A DG solver for front propagation with obstacles

Olivier Bokanowski

Laboratory Jacques Louis Lions (Univ. Denis-Diderot, Paris) Commands (INRIA Saclay) and Ensta Paris Tech

Joint work with:

Yingda CHENG (Austin, Univ of Texas, Dep. of Mathematics) Chi-Wang SHU (Brown, division of Applied Mathematics)

HJ equation for Front Propagation with constraints

2 DG scheme

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles

A front propagation model

• Consider an initial (closed) set $\Omega_0 \subset \mathbb{R}^n$, we want to compute the **reachable set**

$$\Omega_t := \{ \mathbf{y}_{\mathbf{x}}^{\alpha}(t), \ \alpha \in L^{\infty}((\mathbf{0}, t), \mathcal{A}), \ \mathbf{x} \in \Omega_0 \}.$$

where $y = y_x^{\alpha}(.)$ denotes the solution of the ODE:

$$\dot{y}(s) = f(y(s), \alpha(s)), \quad ext{a.e.} \ s \in (0, t)$$

 $y(0) = x$

- Front: modelized by $\partial \Omega_t$
- minimal time problem: $T(x) := \inf\{t \ge 0, x \in \Omega_t\}$
- Target problem
- Capture basin set: Replace $f(x, \alpha)$ by $Conv\{0, f(x, \alpha)\}_2$.

Level set approach

Let φ Lipschitz continuous, be such that

$$\Omega_0 = \{ \boldsymbol{x}, \ \varphi(\boldsymbol{x}) \leq \boldsymbol{0} \}.$$

Let

$$u(t, x) := \inf\{\varphi(y_x^{\alpha}(-t)), \ \alpha \in \mathcal{U}\}$$

Proposition 1:

$$\Omega_t = \{ \boldsymbol{x}, \ \boldsymbol{u}(t, \boldsymbol{x}) \leq \boldsymbol{0} \}.$$

Proposition 2: We have a dynamic programming principle (DPP) and the following HJ equation ¹

$$\begin{cases} u_t + \max_{a \in A} (f(x, a) \cdot \nabla u) = 0, \quad t > 0, x \in \mathbb{R}^n, \\ u(0, x) = \varphi(x), \quad x \in \mathbb{R}^n \end{cases}$$

¹Assumptions (i) A compact, (ii) f(x, A) convex, and (iii) $\exists L \forall x, y, a, |f(x, a) - f(y, a)| \leq L|x - y|_{z > z}$

State constraints

• Let K be a nonempty closed set, we now want to compute

$$\Omega_t^{\boldsymbol{K}} := \{ \boldsymbol{y}_{\boldsymbol{x}}^{\alpha}(t), \ \alpha \in L^{\infty}(\boldsymbol{0},t), \ \boldsymbol{x} \in \Omega_{\boldsymbol{0}}, \ \left(\boldsymbol{y}_{\boldsymbol{x}}^{\alpha}(\theta) \in \boldsymbol{\mathsf{K}}, \ \forall \theta \in [\boldsymbol{0},\boldsymbol{\mathsf{t}}] \right) \}.$$

• We still have $\Omega_t^K = \{x, u(t, x) \le 0\}$ where

$$u(t,x) := \left\{ \begin{array}{l} \inf \left\{ \varphi(\mathbf{y}_{\mathbf{x}}^{\alpha}(-t)), \ \alpha \in L^{\infty}(\mathbf{0},t), \ \left(\mathbf{y}_{\mathbf{x}}^{\alpha}(\theta) \in \mathbf{K}, \ \forall \theta \in [\mathbf{0},\mathbf{t}] \right) \right\} \\ +\infty \ \text{if there is no feasible trajectory} \end{array} \right\}$$

• *u* discontinuous, no simple HJ equation for *u* ! ²

²see however B.-Forcadel-Zidani, COCV 2010

Second way B.- Forcadel - Zidani SICON 2010

• Let g be Lipschitz constinuous and such that

 $\textbf{g}(\textbf{x}) \leq \textbf{0} \Leftrightarrow \textbf{x} \in \textbf{K}.$

Instead of u, we consider an " L^{∞} - penalized" problem

$$v(t,x) := \inf_{\alpha \in L^{\infty}(0,t)} \max \left(\varphi(y_{x}^{\alpha}(-t)), \max_{\theta \in [0,t]} g(y_{x}^{\alpha}(-\theta)) \right)$$

• **Proposition 1.** $\{x, u(t,x) \le 0\} = \{x, v(t,x) \le 0\} = \Omega_t^K$.

• Proposition 2. v is the unique viscosity solution of:

$$\min\left(v_t + \max_{a \in A}(f(x, a) \cdot \nabla v), \ \mathbf{v} - \mathbf{g}(\mathbf{x})\right) = 0, \quad t > 0, x \in \mathbb{R}^n,$$
$$v(0, x) = \max(g(x), \varphi(x)), \quad x \in \mathbb{R}^n$$

• **Rem:** L^{∞} -cost was already considered by **Barron-Jensen**.

Application to minimal time

• Minimal time with state constraints K:

$$\mathcal{T}(\mathbf{x}) := \inf\{t \ge \mathbf{0}, \ \mathbf{x} \in \Omega_t^K\}$$

(and $T(x) = +\infty$ if there is no feasible trajecories).

• Proposition:

$$\mathcal{T}(x) = \inf\{t \ge 0, v(t, x) \le 0\}.$$

- Application: reconstruction of optimal trajectories
- without any controllability assumptions
- with/without obstacles

・ 同 ト ・ ヨ ト ・ ヨ ト

Very short & non exhaustive Literature

- inward pointing condition: Soner (86'), Cappuzzo-Dolcetta
- Lions (90), Ishii-Koike (96), ...
- outward pointing condition: Frankowska-Plaskacz (00'), Frankowska-Vinter
- No condition Viability theory (Aubin) :

Cardaliaguet-Quincampoix-Saint-Pierre (97,00), Viability algorithm (Saint-Pierre, 94')

• No condition - Penalization approach: "Exact Penalization" Kurzhanski and Varayiya (2006).

- Other works: Kurzhanski-Mitchell-Varaiya (2006),
- Two player games: Bardi-Koike-Soravia

<日

<日</p>

linear + obstacle Non linear case

- linear + obstacle
- Non linear case

< 172 ▶

linear + obstacle Non linear case

1. Variationnal formulation

Consider the $u_t + u_x = 0$ equation, with obstacle g(x):

$$\min(u_t+u_x,u-g(x))=0 \tag{1}$$

This is equivalent to :

$$\Leftrightarrow \begin{cases} u_t + u_x \ge 0\\ u - g(x) \ge 0\\ (u_t + u_x).(u(t, x) - g(x)) = 0, \quad \text{a.e. } x \end{cases}$$

$$\Leftrightarrow egin{array}{ll} egin{array}{c} u_t+u_x\geq 0\ u-g(x)\geq 0\ (u_t+u_x,\ u(t,.)-g)=0, \end{array}$$

where (.,.) denotes the scalar product on $L^2(0, 1)$, (.,.)

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles

linear + obstacle Non linear case

1. Variationnal formulation

Consider the $u_t + u_x = 0$ equation, with obstacle g(x):

$$\min(u_t+u_x,u-g(x))=0 \tag{1}$$

This is equivalent to :

$$\Leftrightarrow \begin{cases} u_t + u_x \ge 0\\ u - g(x) \ge 0\\ (u_t + u_x).(u(t, x) - g(x)) = 0, \quad \text{a.e. } x \end{cases}$$

$$\Leftrightarrow \quad \left\{ \begin{array}{l} u_t + u_x \ge 0 \\ u - g(x) \ge 0 \\ (u_t + u_x, \ u(t, .) - g) = 0, \end{array} \right.$$

where (.,.) denotes the scalar product on $L^2([0, 1])$,

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles

linear + obstacle Non linear case

1. Variationnal formulation

Consider the $u_t + u_x = 0$ equation, with obstacle g(x):

$$\min(u_t+u_x,u-g(x))=0 \tag{1}$$

This is equivalent to :

$$\Leftrightarrow \begin{cases} u_t + u_x \ge 0\\ u - g(x) \ge 0\\ (u_t + u_x).(u(t, x) - g(x)) = 0, \quad \text{a.e. } x \end{cases}$$

$$\Leftrightarrow \quad \left\{ \begin{array}{l} u_t + u_x \geq 0 \\ u - g(x) \geq 0 \\ (u_t + u_x, \ u(t, .) - g) = 0 \end{array} \right.$$

where (.,.) denotes the scalar product on $L^2(0,1)$,

linear + obstacle Non linear case

1. Variationnal formulation

(1')
$$u \ge g \text{ and } u_t + u_x \ge 0, (u_t + u_x, u - g(x)) = 0.$$

The variational formulation for (1') is : find $u(t, .) \ge g$ such that

$$\forall \mathbf{v} \geq \mathbf{g}, \quad (u_t + u_x, \mathbf{v} - u(t, .)) \geq 0.$$

Proof:
$$\Rightarrow$$
 : $v - u = (v - g) - (u - g)$ hence, $\forall v \ge g$,

$$(u_t + u_x, v - u) = (u_t + u_x, \underbrace{v - g}_{\geq 0}) + 0 \ge 0$$

 $\begin{array}{l} \Leftarrow : v = \varphi_n \geq g, \lim_{n \to \infty} \varphi_n(x_0) = +\infty \Rightarrow (u_x + u_x)(t, x_0) \geq 0. \\ \text{Taking } v = g, \text{ we get } (u_t + u_x, g - u(t, .)) \geq 0 \end{array}$

linear + obstacle Non linear case

1. Variationnal formulation

(1')
$$u \ge g \text{ and } u_t + u_x \ge 0, (u_t + u_x, u - g(x)) = 0.$$

The variational formulation for (1') is : find $u(t, .) \ge g$ such that

$$\forall \mathbf{v} \geq \mathbf{g}, \quad (u_t + u_x, \mathbf{v} - u(t, .)) \geq 0.$$

 $\begin{array}{l} \Leftarrow : v = \varphi_n \geq g, \lim_{n \to \infty} \varphi_n(x_0) = +\infty \Rightarrow (u_x + u_x)(t, x_0) \geq 0. \\ \text{Taking } v = g, \text{ we get } (\underbrace{u_t + u_x}_{t, y}, \underbrace{g - u(t, .)}_{t, y}) \geq 0 \text{ hence } = 0 \end{array}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

linear + obstacle Non linear case

1. Variationnal formulation

(1')
$$u \ge g \text{ and } u_t + u_x \ge 0, (u_t + u_x, u - g(x)) = 0.$$

The variational formulation for (1') is : find $u(t, .) \ge g$ such that

$$\forall v \geq g, \quad (u_t + u_x, v - u(t, .)) \geq 0.$$

Proof:
$$\Rightarrow$$
 : $v - u = (v - g) - (u - g)$ hence, $\forall v \ge g$,

$$(u_t + u_x, v - u) = (u_t + u_x, \underbrace{v - g}_{\geq 0}) + 0 \geq 0$$

 $\leftarrow : v = \varphi_n \ge g, \lim_{n \to \infty} \varphi_n(x_0) = +\infty \Rightarrow (u_x + u_x)(t, x_0) \ge 0.$ Taking v = g, we get $(\underbrace{u_t + u_x}_{\ge 0}, \underbrace{g - u(t, .)}_{\le 0}) \ge 0$ hence = 0

linear + obstacle Non linear case

2. direct DG scheme (Cheng & Shu, JSC 2007)

At first consider the case of

$$u_t + u_x = 0, \quad t > 0, \ x \in (0, 1)$$

and with periodic boundary conditions.

• Given some mesh of (0, 1) : $(x_{j-\frac{1}{2}})_j$, we introduce a space of discontinuous galering elements of degre *k*:

$$V_h = \{v_h, v_h \in P_k(I_j), \forall j \}, I_j := [x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}]$$

where P_k are the polynomials of degree at most k.

• Notations: $(v_h)_{j-\frac{1}{2}}^{\pm} = v_h(x_{j-\frac{1}{2}}^{\pm}), \ [v_h]_{j-\frac{1}{2}} = v_h(x_{j-\frac{1}{2}}^{+}) - v_h(x_{j-\frac{1}{2}}^{-}).$

linear + obstacle Non linear case

• Euler Forward DG formulation for $u_t + u_x = 0$:

Direct DG scheme, linear case

find u^{n+1} in V_h ,

$$\int \frac{u^{n+1}-u^n}{\Delta t} v_h + \int u_x^n v_h + \sum_j a^+ [u^n]_{j-\frac{1}{2}} (v_h)_{j-\frac{1}{2}}^+ = 0, \quad \forall v_h \in V_h.$$

where a^+ is some constant such that $a^+ \ge 1$.

• Taking $a^+ = 1$, this is equivalent to the classical DG scheme.

• We may write formally the scheme as

$$(rac{u^{n+1}-u^n}{\Delta t}+\mathcal{H}(u^n),v_h)=0, \quad \forall v_h\in V_h$$

linear + obstacle Non linear case

• Euler Forward DG formulation for $u_t + u_x = 0$:

Direct DG scheme, linear case

find u^{n+1} in V_h ,

$$\int \frac{u^{n+1}-u^n}{\Delta t} v_h + \int u_x^n v_h + \sum_j a^+ [u^n]_{j-\frac{1}{2}} (v_h)_{j-\frac{1}{2}}^+ = 0, \quad \forall v_h \in V_h.$$

where a^+ is some constant such that $a^+ \ge 1$.

• Taking $a^+ = 1$, this is equivalent to the classical DG scheme.

We may write formally the scheme as

$$(rac{u^{n+1}-u^n}{\Delta t}+\mathcal{H}(u^n),v_h)=0, \quad orall v_h\in V_h,$$

linear + obstacle Non linear case

• Euler Forward DG formulation for $u_t + u_x = 0$:

Direct DG scheme, linear case

find u^{n+1} in V_h ,

$$\int \frac{u^{n+1} - u^n}{\Delta t} v_h + \underbrace{\int u_x^n v_h + \sum_j a^+ [u^n]_{j-\frac{1}{2}} (v_h)_{j-\frac{1}{2}}^+}_{(h(u^n), v_h)} = 0, \quad v_h \in V_h.$$

where a^+ is some constant such that $a^+ \ge 1$.

- Taking $a^+ = 1$, this is equivalent to the classical DG scheme.
- We may write formally the scheme as

$$(rac{u^{n+1}-u^n}{\Delta t}+\mathcal{H}(u^n),v_h)=0,\quad orall v_h\in V_h,$$

linear + obstacle Non linear case

• Equivalent vector formulation:

$$u^{n}(x) = \sum_{\alpha=0,...,k} U^{n,i}_{\alpha} \varphi_{\alpha}(x), \text{ and } U^{n,i} = \begin{pmatrix} U^{n,i}_{0} \\ \vdots \\ U^{n,i}_{k} \end{pmatrix}$$

where $(\varphi_{\alpha}(x))_{\alpha=0,...,k}$ is some basis of P_k .

• Then the scheme becomes :

$$M\frac{U^{n+1,i}-U^{n,i}}{\Delta t}+AU^{n,i}+BU^{n,i-1}=0\in\mathbb{R}^{k+1}$$

where *M* is the mass matrix: $M_{\alpha,\beta} = (\varphi_{\alpha}, \varphi_{\beta})$.

• In the end, we get an explicit formula $U_{\alpha}^{n+1,i} = F(U^n)_{i,\alpha}$.

linear + obstacle Non linear case

3. Direct DG scheme for the obstacle case (B. - Cheng - Shu, Preprint 2010)

• Since $v \ge g$ is a little bit strong for polynomials, we introduce

$$V_h^g := \{ v \in V_h, \quad "v \ge g" \}$$

where

$$" v \geq g" \Leftrightarrow v(x^i_{lpha}) \geq g(x^i_{lpha}), \quad orall i, lpha$$

and where $(x_{\alpha}^{i})_{\alpha=0,...,k}$ are the k + 1 gauss points on cell I_{i} .

Direct DG scheme, obstacle case

find u^{n+1} in V_h , " $u^{n+1} \ge g$ ",

$$(rac{u^{n+1}-u^n}{\Delta t}+h(u^n),v_h-u^{n+1})\geq 0, \quad \forall v_h\in V_h^{\mathbf{g}}$$

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles

linear + obstacle Non linear case

4. Simplification

• In matrix form, the problem becomes $(\forall i)$:

$$\sum_{lpha} (Mrac{U^{n+1,i}-U^{n,i}}{\Delta t}+AU^{n,i}+BU^{n,i-1})_{lpha} (V_{lpha}-U^{n+1,i}_{lpha})\geq 0,
onumber \ orall V_{lpha}\geq g(x^{i}_{lpha}),$$

• As in the continuous case, it is equivalent to $(\forall i)$,

$$\min\left((M\frac{U^{n+1,i}-U^{n,i}}{\Delta t}+AU^{n,i}+BU^{n,i-1})_{\alpha},\ U_{\alpha}^{n+1,i}-g(x_{\alpha}^{i})\right)\geq 0,\quad\forall\alpha$$

This is still a non-linear system to solve !

A (10) A (10) A (10)

linear + obstacle Non linear case

4. Simplification

• In matrix form, the problem becomes $(\forall i)$:

$$\sum_{lpha} (Mrac{U^{n+1,i}-U^{n,i}}{\Delta t}+AU^{n,i}+BU^{n,i-1})_{lpha} (V_{lpha}-U^{n+1,i}_{lpha})\geq 0,
onumber \ orall V_{lpha}\geq g(x^{i}_{lpha}),$$

• As in the continuous case, it is equivalent to $(\forall i)$,

$$\min\left((M\frac{U^{n+1,i}-U^{n,i}}{\Delta t}+AU^{n,i}+BU^{n,i-1})_{\alpha},\ U^{n+1,i}_{\alpha}-g(x^{i}_{\alpha})\right)\geq0,\quad\forall\alpha$$

This is still a non-linear system to solve !

• (1) • (

linear + obstacle Non linear case

• Simple idea: consider the dual basis associated to the gaussian points: s.t. $\varphi_{\alpha}(x_{\beta}) = \delta_{\alpha\beta}$. Then

 $M = \operatorname{diag}(w_0, \ldots, w_k)$ with $w_\alpha > 0$

• Now the system becomes $(\forall i)$:

$$\min\left(w_{\alpha}\frac{U_{\alpha}^{n+1,i}-U_{\alpha}^{n,i}}{\Delta t}+(AU^{n,i}+BU^{n,i-1})_{\alpha},\ U_{\alpha}^{n+1,i}-g(x_{\alpha}^{i})\right)\geq0.$$

... which can be solved explicitly :

• **Remark:** This is similar with a Finite Difference Euler Forward scheme for $min(u_t + u_x, u - g(x)) = 0$!

э

linear + obstacle Non linear case

• Simple idea: consider the dual basis associated to the gaussian points: s.t. $\varphi_{\alpha}(x_{\beta}) = \delta_{\alpha\beta}$. Then

$$M = \operatorname{diag}(w_0, \ldots, w_k)$$
 with $w_{\alpha} > 0$

• Now the system becomes $(\forall i)$:

$$\min\left(w_{\alpha}\frac{U_{\alpha}^{n+1,i}-U_{\alpha}^{n,i}}{\Delta t}+(AU^{n,i}+BU^{n,i-1})_{\alpha},\ U_{\alpha}^{n+1,i}-g(x_{\alpha}^{i})\right)\geq0.$$

... which can be solved explicitly :

• **Remark:** This is similar with a Finite Difference Euler Forward scheme for $min(u_t + u_x, u - g(x)) = 0$!

linear + obstacle Non linear case

• Simple idea: consider the dual basis associated to the gaussian points: s.t. $\varphi_{\alpha}(x_{\beta}) = \delta_{\alpha\beta}$. Then

$$M = \operatorname{diag}(w_0, \ldots, w_k)$$
 with $w_\alpha > 0$

• Now the system becomes $(\forall i)$:

$$\min\left(w_{\alpha}\frac{U_{\alpha}^{n+1,i}-U_{\alpha}^{n,i}}{\Delta t}+(AU^{n,i}+BU^{n,i-1})_{\alpha},\ U_{\alpha}^{n+1,i}-g(x_{\alpha}^{i})\right)\geq0.$$

... which can be solved explicitly :

$$U_{\alpha}^{n+1,i} = \max\left(U_{\alpha}^{n,i} - \frac{\Delta t}{w_{\alpha}}(AU^{n,i} + BU^{n,i-1})_{\alpha}, \ g(x_{\alpha}^{i})\right)$$

• **Remark:** This is similar with a Finite Difference Euler Forward scheme for $min(u_t + u_x, u - g(x)) = 0$!

linear + obstacle Non linear case

• Simple idea: consider the dual basis associated to the gaussian points: s.t. $\varphi_{\alpha}(x_{\beta}) = \delta_{\alpha\beta}$. Then

$$M = \operatorname{diag}(w_0, \ldots, w_k)$$
 with $w_\alpha > 0$

• Now the system becomes $(\forall i)$:

$$\min\left(w_{\alpha}\frac{U_{\alpha}^{n+1,i}-U_{\alpha}^{n,i}}{\Delta t}+(AU^{n,i}+BU^{n,i-1})_{\alpha},\ U_{\alpha}^{n+1,i}-g(x_{\alpha}^{i})\right)\geq0.$$

... which can be solved explicitly :

$$U_{\alpha}^{n+1,i} = \max\left(\underbrace{U_{\alpha}^{n,i} - \frac{\Delta t}{w_{\alpha}}(AU^{n,i} + BU^{n,i-1})_{\alpha}}_{F(U^{n})_{\alpha}^{i}}, g(x_{\alpha}^{i})\right)$$

• **Remark:** This is similar with a Finite Difference Euler Forward scheme for $\min(u_t + u_x, u - g(x)) = 0$!

linear + obstacle Non linear case

5. Non linear + obstacle : (Cheng-Shu JSC 07', B.-Cheng-Shu SJSC)

- For $u_t + H(x, u_x) = 0$, consider any DG scheme, for instance:
- $\forall v \in V_h$,

$$\int_{I_j} \left\{ (u_h)_t + H(x, (u_h)_x) \right\} v + \frac{H_{j-\frac{1}{2}}^{1,+} [\tilde{u}_h]_{j-\frac{1}{2}} v_{j-\frac{1}{2}}^+ + \frac{H_{j+\frac{1}{2}}^{1,-} [\tilde{u}_h]_{j+\frac{1}{2}} v_{j+\frac{1}{2}}^- = 0$$

where

$$H_{j-\frac{1}{2}}^{1,+} := \max\left(0, \max_{x \in I_{j-\frac{1}{2}}} \frac{\partial H}{\partial u_x}(x_{j-\frac{1}{2}}, u_{h_x}(x))\right)$$
$$H_{j+\frac{1}{2}}^{1,-} := \min\left(0, \min_{x \in I_{j+\frac{1}{2}}} \frac{\partial H}{\partial u_x}(x_{j+\frac{1}{2}}, u_{h_x}(x))\right)$$

These terms are for **STABILITY**.

O. Bokanowski, Y. Cheng, C.-W. Shu

A DG solver for front propagation with obstacles

linear + obstacle Non linear case

6. The scheme in 2d

• Consider Qk elements generated by

$$x_1^p x_2^q, \quad 0 \le p, q \le k$$

• We take an explicit and stable TVD - RK3 scheme,

$$U^{n+1}=F(U^n).$$

• The full scheme reads

$$U^{n+1,i}_{lpha} = \max\left(F(U^n)^i_{lpha}, \ g(x^i_{lpha})
ight)$$

where $x_{\alpha}^{i} = (x_{\alpha_{1}}^{i_{1}}, x_{\alpha_{2}}^{i_{2}})$ (using 1 - d gauss points)

Without obstacles With obstacles

Numerical results

- Without obstacles
- With obstacles

< 17 >

Without obstacles With obstacles

A - Without obstacles

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles

Without obstacles With obstacles

Good long time behavior

$$\begin{cases} \varphi_t + f(\mathbf{x}) \cdot \nabla \varphi = \mathbf{0}, \quad \mathbf{x} \in \Omega, \ t \in [0, T] \\ \varphi(\mathbf{0}, \mathbf{x}) = \varphi^{\mathbf{0}}(\mathbf{x}) \end{cases}$$

with $\Omega \subset \mathbb{R}^2.$

 $\varphi^0: \mathbb{R}^2 \to \mathbb{R}$ is a Lipschitz continuous function such that

$$\Omega_0 \text{ (target)} \equiv \{x, \varphi^0(x) \leq 0\}$$

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles

Without obstacles With obstacles

1. Rotation of a circle

Dynamics:
$$f(x, y) := 2\pi(-y, x)$$

Initial data:

$$\varphi^{0}(x,y) = \min(r_{0}, ||x - x_{A}||_{2} - r_{0}), r_{0} = 0.5, A = (0,1)$$

\mathbf{P}^2 : Local error (region s.t. $|\varphi(t,.)| < 0.15$), Hausdorff distance

<u>t = 1</u>

N _x	Δx	L ¹ -error	order	L ² -error	order	L^{∞} -error	order	d _H	order
10	0.5	1.03e-2	-	1.34e-2	-	3.84e-2	-	3.29e-2	-
20	0.25	4.27e-3	1.2	5.36e-3	1.3	1.76e-2	1.1	9.86e-3	1.7
40	0.125	4.28e-4	3.3	5.66e-4	3.2	2.90e-3	2.6	1.64e-3	2.5
80	0.0675	4.76e-5	3.1	6.22e-5	3.1	2.55e-4	3.5	1.33e-4	3.6

<u>t = 10</u>

N_X	Δx	L ¹ -error	order	L ² -error	order	L^{∞} -error	order	d _H	order
10	0.5	4.66e-2	-	5.62e-2	-	1.30e-1	-	1.17e-1	-
20	0.25	8.59e-3	2.4	1.01e-2	2.4	2.33e-2	2.4	1.19e-2	3.3
40	0.125	1.65e-3	2.3	1.99e-3	2.3	6.09e-3	1.9	3.33e-3	1.8
80	0.0675	2.31e-4	2.8	2.91e-4	2.7	7.89e-4	2.9	2.73e-4	3.6

Hausdorff distance: $d_H(A, B) := \max(\max_{a \in A} d(a, B), \max_{b \in B} d(b, A)).$

Without obstacles With obstacles

2. Rotation of a square

-

We observe

- P3 is better to well catch the corners
- First order (but the solution is only Lipschitz continuous)
- Very good long time behavior

A (1) > A (2) > A

Without obstacles With obstacles

3. Deformation test

• We consider

$$f(t,x,y) := sign(T-t) \underbrace{\max(\|\mathbf{x}\|)}_{a(\|\mathbf{x}\|_2,0)} \begin{pmatrix} -2\pi y \\ 2\pi x \end{pmatrix}$$

where
$$\|\mathbf{x}\|_2 := \sqrt{x^2 + y^2}$$
 and
 $\varphi^0(x, y) = \min(\max(y, -1), 1).$ (2)

The function φ^0 has a 0-level set which is the *x* axis:

$$\{\varphi^{\mathsf{0}}=\mathsf{0}\}\equiv\{y=\mathsf{0}\}$$

• Exact solution for $t \leq T$:

$$u(t, \mathbf{x}) := u_0(R_{-2\pi ta(\mathbf{x})}\mathbf{x})$$
 where $R_{\theta} := \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$

Without obstacles With obstacles

Figure: Plots at times t = 1, t = 3, with P^4 and 24×24 mesh cells.

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles

<ロ> <四> <四> <四> <三</p>

E

Without obstacles With obstacles

Figure: Plots at times t = 5 and t = 10 (return to initial data) - with P^4 and 24×24 mesh cells ($\simeq 100^2$ values)

< 17 ▶

-

Without obstacles With obstacles

Example coming from $\ddot{x} = \alpha$: $\mathbf{u}_{\mathbf{t}} - \mathbf{y}\mathbf{u}_{\mathbf{x}} + |\mathbf{u}_{\mathbf{y}}| = \mathbf{0}$

Figure: Comparison at time t = 1.0: DG scheme with 44² cells, P^2 (left) and traditional level set method using a second order Lax-Friedrich type scheme (right) with 401² mesh cells

ヨト・ヨト・

Without obstacles With obstacles

B - With obstacles

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles

Without obstacles With obstacles

Example 1 (1–d, linear + obstacle)

We first consider a one-dimensional test:

$$\min(u_t + u_x, \mathbf{u} - \mathbf{g}(\mathbf{x})) = 0, \quad t > 0, \ x \in [-1, 1],$$
(3)
 $u(0, x) = u_0(x), \quad x \in [-1, 1],$ (4)

with periodic boundary conditions and $g(x) := \sin(\pi x)$, $u_0(x) := 0.5 + \sin(\pi x)$. In that case, for times $0 \le t \le 1$, the exact solution can be computed analytically.

Without obstacles With obstacles

The numerical solution agrees well with the exact solution everywhere.

Figure: Example 1, times t = 0 (initial data), t = 0.5 and t = 1, using P^2 elements with $N_x = 20$ mesh cells (obstacle : green dotted line)

< 17 ▶

A B F A B F

Table: Example 1. t = 0.5. P^2 elements (error at distance d = 0.1 away from singular points)

N_x	Δx	L ¹ -error	order	L ² -error	order	L^{∞} -error	order
40	5.00e-2	3.34e-05	2.41	1.01e-04	1.98	7.02e-04	2.20
80	2.50e-2	1.77e-06	4.24	3.64e-06	4.79	2.82e-05	4.64
160	1.25e-2	1.78e-07	3.31	2.91e-07	3.64	2.40e-06	3.55
320	6.25e-3	2.13e-08	3.06	3.43e-08	3.08	1.28e-07	4.23
640	3.13e-3	2.66e-09	3.00	4.28e-09	3.00	1.60e-08	3.00
1280	1.56e-3	3.32e-10	3.00	5.35e-10	3.00	2.00e-09	3.00

Example 2 (1–d, nonlinear + obstacle)

We consider a one-dimensional test with a nonlinear Hamiltonian:

$$\min(u_t + |u_x|, u - g(x)) = 0, \quad t > 0, \ x \in [-1, 1],$$
 (5)
 $u(0, x) = u_0(x), \quad x \in \Omega,$ (6)

with periodic boundary conditions and $g(x) := \sin(\pi x)$, $u_0(x) := 0.5 + \sin(\pi x)$. In this particular case, the exact solution is given by:

$$u(t,x) = \max(\bar{u}(t,x), g(x))$$

where \bar{u} is the solution of the Eikonal equation $u_t + |u_x| = 0$ and can be computed analytically.

HJ equation for Front Propagation with constraints DG scheme Numerical results Without obstacles With obstacles

Figure: Example 2, numerical and exact solutions at times t = 0.2 and t = 0.4, $N_x = 20$, using P^2 (obstacle : green dotted line).

 \Rightarrow good agreement with the exact solution.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Example 3 (2–d, linear + obstacle, accuracy test)

The equation solved is

$$\min(u_t + \frac{1}{2}u_x + \frac{1}{2}u_y, u - g(x, y)) = 0, \quad t > 0, \ (x, y) \in \mathfrak{QZ}, u(0, x, y) = u_0(x, y), \ (x, y) \in \Omega,$$
(8)

where $g(x, y) := \sin(\pi(x + y))$, $u_0(x, y) = 0.5 + g(x, y)$, and $\Omega = [-1, 1]^2$ with periodic boundary conditions. The exact solution is known :

$$u(t, x, y) = u^{(1)}(t, x + y)$$

(where $u^{(1)}$ is the exact solution for 1–d Example 1). The errors are computed away from the singular zone :

$$\{(x, y) \in \Omega, \ 1 \le i \le 3, \ d(x + y - s_i, 2\mathbb{Z}) \ge \delta\} \quad (\delta = 0.1)$$

Table: Example 3. t = 0.5. Q^2 elements.

N_x	Δx	L ¹ -error	order	L ² -error	order	L^{∞} -error	order
10	2.00e-1	7.70e-03	-	1.03e-02	-	1.04e-01	-
20	1.00e-1	9.27e-04	3.05	1.28e-03	3.01	8.71e-03	3.58
40	5.00e-2	9.48e-05	3.29	1.67e-04	2.94	1.04e-03	3.06
80	2.50e-2	7.15e-06	3.73	1.11e-05	3.91	1.02e-04	3.34

 \Rightarrow We observe optimal convergence rate in this example.

Without obstacles With obstacles

Example 4 (2–d, linear + obstacle)

The initial data is $u_0(\mathbf{x}) := \|\mathbf{x} - (-0.5, 0)\|_2 - 0.3$. The obstacle is coded by $g(\mathbf{x}) := 0.25 - \|\mathbf{x} - (0, 0.25)\|_2$. The problem is

$$\min(u_t + u_x, u - g(x, y)) = 0, \quad t > 0, \ (x, y) \in \Omega,$$
 (9)

$$u(0, x, y) = u_0(x, y), \quad (x, y) \in \Omega,$$
 (10)

on $\Omega := [-1, 1]^2$ with periodic boundary conditions.

Figure: Example 4($N_x = N_y = 40$), times $t \in \{0, 0.5, 1\}$

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles

イロト イヨト イヨト イヨト

E

Without obstacles With obstacles

Example 5 (2–d, linear + obstacle, variable coefficients)

We consider

$$f(x,y) := \begin{pmatrix} -2\pi \ y \\ 2\pi \ x \end{pmatrix} \max(1 - \|\mathbf{x}\|_2, 0)$$

where $\|\mathbf{x}\|_2 := \sqrt{x^2 + y^2}$ and with a Lipschitz continuous initial data u_0 :

$$u_0(x,y) = \min(\max(y,-1),1).$$
 (11)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

The function u_0 has a 0-level set which is the *x* axis: { $\mathbf{x} = (x, y) \in \mathbb{R}^2 \mid y = 0$ }. When there is no obstacle function, the exact solution is known.

Without obstacles With obstacles

Figure: Q^2 and 40×40 mesh cells.

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles

<<p>・

æ

Without obstacles With obstacles

Example 6 (2–d, nonlinear)

The problem is

$$\min(u_t + \max(0, 2\pi(-y, x) \cdot \nabla u), u - g(x, y)) = 0, (12) u(0, x, y) = u_0(x, y), \quad (x, y) \in \Omega,$$
 (13)

Domain $\Omega := [-2, 2]^2$, Initial data : $u_0(x, y) := ||(x, y) - (1, 0)||_2 - 0.5$, Obstacle : $g(x, y) := 0.5 - ||(x, y) - (0, 0.5)||_2$

Without obstacles With obstacles

문 🛌 문

Figure: Example 6, $t \in \{0, 0.25, 0.5, 0.75\}$, Q^2 , 80 × 80 cells.

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles

Without obstacles With obstacles

More complex example

We consider the problem

$$\min(u_t + \max\left(0, u_x + \frac{1}{2}|u_y|\right), u - g(x, y)) = 0, \quad t > (0,4)$$

$$u(0, x, y) = u_0(x, y), \quad x \in \Omega,$$
(15)

with $u_0(\mathbf{x}) := \|\mathbf{x} - (-1.0, 0)\|_{\infty} - 0.5$ and $g(\mathbf{x}) := \min\left(0.25, \|\mathbf{x} - (0.2, 0)\|_2 - 0.5\right)$, corresponding to a square initial data and a disk obstacle. In this example the "entropy fix" is needed.

Without obstacles With obstacles

▶ < ≣ >

æ

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles

.

Example 8 - Narrow band algorithm

- define a "cutoff" value ($C := 2\Delta x$),
- The initial data u_0 is transformed into

$$\tilde{u}_0(x,y) := \min(C,\max(-C,u_0(x,y))).$$

At each time step, (i) for each cell (centered at (x_i, y_j)) :

$$nlogo_{i,j}^{0} := \left\{ egin{array}{cc} 1 & ext{if } |u^n(x_i,y_j)| \leq 0.99 \ C, \\ 0 & ext{otherwise} \end{array}
ight.$$

• (ii) for all index *i*, *j*, compute

$$nlogo_{i,j} := \max(nlogo_{i,j}^0, nlogo_{i,j\pm 1}^0, nlogo_{i\pm 1,j}^0)$$

 (iii) Do the DG computations only on cells (*i*, *j*) such that *nlogo_{i,j}* = 1.

Without obstacles With obstacles

Narrow band example

• We consider

$$u_t + 2\pi(-y, x) \cdot \nabla u = 0, \quad t > 0, \ (x, y) \in \Omega,$$
 (16a)
 $u(0, x, y) = u_0(x, y), \quad (x, y) \in \Omega,$ (16b)

and same initial data u_0 as for the rotation example.

A (10) A (10)

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles

Image: A math a math

ъ

æ

Table: (Example 8) comparison of CPU times (in sec.) for full and narrow band approaches for (**??**), t = 0.5

N _x	full	"order"	narrow band	"order"	Gain (full / band)
20	8.1 s	-	6.9 s	-	1.17
40	45.2 s	5.58	17.1 s	2.47	2.64
80	347.4 s	7.68	83.4 s	4.87	4.16
160	2705.3 s	7.78	386.0 s	4.62	7.00

The "order" is computed as the ratio of CPU times $time(N_x)/time(N_x/2)$.

FUTUR WORK :

- improvement of the narrow band approach
- convergence proof (linear + obstacle case)
- applications to optimal control (higher dimensional problems)