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HJ equation for Front Propagation with constraints

A front propagation model

e Consider an initial (closed) set Q9 C R", we want to compute
the reachable set

Q= {y (1), a € L=((0,1), A), x € Qo}.
where y = y2(.) denotes the solution of the ODE:

y(s) = f(y(s),a(s)), a.e.se(0,1)
y(0) = x

¢ Front: modelized by 09
e minimal time problem: 7 (x) :=inf{t > 0, x € Q;}
e Target problem

e Capture basin set: Replace f(x, a) by Conv{0, f(x,a)}, ...
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HJ equation for Front Propagation with constraints

Level set approach

Let ¢ Lipschitz continuous, be such that
Q) = {x, p(x) < 0}.
Let
u(t, x) := inf{p(yy (1), a €U}
Proposition 1:
Q¢ = {x, u(t,x) <0}.
Proposition 2: We have a dynamic programming principle
(DPP) and the following HJ equation
ur + ma}\((f(x, a)-vVu)=0, t>0xeR",
ac
u(0,x) = ¢(x), xeR"

' Assumptions (/) A compact, (ii) f(x, A) convex, and
(iif) 3LVx,y,a, |f(x,a) — f(y,a)| < L|x — y}|
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HJ equation for Front Propagation with constraints

State constraints

e Let K be a nonempty closed set, we now want to compute
A = (0, € L(0.0, x €, (¥50) €K W0 e 0.1}
o We still have Qf = {x, u(t,x) < 0} where

vt { M{e0RE0), ae 0.0, (@ ek wepy)]
+oo if there is no feasible trajectory

e u discontinuous, no simple HJ equation for u ! 2

2see however B.-Forcadel-Zidani, COCV 2010
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HJ equation for Front Propagation with constraints

Second Way B.- Forcadel - Zidani SICON 2010

e Let g be Lipschitz constinuous and such that
g(x) <0< xe K.

Instead of u, we consider an "L*>- penalized" problem

vtx) = _jnf max (so(y;“(—t», max g(y3 (- )))

a€el>(0,t 9e[0y]

e Proposition 1. {x, u(t,x) < 0} = {x, v(t,x) <0} = QK.
¢ Proposition 2. v is the unique viscosity solution of:

min (v, + ma/{(f(x, a)-vv), v— g(x)> =0, t>0,xeR"
ac
v(0,x) = max(g(x), (x)), x €R”

e Rem: L*°-cost was already considered by Barron-Jensen.

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles



HJ equation for Front Propagation with constraints

Application to minimal time

e Minimal time with state constraints K:
T(x) :=inf{t >0, xecQk}
(and T(x) = + if there is no feasible trajecories).
¢ Proposition:
7 (x) =inf{t > 0, v(t, x) <0}.
e Application: reconstruction of optimal trajectories

- without any controllability assumptions
- with/without obstacles
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HJ equation for Front Propagation with constraints

Very short & non exhaustive Literature

e inward pointing condition: Soner (86°), Cappuzzo-Dolcetta
- Lions (90), Ishii-Koike (96), ...

e outward pointing condition: Frankowska-Plaskacz (00’),
Frankowska-Vinter

¢ No condition - Viability theory (Aubin) :
Cardaliaguet-Quincampoix-Saint-Pierre (97,00), Viability
algorithm (Saint-Pierre, 94°)

¢ No condition - Penalization approach: "Exact Penalization"
Kurzhanski and Varayiya (2006).

e Other works: Kurzhanski-Mitchell-Varaiya (2006),

e Two player games: Bardi-Koike-Soravia

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles



linear + obstacle
DG scheme
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© DG scheme
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linear + obstacle

DG scheme .
Non linear case

1. Variationnal formulation

Consider the u; + ux = 0 equation, with obstacle g(x):

min(us + Uy, u — g(x)) =0 (1)
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linear + obstacle

DG scheme .
Non linear case

1. Variationnal formulation

Consider the u; + ux = 0 equation, with obstacle g(x):
min(us + Uy, u — g(x)) =0 (1)
This is equivalent to :
{ utr+ux >0
& u—g(x)>0

(ut + ux).(u(t,x) —g(x)) =0, ae.x
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linear + obstacle

DG scheme .
Non linear case

1. Variationnal formulation

Consider the u; + ux = 0 equation, with obstacle g(x):
min(u; + ux, u — g(x)) =0 (1)
This is equivalent to :
Ut + UX Z O
& u—g(x)>0
(ut + ux).(u(t,x) —g(x)) =0, ae.x
U+ ux >0
= u—g(x)>0
(Ut + Uy, U(t7 ) - g) = 07

where (., .) denotes the scalar product on L?(0, 1).
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linear + obstacle

DG scheme .
Non linear case

1. Variationnal formulation

(1) u>gandur+uy >0, (U + ux, u — g(x)) = 0.
The variational formulation for (1°) is : find u(t,.) > g such that

Vv >g, (ur+uxv—u(t.)>0.
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linear + obstacle

DG scheme .
Non linear case

1. Variationnal formulation

(1) u>gandut+ ux >0, (Ut + ux,u—g(x)) =0.
The variational formulation for (1°) is : find u(t,.) > g such that

Yv>g, (ur+ux,v—u(t.))>0.

Proof: = :v —u=(v—-g)— (u—g)hence, Vv > g,

(uy+ux,v—u) = (Ut+ux,v—9g)+0>0
0
>
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linear + obstacle

DG scheme .
Non linear case

1. Variationnal formulation

(1) u>gandut+ ux >0, (Ut + ux,u—g(x)) =0.
The variational formulation for (1°) is : find u(t,.) > g such that

Yv>g, (ur+ux,v—u(t.))>0.

Proof: = :v —u=(v—-g)— (u—g)hence, Vv > g,

(uy+ux,v—u) = (Ut+ux,v—9g)+0>0
N——

>0

< V=>4, nILmOO on(Xo) = +o00 = (ux + ux)(t, x9) > 0.
Taking v = g, we get (ut + ux,g — u(t,.)) > 0hence =0

>0 <0
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linear + obstacle

DG scheme .
Non linear case

2. direct DG scheme
(Cheng & Shu, JSC 2007)

e At first consider the case of
u+ux=0, t>0,xe(0,1)

and with periodic boundary conditions.

e Given some mesh of (0,1) : (xj_%),-, we introduce a space of

discontinuous galering elements of degre k:
Ve=A{vh, vaeP(l), Vj }, l:==1[x_1,x

where Py are the polynomials of degree at most k.
)y = va(x ), valy = = V(X" 1) = va(x

o Notations: (v .
2 I=2 2 I=3
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linear + obstacle
Non linear case

DG scheme

e Euler Forward DG formulation for us + uy = 0:

Direct DG scheme, linear case
find u™" in Vp,

un+1 —uy" N e N
/At Vh+/ UxVh+Za [u ]/;%(Vh)j_

where at is some constant such that a+ > 1.
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linear + obstacle
Non linear case

DG scheme

e Euler Forward DG formulation for us + uy = 0:

Direct DG scheme, linear case
find u™" in Vp,

un+1 —uy" e N
/At vh+/u)'}vh+2a [u")_s(vn)F, =0, Vvhe Vp

where at is some constant such that a+ > 1.

e Taking a™ = 1, this is equivalent to the classical DG scheme.
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linear + obstacle
Non linear case

DG scheme

e Euler Forward DG formulation for u; + uy = 0:

Direct DG scheme, linear case

find u"t1in Vp,

u™tt —u" } : 0 +
n _
/ ; Vh+/ Uy Vp + . alu ]j—%(vh)j_1 =0, vpeV,.
J

(h(u™),vh)

|

where at is some constant such that a+ > 1.
e Taking a™ = 1, this is equivalent to the classical DG scheme.
e We may write formally the scheme as

gt n

(g +HWU"), i) =0, Vv € Vi,

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles



i |
DG scheme linear + obstacle

Non linear case

e Equivalent vector formulation:

n,i

)

u"(x)= Y Ulpa(x), and U™ =] :
a=0,...,k n,i
where (¢a(X))a=o0,... k is some basis of P.

e Then the scheme becomes :

Un+1,i o Un,i
M

A 1+ AU™ 4+ BU™=1 — 0 ¢ RFHT

where M is the mass matrix: M, 5 = (¢a, ¥3)-

« In the end, we get an explicit formula UZ™" = F(U"); .
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linear + obstacle
Non linear case

DG scheme

3. Direct DG scheme for the obstacle case
(B. - Cheng - Shu, Preprint 2010)

e Since v > g is a little bit strong for polynomials, we introduce
Vi={veV, "v>g'}

where ' '
V=g e v(x) 2 9(x), Via

Direct DG scheme, obstacle case
find ™' in Vp, "u"t > g7,

un+1 —_yn

(—x— h(u™), v, — u™1) >0, Vv,e VP
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linear + obstacle

DG scheme .
Non linear case

4. Simplification

e In matrix form, the problem becomes (Vi):

Un+1,i . Un,i ) ] '
Z(MT + AU™ 4+ BU™ 1), (V, — UM > 0,

«

vV, > g(xl),
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linear + obstacle

DG scheme .
Non linear case

4. Simplification

e In matrix form, the problem becomes (Vi):

Un+1,i . Un,i ) ] '
Z(MT + AU™ 4+ BU™ 1), (V, — UM > 0,

«

YVa > g(xh),
¢ As in the continuous case, it is equivalent to (V/),
Un+1,i _ Un7i . ) . .
min ((MN+AU””+BU””1)Q, Ug“”—g(xg)) >0, VYa

This is still a non-linear system to solve !
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DG scheme linear + obstacle

Non linear case

e Simple idea: consider the dual basis associated to the
gaussian points: s.t. pa(Xg) = dag. Then

M = diag(wp, ..., wx) withw, >0
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i |
DG scheme linear + obstacle

Non linear case

e Simple idea: consider the dual basis associated to the
gaussian points: s.t. pa(Xg) = dag. Then

M = diag(wp, ..., wx) withw, >0

e Now the system becomes (Vi):

n+1,i Un,i ) ) ) .
min (WaaAta+(AUn’l+BUn"_1)a, UC’Z“”—g(x’ )) > 0.
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DG scheme linear + obstacle

Non linear case

e Simple idea: consider the dual basis associated to the
gaussian points: s.t. ¢, (X3) = das- Then

M = diag(wo, ..., wx) with w, >0
e Now the system becomes (Vi):

Un+1,i o Un,i . . i )
min (Wao‘Ata_'_(AUn,I_'_BUn,I—UCH Ug-H,l_g(X(IX)) > 0.

... which can be solved explicitly :

(e

U = max (Ugﬂ' - %(AU"” +BU™ ), g(x! )) J
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i 1
DG scheme linear + obstacle

Non linear case

e Simple idea: consider the dual basis associated to the
gaussian points: s.t. ¢, (X3) = das- Then

M = diag(wo, ..., wx) with w, >0

e Now the system becomes (Vi):

n+1,i Un,i . ) . .
min (WaaAto‘_'_(AUn,I_'_BUn,l—Ua’ U(IXH—LI_g(X(IX)) > 0.

... which can be solved explicitly :

Ug+1,i — max < Ug’i = %(AU'M <= BUn’i_1)a ) g(XA)>

(e

F(U)

e Remark: This is similar with a Finite Difference Euler Forward
scheme for min(u; + ux, u — g(x)) = 0!
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linear + obstacle

DG scheme .
Non linear case

5. Non linear + obstacle :
(Cheng-Shu JSC 07’, B.-Cheng-Shu SJSC)

e For u; + H(x, ux) = 0, consider any DG scheme, for instance:

o Vv € Vh,
[ { e Hoe o f -+ Byt 4 oy =0
I itz

where

H“: ‘= max (O max 2H o1, uhx(x))>

X€1ax

2

- oH
/—Ij+1 = min (0 mln1 8—UX( 1 Upx(X))

These terms are for STABILITY.
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linear + obstacle

DG scheme .
Non linear case

6. The scheme in 2d

e Consider Q elements generated by

x(x3, 0<p,q<k

e We take an explicit and stable TVD — RK3 scheme,
U™t = F(U).

e The full scheme reads

Ut = max (F(U)L, g(x4))

where x/, = (xJ,, x2) (using 1 — —d gauss points)
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Numerical results

e Numerical results
@ Without obstacles
@ With obstacles
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Without obstacles

X With obstacles
Numerical results

Good long time behavior

{gaerf(x)-ch:O, XeQ, te|0,T]
©(0,X) = ¢°(x)

with Q ¢ R2.

©% : R? — Ris a Lipschitz continuous function such that

Qo (target) = {x. ¢°(x) <0} J
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Without obstacles
With obstacles

Numerical results

1. Rotation of a circle

Dynamics: f(x, y) := 2n(—y, X)

Initial data:
¢O(x,y) = min(ro, |x — Xall2 — r0), o = 0.5, A= (0,1)
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Without obstacles

X With obstacles
Numerical results

P2 : Local error (region s.t. |¢(t,.)| < 0.15), Hausdorff distance

Ny Ax ‘ L'-error  order ‘ L2-error  order ‘ L°°-error  order ‘ dy order

10 05 1.03e-2 = 1.34e-2 - 3.84e-2 = 3.29e-2 -

20 0.25 4.27e-3 1.2 5.36e-3 1.3 1.76e-2 1.1 9.86e-3 1.7
40 0.125 4.28e-4 3.3 5.66e-4 3.2 2.90e-3 2.6 1.64e-3 25
80 0.0675 | 4.76e-5 3.1 6.22e-5 3.1 2.55e-4 3.5 1.33e-4 3.6

Ny Ax L'-error order | L[2-error order | L°-error order dy order

10 05 4.66e-2 . 5.62e-2 . 1.30e-1 . 1.17e-1 .

20 0.25 8.5%-3 2.4 1.01e-2 24 2.33e-2 2.4 1.19e-2 3.3
40 0.125 1.65e-3 23 1.99e-3 23 6.09e-3 1.9 3.33e-3 1.8
80 0.0675 | 2.31e-4 2.8 2.91e-4 2.7 7.89e-4 2.9 2.73e-4 3.6

Hausdorff distance: duy(A, B) := max(maxd(a, B), max d(b, A)).
S

acA
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. With obstacles
Numerical results

2. Rotation of a square

t=1 t=10

=== DG (P3)
— Exact
-2

=== DG (P3)
— Exact
2.

25 -2

15 -1 05 o0 05 1 15 2 25 25 2 -5 -1 05 0 05 1 15 2 25

Rotation of a square. t = 1 (left), and t = 10 (right),

o.

with P2 and Ny = N, = 40 (= 1252 values)
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Without obstacles
With obstacles

Numerical results

We observe
e P3 is better to well catch the corners
e First order (but the solution is only Lipschitz continuous)

¢ Very good long time behavior
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Without obstacles

X With obstacles
Numerical results

3. Deformation test

e We consider
a(|Ix[l)

. -2
f(t,x,y) :=sign(T —t) max(1 — ||x||2,0) 2;1 )

where [|x||2 := /X2 + y2 and

©°(x,y) = min(max(y, -1),1). (@)

The function ¢° has a 0-level set which is the x axis:
{®=0}={y=0}

e Exact solution for t < T

u(t,x) := Uo(R_2rtax)X) Where Ry := (Cs?ﬁgzg _CS(Q%)
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Numerical results

- DG (P4) i - DG (P4) i
— Exact — Exact
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 -04 -02 0 02 04 06 08 1
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Without obstacles

. With obstacles
Numerical results

t=5 t=10
1 1
08 1 08
06 p h . 06
04 4 04
0.2 1 0.2
0 0
~02 -0.2
—0.4 —0.4
-06 -0.6
-0.8 . -0.8
— Exact — Exact
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 -04 -02 0 02 04 06 08 1

Figure: Plots attimes t = 5 and t = 10 (return to initial data) - with
P* and 24 x 24 mesh cells (~ 1002 values)
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Without obstacles

. With obstacles
Numerical results

Example coming from x = o Uy —yux + |uy| =0

Level Set

DG
P 1
08 08
06 06
04 04
02 02
0 0
-02 -02
-04 -04
-06 -06
= = = DG (P2, Entropy Fix) ===LS
Exact Exact
= Initial front « _Initial front
-1 -05 0 05 1 -1 -05 0 05 1

Figure: Comparison at time t = 1.0: DG scheme with 442 cells, P?
(left) and traditional level set method using a second order
Lax-Friedrich type scheme (right) with 4012 mesh cells

nt propagation with obstacles
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Without obstacles

X With obstacles
Numerical results

Example 1 (1-d, linear + obstacle)

We first consider a one-dimensional test:

min(u; + ux,u—g(x)) =0, t>0, xe[-1,1], (3)
U(O7X):UO(X)7 X € [_171]7 (4)
with periodic boundary conditions and g(x) := sin(wx),

Up(x) := 0.5 + sin(wx). In that case, for times 0 <t < 1, the
exact solution can be computed analytically.
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Without obstacles
With obstacles

Numerical results

The numerical solution agrees well with the exact solution

everywhere.
t=0 t=0.5 t=1
1 \/
0 0 0
= — Exact -1 — Exact -t — Exact
Obstacle Obstacle Obstacle
---DG ---DG ---DG
- 1 = = !

Figure: Example 1, times t = 0O (initial data), t = 0.5 and t = 1, using
P2 elements with N, = 20 mesh cells (obstacle : green dotted line)
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Without obstacles
With obstacles

Numerical results

Table: Example 1. t = 0.5. P? elements (error at distance d = 0.1
away from singular points)

N, Ax ‘U-error order‘ [2-error order | L>-error order

40 5.00e-2 | 3.34e-05 2.41 | 1.01e-04 1.98 | 7.02e-04 2.20
80 2.50e-2 | 1.77e-06 4.24 | 3.64e-06 4.79 | 2.82e-05 4.64
160 1.25e-2 | 1.78e-07 3.31 | 2.91e-07 3.64 | 2.40e-06 3.55
320 6.25e-3 | 2.13e-08 3.06 | 3.43e-08 3.08 | 1.28e-07 4.23
640 3.13e-3 | 2.66e-09 3.00 | 4.28e-09 3.00 | 1.60e-08 3.00
1280 1.56e-3 | 3.32e-10 3.00 | 5.35e-10 3.00 | 2.00e-09 3.00
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X With obstacles
Numerical results

Example 2 (1-d, nonlinear + obstacle)

We consider a one-dimensional test with a nonlinear
Hamiltonian:

min(u; + |ux|,u—9g(x)) =0, t>0, xe[-1,1], (5)
U(O,X) = UO(X)7 xeqQ, (6)
with periodic boundary conditions and g(x) := sin(mrx),
Up(x) := 0.5 + sin(wx). In this particular case, the exact
solution is given by:

u(t,x) = max(u(t, x), g(x))

where u is the solution of the Eikonal equation u; + |ux| = 0 and
can be computed analytically.
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Without obstacles
With obstacles

Numerical results

t=0.2 t=0.4

— Exact — Exact
Obstacle Obstacle
--DG --DG

Figure: Example 2, numerical and exact solutions at times t = 0.2
and t = 0.4, N, = 20, using P? (obstacle : green dotted line).

= good agreement with the exact solution.
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X With obstacles
Numerical results

Example 3 (2—d, linear + obstacle, accuracy test)

The equation solved is

. 1 1
mln(Ut—f—éUX—'-éUy,U—g(X,y)):0, t>07 (Xay)em)

U(O,X,y):Uo(X,y), (X7.y)€Qa (8)

where g(x, y) := sin(w(x + ¥)), upo(x,y) = 0.5+ g(x, y), and
Q = [-1, 1] with periodic boundary conditions. The exact
solution is known :

u(t,x,y) = u(t,x +y)

(where u(") is the exact solution for 1—d Example 1).
The errors are computed away from the singular zone :

{(x,y)eQ 1<i<3, dx+y—s,2Z)>8} (5=0.1)
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Numerical results

Without obstacles
With obstacles

Table: Example 3. t = 0.5. Q? elements.

N, Ax L'-error order | [2-error order | L>-error order
10 2.00e-1 | 7.70e-03 - 1.03e-02 - 1.04e-01 -
20 1.00e-1 | 9.27e-04 3.05 | 1.28e-03 3.01 | 8.71e-03 3.58
40 5.00e-2 | 9.48e-05 3.29 | 1.67e-04 2.94 | 1.04e-03 3.06
80 2.50e-2 | 7.15e-06 3.73 | 1.11e-05 3.91 1.02e-04 3.34

= We observe optimal convergence rate in this example.
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Without obstacles

X With obstacles
Numerical results

Example 4 (2—d, linear + obstacle)

The initial data is up(x) := ||[x — (—0.5,0)||> — 0.3.
The obstacle is coded by g(x) := 0.25 — ||x — (0, 0.25)||2.
The problem is

min(us + ux,u — g(x,y)) =0, t>0, (x,y)€Q, (9
U(O,X,y):UO(X,}/), (X,y)ESL (10)

on Q := [—1, 1] with periodic boundary conditions.
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Figure: Example 4(Nx = N, = 40), times t € {0, 0.5, 1}
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Example 5 (2—d, linear + obstacle, variable
coefficients)

We consider
-2
fy)i= ( “on% ) max(i — [xle.0

where ||x||2 := v/Xx2 + y2 and with a Lipschitz continuous initial
data up:

uop(x,y) = min(max(y,—1),1). (11)
The function ug has a 0-level set which is the x axis:
{x = (x,y) € R? | y = 0}. When there is no obstacle function,
the exact solution is known.

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles



Without obstacles

X With obstacles
Numerical results

t=0.25 t=0.5

--- DG (Q2) h --- DG (Q2)
08 Exact o] Exact
Obstacle Obstacle
1=0.75 t=1
08

EETeTT) @2
08 —— Exact xact
Obstacle Obstacle

with obstacles



Without obstacles

X With obstacles
Numerical results

Example 6 (2—d, nonlinear)

The problem is

min(us + max (0,27 (—y, x) - Vu),u— g(x,y)) =0, (12)
U(O7X7y):UO(X7y)’ (X7y)€§27 (13)
Domain Q := [-2, 2]?,

Initial data : up(x, y) := ||(x,y) — (1,0)[2 — 0.5,
Obstacle : g(x,y) :=0.5—||(x,y) — (0, 0.5)]|2
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Figure: Example 6, t € {0, 0.25, 0.5, 0.75}, @2, 80 x 80 cells.
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More complex example

We consider the problem

min(u; + max <0, Ux + ;]uy]> ,u—g(x,y))=0, t>(@Q4)
U(O,X,y):UQ(X,y), XEQ, (15)
with ug(x) :=||x — (—1.0, 0)||.c — 0.5 and

g(x) := min <O.25, |x — (0.2, 0)|]2 — 0.5), corresponding to a

square initial data and a disk obstacle.
In this example the “entropy fix" is needed.
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Example 8 - Narrow band algorithm

@ define a “cutoff" value (C := 2Ax),
@ The initial data ug is transformed into

UO(Xv y) = min(07 maX(—C, UO(Xa y)))
@ At each time step, (i) for each cell (centered at (x;, y})) :

1 if |u"(x;, )] <099 C
Q' - i Y| )
nlogos, - { 0 otherwise

@ (ii) for all index /, j, compute
nlogo; j := max(nlogoy;, nlogoy,.. 1, nlogoy. ; )

@ (iii) Do the DG computations only on cells (/,) such that
nlogo;; = 1.
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Narrow band example

e We consider

ut+2n(—y,x)-Vu=0, t>0, (x,y)eQ, (16a)
U(07X7Y):UO(X7Y)7 (X7y)€§27 (16b)

and same initial data ug as for the rotation example.
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Table: (Example 8) comparison of CPU times (in sec.) for full and
narrow band approaches for (??), t = 0.5

Ny full  "order" ‘ narrow band "order" ‘ Gain (full / band)
20 8.1s - 6.9s - 1.17
40 452s 5.58 171s 247 2.64
80 | 347.4s 7.68 83.4s 4.87 4.16
160 | 2705.3s 7.78 386.0s 4.62 7.00

The “order" is computed as the ratio of CPU times
time(Ny)/time(Ny/2).
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FUTUR WORK :

@ improvement of the narrow band approach
@ convergence proof (linear + obstacle case)

@ applications to optimal control (higher dimensional
problems)
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