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Hamilton-Jacobi Flavours

• Stationary (static/time-independent) Hamilton-Jacobi used for 

target based cost to go and time to reach problems

– PDE coupled to boundary conditions

– Solution may be discontinuous

• Time-dependent Hamilton-Jacobi used for dynamic implicit 

surfaces and finite horizon optimal control / differential games

– PDE coupled to initial/terminal and possibly boundary conditions

– Solution continuous but not necessarily differentiable

• Other versions exist

– Discounted and/or infinite horizon
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Contents (not strictly ordered)

• Backward reach sets & tubes

– Treatment of inputs

• Formulation as finite horizon optimal control

– Implicit surface functions

– Modification for optimal stopping

• Game of two identical vehicles

– HJ PDE calculation

– Analytic solution (almost)

– Synthesis of safe controls

• Reducing the dimension

– Systems with terminal integrators

– Mixed implicit explicit representation

– Target application: safety for the quadrotor flip
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Backward Reachable Set G(t)

Continuous Backward Reach Tubes

• Set of all states from which trajectories can reach some given 

target state

– For example, what states can reach G(0)?

Target Set G(0)

Continuous System Dynamics
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Verification: Safety Analysis

• Does there exist a trajectory of system H leading 
from a state in initial set I to a state in terminal set T

during some finite time horizon?
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Reach Sets vs Reach Tubes

• Start at terminal set and compute backwards
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Reach Tubes (controlled input)
• For most of our examples, target set is unsafe

• If we can control the input, choose it to avoid the target set

• Backward reachable set is unsafe no matter what we do

• “Minimal” backward reach tube

Continuous System Dynamics
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Reach Tubes (uncontrolled input)

• Sometimes we have no control over input signal

– noise, actions of other agents, unknown system parameters

• It is safest to assume the worst case

• “Maximal” backward reach tube

Continuous System Dynamics
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Two Competing Inputs
• For some systems there are two classes of inputs  = (u,v)

– Controllable inputs u  U

– Uncontrollable (disturbance) inputs v  V

• Equivalent to a zero sum differential game formulation

– If there is an advantage to input ordering, give it to disturbances

Continuous System Dynamics
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Calculating Reach Sets & Tubes

• Two primary challenges

– How to represent set of reachable states

– How to evolve set according to dynamics

• Discrete systems xk+1 = (xk)

– Enumerate trajectories and states

– Efficient representations: Binary Decision Diagrams

• Continuous systems dx/dt = f(x)?
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Implicit Surface Functions
• Set G(t) is defined implicitly by an isosurface of a scalar function 

(x,t), with several benefits

– State space dimension does not matter conceptually

– Surfaces automatically merge and/or separate

– Geometric quantities are easy to calculate

• Set must have an interior

– Examples (and counter-examples) shown on board
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Reach Set as Optimal Control

• Represent the target set as an implicit surface function

• Solve an optimal control problem with target set implicit surface 

function as the terminal cost, and zero running cost

• Resulting value function is an implicit surface function for the 

backward reach set
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Game of Two Identical Vehicles

• Classical collision avoidance example

– Collision occurs if vehicles get within five units of one another

– Evader chooses turn rate |a| ≤ 1 to avoid collision

– Pursuer chooses turn rate |b| ≤ 1 to cause collision

– Fixed equal velocity ve = vp = 5

evader aircraft (control) pursuer aircraft (disturbance)
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Collision Avoidance Computation

• Work in relative coordinates with evader fixed at origin

– State variables are now relative planar location (x,y) and relative 

heading 

evader aircraft (control) pursuer aircraft (disturbance)

x

y

a

ve



b

vp

target set description
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Evolving Reachable Sets

• Modified Hamilton-Jacobi partial differential equation

final reachable setgrowth of reachable set

Ian Mitchell, University of British Columbia
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Solving a Differential Game
• Terminal cost differential game for trajectories f(¢; x,t,a(¢),b(¢))

• Value function solution (x,t) given by viscosity solution to basic 

Hamilton-Jacobi equation

– [Evans & Souganidis, 1984]
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Modification for Optimal Stopping Time
• How to keep trajectories from passing through G(0)?

– [Mitchell, Bayen & Tomlin, IEEE T. Automatic Control, 2005]

– Augment disturbance input

– Augmented Hamilton-Jacobi equation solves for reachable set

– Augmented Hamiltonian is equivalent to modified Hamiltonian
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Analytic Solution

• A. W. Merz (1971) solved differential game of two identical cars

– Optimal inputs and trajectories

– Slight modification yield analytic solution to collision avoidance

• Result: analytic collection of points lying on the interface

– Mitchell, “Games of Two Identical Vehicles”, SUDAAR 740, 2001
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Validating the Numerical Algorithm
• Analytic solution {xi} validates interface location
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Application: Synthesizing Safe Controllers

• By construction, on the boundary of the unsafe set there exists a 

control to keep trajectories safe

– Filter potentially unsafe controls to ensure safety

continuous system dynamics by construction

G(0) G(t)
G(t)

x1

n(x1)
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Synthesizing Safe Controls (No Safety)

• Use reachable sets to guarantee safety

• Basic Rules

– Pursuer: turn to head toward evader

– Evader: turn to head east

• No filtering of evader input

pursuer

safety filter’s 

input modification

pursuer’s input

evader’s desired input

evader

evader’s actual input

reachable set

(unsafe set)

collision set
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Synthesizing Safe Controls (Success)

• Use reachable sets to guarantee safety

• Basic Rules

– Pursuer: turn to head toward evader

– Evader: turn to head east

• Evader’s input is filtered to guarantee that pursuer does not 

enter the reachable set

pursuer

safety filter’s 

input modification

pursuer’s input

evader’s desired input

evader

evader’s actual input

reachable set

(unsafe set)

collision set
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Synthesizing Safe Controls (Failure)

• Use reachable sets to guarantee safety

• Basic Rules

– Pursuer: turn to head toward evader

– Evader: turn to head east

• Evader’s input is filtered, but pursuer is already inside reachable 

set, so collision cannot be avoided

pursuer

safety filter’s 

input modification

pursuer’s input

evader’s desired input

evader

evader’s actual input

reachable set

(unsafe set)

collision set
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Acoustic Capture

• Modified version of homicidal chauffeur from [Cardaliaguet, 

Quincampoix & Saint-Pierre, 1999]

– Pursuer is faster with limited turn radius but fast rotation

– Evader can move any direction, but speed is lowered near pursuer

• Also solved in relative coordinates

continuous system dynamics



Systems with Terminal Integrators
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Mixed Implicit Explict Formulation
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Terminal Integrator’s HJ PDEs
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Double Integrator
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Regular implicit surface formulation 

One HJ PDE in 2D

Terminal integrator formulation

Two HJ PDEs in 1D



Finite Horizon Optimal Control
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Rotating Double Integrator
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Target Set MIEImplicit
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Pursuit of an Oblivious Vehicle

• Modified game of two identical vehicles

– Evader has fixed linear velocity and heading

– Pursuer has linear acceleration and angular velocity as inputs

• Position variables treated as separate terminal integrators

evader aircraft (oblivious) pursuer aircraft (disturbance)

x1

x2

ve

q

wp

vp

target set description

parameters dynamics
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MIE versus Fully Implicit

• Difficult to visualize 

four dimensional 

reach tube

• Projections onto 

subspaces

– Directly calculated by 

MIE formulation

– Projected as a post-

processing step in 

implicit formulation
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MIE Pros and Cons

• MIE computation is much less costly

– MIE: four HJ PDEs in two dimensions took ~3 seconds

– Implicit: one HJ PDE in four dimensions took too much memory, but 

estimated at ~30 hours

• MIE computation works in state space projections

– Overapproximation of reach tube is inevitable
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slice of reach tube
for vp = 2.0

(using backprojection

for decoupled 

formulation)



Safely Switching Control Modes

• One application of reach sets is to determine when it 

is safe to switch between distinct control modes

– Final mode has region S0 within which final mode’s controller 

is known to be stable

– Compute B(S0, [ 0, t0 ]) using dynamics for final mode’s 

controller to determine region within which switch to final 

mode is safe

– Pick S1 ½ B(S0, [ 0, t0 ]) as target for second to last mode

– Compute B(S1, [ 0, t1 ]) using dynamics for second to last 

mode’s controller, and so on
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Autonomous Helicopter Backflips

Jeremy H. Gillula

Haomiao Huang

Michael P. Vitus

Claire J. Tomlin

ICRA 2010



Three Dimensions is Child’s Play

• Simplified longitudinal quadrotor dynamics are six 

dimensional

– Assumes that out-of-plane dynamics can be stabilized

– Analysis performed separately on three position / velocity 

pairs of variables
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