where K = −R−1BTP

∙ See Stanford’s EE363: Linear Dynamical Systems (Stephen Boyd)
http://www.stanford.edu/class/ee363/

∙ This and several more derivations given in lecture notes 4 (Continuous LQR)
∙ Other lectures discuss discrete time, Kalman filter (eg: LQR for state

estimation), . . .

∙ See any textbook on “state space” / “modern” control
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Minimum Time: Double Integrator

∙ The double integrator is one of the simplest systems which is not STLC

∙ System states are position x1 and velocity x2, and the input is the acceleration
u ∈ U = [−1,+1]

f(x, u) =

[
x2
u

]
∙ If target is the origin

V (x) =

⎧⎨⎩
x2 +

√
4x1 + 2x2

2, if x1 >
1
2x2∣x2∣;

−x2 +
√
−4x1 + 2x2

2, if x1 <
1
2x2∣x2∣;

∣x2∣, if x1 <
1
2x2∣x2∣

∙ Dynamics are small time controllable at the origin, so value function is
continuous, but not Lipschitz continuous

∙ Optimal trajectories / characteristics travel along the curve where Lipschitz
continuity fails

∙ If target set is not a circle, value function is discontinuous

∙ See Optimal Control, Athans & Falb (1966) or Applied Optimal Control,
Bryson & Ho (1975) or many others

Optimal Control & Viscosity Solutions Ian M. Mitchell— UBC Computer Science 38/ 41



Known Solutions for More Complex Dynamics (part 1)

∙ Unicycle model:

x =

⎡⎣x1

x2

�

⎤⎦ ẋ =

⎡⎣v cos �
v sin �
!

⎤⎦
where (x1, x2) is position in the plane, � is heading, v is linear velocity and !
is angular velocity

∙ Dubins’ car: Unicycle with fixed positive linear velocity and bounded angular
velocity

∙ Alternative viewpoint: unicycle with minimum turn radius
∙ Minimum time to reach is generally discontinuous
∙ Extensive study of combinatorial aspects of optimal paths in robotics literature:

optimal paths include CCC or CSC forms, where C is a minimum radius left or
right arc of a circle (possibly of zero length) and S is a straight segment

∙ For example, see Bui, Boissonnat, Souères & Laumond, “Shortest Path
Synthesis for Dubins Non-holonomic Robot,” ICRA 1994
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Known Solutions for More Complex Dynamics (part 2)

∙ Game of two identical vehicles: Collision avoidance with two adversarial
Dubins’ cars

∙ Solved in relative coordinate system, so state space remains three dimensional
∙ Reachability problem becomes a two player zero sum differential game becomes

a HJI PDE
∙ Analytic optimal trajectories can also be enumerated and points on the

boundary of the reachable set determined
∙ Optimal characteristics both converge and diverge, causing challenges for

Lagrangian approaches
∙ More details in subsequent set of slides
∙ See Mitchell, “Games of Two Identical Vehicles,” Stanford University

Department of Aeronautics and Astronautics Report (SUDAAR) 740 (2001).

∙ In summary, there is no shortage of toy optimal control problems with analytic
solutions

∙ On the other hand, there is no shortage of real optimal control problems
without analytic solutions
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Viscosity Solution & Control References

∙ Crandall & Lions (1983) original publication

∙ Crandall, Evans & Lions (1984) current formulation

∙ Evans & Souganidis (1984) for differential games

∙ Crandall, Ishii & Lions (1992) “User’s guide” for viscosity solutions of
degenerate ellipic and parabolic equations (dense reading)

∙ Viscosity Solutions & Applications Springer Lecture Notes in Mathematics
(1995), featuring Bardi, Crandall, Evans, Soner & Souganidis
(Capuzzo-Dolcetta & Lions eds)

∙ Optimal Control & Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,
Bardi & Capuzzo-Dolcetta (1997)

∙ Partial Differential Equations, Evans (3rd ed, 2002)
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