A DG solver for front propagation with obstacles

Olivier Bokanowski

Laboratory Jacques Louis Lions (Univ. Denis-Diderot, Paris) Commands (INRIA Saclay) and Ensta Paris Tech

Joint work with:
Yingda CHENG (Austin, Univ of Texas, Dep. of Mathematics) Chi-Wang SHU (Brown, division of Applied Mathematics)

(1) HJ equation for Front Propagation with constraints

(2) DG scheme

(3) Numerical results

HJ equation for Front Propagation with constraints
DG scheme Numerical results

(1) HJ equation for Front Propagation with constraints

A front propagation model

- Consider an initial (closed) set $\Omega_{0} \subset \mathbb{R}^{n}$, we want to compute the reachable set

$$
\Omega_{t}:=\left\{y_{x}^{\alpha}(t), \alpha \in L^{\infty}((0, t), \mathcal{A}), x \in \Omega_{0}\right\}
$$

where $y=y_{x}^{\alpha}($.$) denotes the solution of the ODE:$

$$
\begin{aligned}
& \dot{y}(s)=f(y(s), \alpha(s)), \quad \text { a.e. } s \in(0, t) \\
& y(0)=x
\end{aligned}
$$

- Front: modelized by $\partial \Omega_{t}$
- minimal time problem: $\mathcal{T}(x):=\inf \left\{t \geq 0, \quad x \in \Omega_{t}\right\}$
- Target problem
- Capture basin set: Replace $f(x, \alpha)$ by Conv $\{0, f(x, \alpha)\}_{\underline{2}} \ldots$

Level set approach

Let φ Lipschitz continuous, be such that

$$
\Omega_{0}=\{x, \varphi(x) \leq 0\}
$$

Let

$$
u(t, x):=\inf \left\{\varphi\left(y_{x}^{\alpha}(-t)\right), \alpha \in \mathcal{U}\right\}
$$

Proposition 1:

$$
\Omega_{t}=\{x, u(t, x) \leq 0\}
$$

Proposition 2: We have a dynamic programming principle (DPP) and the following HJ equation ${ }^{1}$

$$
\left\{\begin{array}{l}
u_{t}+\max _{a \in A}(f(x, a) \cdot \nabla u)=0, \quad t>0, x \in \mathbb{R}^{n} \\
u(0, x)=\varphi(x), \quad x \in \mathbb{R}^{n}
\end{array}\right.
$$

${ }^{1}$ Assumptions (i) \mathcal{A} compact, (ii) $f(x, A)$ convex, and

$$
\text { (iii) } \exists L \forall x, y, a,|f(x, a)-f(y, a)| \leq L|x-y|
$$

State constraints

- Let K be a nonempty closed set, we now want to compute

$$
\Omega_{t}^{K}:=\left\{y_{x}^{\alpha}(t), \alpha \in L^{\infty}(0, t), x \in \Omega_{0},\left(\mathbf{y}_{\mathbf{x}}^{\alpha}(\theta) \in \mathbf{K}, \forall \theta \in[\mathbf{0}, \mathbf{t}]\right)\right\}
$$

- We still have $\Omega_{t}^{K}=\{x, u(t, x) \leq 0\}$ where

$$
u(t, x):=\left\{\begin{array}{l}
\inf \left\{\varphi\left(y_{x}^{\alpha}(-t)\right), \alpha \in L^{\infty}(0, t),\left(\mathbf{y}_{\mathbf{x}}^{\alpha}(\theta) \in \mathbf{K}, \forall \theta \in[\mathbf{0}, \mathbf{t}]\right)\right\} \\
+\infty \text { if there is no feasible trajectory }
\end{array}\right.
$$

- u discontinuous, no simple HJ equation for $u!^{2}$
${ }^{2}$ see however B.-Forcadel-Zidani, COCV 2010

Second way b.- Forcadel - Zidani SICON 2010

- Let g be Lipschitz constinuous and such that

$$
\mathbf{g}(\mathbf{x}) \leq \mathbf{0} \Leftrightarrow \mathbf{x} \in \mathbf{K} .
$$

Instead of u, we consider an " L^{∞} - penalized" problem

$$
v(t, x):=\inf _{\alpha \in L^{\infty}(0, t)} \max \left(\varphi\left(y_{x}^{\alpha}(-t)\right), \max _{\theta \in[0, t]} \mathbf{g}\left(\mathbf{y}_{\mathbf{x}}^{\alpha}(-\theta)\right)\right)
$$

- Proposition 1. $\{x, u(t, x) \leq 0\}=\{x, v(t, x) \leq 0\}=\Omega_{t}^{K}$.
- Proposition 2. v is the unique viscosity solution of:

$$
\begin{aligned}
& \min \left(v_{t}+\max _{a \in A}(f(x, a) \cdot \nabla v), \mathbf{v}-\mathbf{g}(\mathbf{x})\right)=0, \quad t>0, x \in \mathbb{R}^{n}, \\
& v(0, x)=\max (g(x), \varphi(x)), \quad x \in \mathbb{R}^{n}
\end{aligned}
$$

- Rem: L^{∞}-cost was already considered by Barron-Jensen.

Application to minimal time

- Minimal time with state constraints K :

$$
\mathcal{T}(x):=\inf \left\{t \geq 0, \quad x \in \Omega_{t}^{K}\right\}
$$

(and $T(x)=+\infty$ if there is no feasible trajecories).

- Proposition:

$$
\mathcal{T}(x)=\inf \{t \geq 0, v(t, x) \leq 0\}
$$

- Application: reconstruction of optimal trajectories
- without any controllability assumptions
- with/without obstacles

Very short \& non exhaustive Literature

- inward pointing condition: Soner (86 '), Cappuzzo-Dolcetta
- Lions (90), Ishii-Koike (96), ...
- outward pointing condition: Frankowska-Plaskacz (00’),

Frankowska-Vinter

- No condition - Viability theory (Aubin) :

Cardaliaguet-Quincampoix-Saint-Pierre $(97,00)$, Viability algorithm (Saint-Pierre, 94')

- No condition - Penalization approach: "Exact Penalization" Kurzhanski and Varayiya (2006).
- Other works: Kurzhanski-Mitchell-Varaiya (2006),
- Two player games: Bardi-Koike-Soravia
(2) DG scheme
- linear + obstacle
- Non linear case

1. Variationnal formulation

Consider the $u_{t}+u_{x}=0$ equation, with obstacle $g(x)$:

$$
\begin{equation*}
\min \left(u_{t}+u_{x}, u-g(x)\right)=0 \tag{1}
\end{equation*}
$$

This is equivalent to

1. Variationnal formulation

Consider the $u_{t}+u_{x}=0$ equation, with obstacle $g(x)$:

$$
\begin{equation*}
\min \left(u_{t}+u_{x}, u-g(x)\right)=0 \tag{1}
\end{equation*}
$$

This is equivalent to :

$$
\Leftrightarrow\left\{\begin{array}{l}
u_{t}+u_{x} \geq 0 \\
u-g(x) \geq 0 \\
\left(u_{t}+u_{x}\right) \cdot(u(t, x)-g(x))=0, \quad \text { a.e. } x
\end{array}\right.
$$

where (.,.) denotes the scalar product on $L_{1}^{2}\left(O_{0} 1\right.$ 叟

1. Variationnal formulation

Consider the $u_{t}+u_{x}=0$ equation, with obstacle $g(x)$:

$$
\begin{equation*}
\min \left(u_{t}+u_{x}, u-g(x)\right)=0 \tag{1}
\end{equation*}
$$

This is equivalent to :

$$
\begin{aligned}
& \Leftrightarrow\left\{\begin{array}{l}
u_{t}+u_{x} \geq 0 \\
u-g(x) \geq 0 \\
\left(u_{t}+u_{x}\right) \cdot(u(t, x)-g(x))=0, \quad \text { a.e. } x
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
u_{t}+u_{x} \geq 0 \\
u-g(x) \geq 0 \\
\left(u_{t}+u_{x}, u(t, .)-g\right)=0
\end{array}\right.
\end{aligned}
$$

where (.,.) denotes the scalar product on $L^{2}(0,1)$.

1. Variationnal formulation

$$
\begin{equation*}
u \geq g \text { and } u_{t}+u_{x} \geq 0,\left(u_{t}+u_{x}, u-g(x)\right)=0 \tag{1'}
\end{equation*}
$$

The variational formulation for (1^{\prime}) is : find $u(t,) \geq$.$g such that$

$$
\forall v \geq g, \quad\left(u_{t}+u_{x}, v-u(t, .)\right) \geq 0
$$

Proof: $\Rightarrow: v-u=(v-g)-(u-g)$ hence, $\forall v \geq g$,

Taking $v=g$, we get $\left(u_{t}+u_{x}, g-u(t,).\right) \geq 0$

1. Variationnal formulation

(1')

$$
u \geq g \text { and } u_{t}+u_{x} \geq 0,\left(u_{t}+u_{x}, u-g(x)\right)=0
$$

The variational formulation for $\left(1^{\prime}\right)$ is : find $u(t,) \geq$.$g such that$

$$
\forall v \geq g, \quad\left(u_{t}+u_{x}, v-u(t, .)\right) \geq 0
$$

Proof: $\Rightarrow: v-u=(v-g)-(u-g)$ hence, $\forall v \geq g$,

$$
\left(u_{t}+u_{x}, v-u\right)=(u_{t}+u_{x}, \underbrace{v-g}_{\geq 0})+0 \geq 0
$$

$\Leftarrow: v=\varphi_{n} \geq g, \lim _{n \rightarrow \infty} \varphi_{n}\left(x_{0}\right)=+\infty \Rightarrow\left(u_{x}+u_{x}\right)\left(t, x_{0}\right) \geq 0$.
Taking $v=g$, we get $(\underbrace{u_{t}+u_{x}}, \underbrace{g-u(t, .)}) \geq 0$ hence $=0$

1. Variationnal formulation

(1')

$$
u \geq g \text { and } u_{t}+u_{x} \geq 0,\left(u_{t}+u_{x}, u-g(x)\right)=0
$$

The variational formulation for $\left(1^{\prime}\right)$ is : find $u(t,) \geq$.$g such that$

$$
\forall v \geq g, \quad\left(u_{t}+u_{x}, v-u(t, .)\right) \geq 0
$$

Proof: $\Rightarrow: v-u=(v-g)-(u-g)$ hence, $\forall v \geq g$,

$$
\left(u_{t}+u_{x}, v-u\right)=(u_{t}+u_{x}, \underbrace{v-g}_{\geq 0})+0 \geq 0
$$

$\Leftarrow: v=\varphi_{n} \geq g, \lim _{n \rightarrow \infty} \varphi_{n}\left(x_{0}\right)=+\infty \Rightarrow\left(u_{x}+u_{x}\right)\left(t, x_{0}\right) \geq 0$.
Taking $v=g$, we get $(\underbrace{u_{t}+u_{x}}_{\geq 0}, \underbrace{g-u(t, .)}_{\leq 0}) \geq 0$ hence $=0$

2. direct DG scheme (Cheng \& Shu, JSC 2007)

- At first consider the case of

$$
u_{t}+u_{x}=0, \quad t>0, x \in(0,1)
$$

and with periodic boundary conditions.

- Given some mesh of $(0,1):\left(x_{j-\frac{1}{2}}\right)$, we introduce a space of discontinuous galering elements of degre k :

$$
V_{h}=\left\{v_{h}, \quad v_{h} \in P_{k}\left(l_{j}\right), \forall j\right\}, \quad I_{j}:=\left[x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}\right]
$$

where P_{k} are the polynomials of degree at most k.

- Notations: $\left(v_{h}\right)_{j-\frac{1}{2}}^{ \pm}=v_{h}\left(x_{j-\frac{1}{2}}^{ \pm}\right),\left[v_{h}\right]_{j-\frac{1}{2}}=v_{h}\left(x_{j-\frac{1}{2}}^{+}\right)-v_{h}\left(x_{j-\frac{1}{2}}^{-}\right)$.
- Euler Forward DG formulation for $u_{t}+u_{x}=0$:

Direct DG scheme, linear case

find u^{n+1} in V_{h},

$$
\int \frac{u^{n+1}-u^{n}}{\Delta t} v_{h}+\int u_{x}^{n} v_{h}+\sum_{j} a^{+}\left[u^{n}\right]_{j-\frac{1}{2}}\left(v_{h}\right)_{j-\frac{1}{2}}^{+}=0, \quad \forall v_{h} \in V_{h}
$$

where a^{+}is some constant such that $a^{+} \geq 1$.

- Taking $a^{+}=1$, this is equivalent to the classical DG scheme.
- We may write formally the scheme as
- Euler Forward DG formulation for $u_{t}+u_{x}=0$:

Direct DG scheme, linear case

find u^{n+1} in V_{h},

$$
\int \frac{u^{n+1}-u^{n}}{\Delta t} v_{h}+\int u_{x}^{n} v_{h}+\sum_{j} a^{+}\left[u^{n}\right]_{j-\frac{1}{2}}\left(v_{h}\right)_{j-\frac{1}{2}}^{+}=0, \quad \forall v_{h} \in V_{h}
$$

where a^{+}is some constant such that $a^{+} \geq 1$.

- Taking $a^{+}=1$, this is equivalent to the classical DG scheme.
- We may write formally the scheme as

- Euler Forward DG formulation for $u_{t}+u_{x}=0$:

Direct DG scheme, linear case

find u^{n+1} in V_{h},

$$
\int \frac{u^{n+1}-u^{n}}{\Delta t} v_{h}+\underbrace{\int u_{x}^{n} v_{h}+\sum_{j} a^{+}\left[u^{n}\right]_{j-\frac{1}{2}}\left(v_{h}\right)_{j-\frac{1}{2}}^{+}}_{\left(h\left(u^{n}\right), v_{h}\right)}=0, \quad v_{h} \in V_{h}
$$

where a^{+}is some constant such that $a^{+} \geq 1$.

- Taking $a^{+}=1$, this is equivalent to the classical DG scheme.
- We may write formally the scheme as

$$
\left(\frac{u^{n+1}-u^{n}}{\Delta t}+\mathcal{H}\left(u^{n}\right), v_{h}\right)=0, \quad \forall v_{h} \in V_{h}
$$

- Equivalent vector formulation:

$$
u^{n}(x)=\sum_{\alpha=0, \ldots, k} U_{\alpha}^{n, i} \varphi_{\alpha}(x), \quad \text { and } \quad U^{n, i}=\left(\begin{array}{c}
U_{0}^{n, i} \\
\vdots \\
U_{k}^{n, i}
\end{array}\right)
$$

where $\left(\varphi_{\alpha}(x)\right)_{\alpha=0, \ldots, k}$ is some basis of P_{k}.

- Then the scheme becomes:

$$
M \frac{U^{n+1, i}-U^{n, i}}{\Delta t}+A U^{n, i}+B U^{n, i-1}=0 \in \mathbb{R}^{k+1}
$$

where M is the mass matrix: $M_{\alpha, \beta}=\left(\varphi_{\alpha}, \varphi_{\beta}\right)$.

- In the end, we get an explicit formula $U_{\alpha}^{n+1, i}=F\left(U^{n}\right)_{i, \alpha}$.

3. Direct DG scheme for the obstacle case (B. - Cheng - Shu, Preprint 2010)

- Since $v \geq g$ is a little bit strong for polynomials, we introduce

$$
V_{h}^{g}:=\left\{v \in V_{h}, \quad " v \geq g^{\prime \prime}\right\}
$$

where

$$
" v \geq g " \Leftrightarrow v\left(x_{\alpha}^{i}\right) \geq g\left(x_{\alpha}^{i}\right), \quad \forall i, \alpha
$$

and where $\left(x_{\alpha}^{i}\right)_{\alpha=0, \ldots, k}$ are the $k+1$ gauss points on cell l_{i}.
Direct DG scheme, obstacle case

$$
\begin{aligned}
& \text { find } u^{n+1} \text { in } V_{h}, " u^{n+1} \geq g^{\prime \prime} \\
& \qquad\left(\frac{u^{n+1}-u^{n}}{\Delta t}+h\left(u^{n}\right), v_{h}-u^{n+1}\right) \geq 0, \quad \forall v_{h} \in V_{h}^{g}
\end{aligned}
$$

4. Simplification

- In matrix form, the problem becomes $(\forall i)$:

$$
\begin{array}{r}
\sum_{\alpha}\left(M \frac{U^{n+1, i}-U^{n, i}}{\Delta t}+A U^{n, i}+B U^{n, i-1}\right)_{\alpha}\left(V_{\alpha}-U_{\alpha}^{n+1, i}\right) \geq 0 \\
\forall V_{\alpha} \geq g\left(x_{\alpha}^{i}\right)
\end{array}
$$

- As in the continuous case, it is equivalent to $(\forall i)$,
$\min \left(\left(M \frac{U^{n+1} i}{\Delta t}+U^{n i}+A U^{n, i}+B U^{n, i-1}\right)_{\alpha}, U_{\alpha}^{n+1, i}-g\left(x_{\alpha}^{i}\right)\right) \geq 0$,
This is still a non-linear system to solve!

4. Simplification

- In matrix form, the problem becomes $(\forall i)$:

$$
\begin{array}{r}
\sum_{\alpha}\left(M \frac{U^{n+1, i}-U^{n, i}}{\Delta t}+A U^{n, i}+B U^{n, i-1}\right)_{\alpha}\left(V_{\alpha}-U_{\alpha}^{n+1, i}\right) \geq 0 \\
\forall V_{\alpha} \geq g\left(x_{\alpha}^{i}\right)
\end{array}
$$

- As in the continuous case, it is equivalent to $(\forall i)$,
$\min \left(\left(M \frac{U^{n+1, i}-U^{n, i}}{\Delta t}+A U^{n, i}+B U^{n, i-1}\right)_{\alpha}, U_{\alpha}^{n+1, i}-g\left(x_{\alpha}^{i}\right)\right) \geq 0, \quad \forall \alpha$
This is still a non-linear system to solve!
- Simple idea: consider the dual basis associated to the gaussian points: s.t. $\varphi_{\alpha}\left(x_{\beta}\right)=\delta_{\alpha \beta}$. Then

$$
M=\operatorname{diag}\left(w_{0}, \ldots, w_{k}\right) \text { with } w_{\alpha}>0
$$

- Now the system becomes ($\forall i$):

which can be solved explicitly
- Simple idea: consider the dual basis associated to the gaussian points: s.t. $\varphi_{\alpha}\left(x_{\beta}\right)=\delta_{\alpha \beta}$. Then

$$
M=\operatorname{diag}\left(w_{0}, \ldots, w_{k}\right) \quad \text { with } w_{\alpha}>0
$$

- Now the system becomes ($\forall i$):
$\min \left(w_{\alpha} \frac{U_{\alpha}^{n+1, i}-U_{\alpha}^{n, i}}{\Delta t}+\left(A U^{n, i}+B U^{n, i-1}\right)_{\alpha}, U_{\alpha}^{n+1, i}-g\left(x_{\alpha}^{i}\right)\right) \geq 0$.
... which can be solved explicitly
- Remark: This is similar with a Finite Difference Euler Forward scheme for $\min \left(u_{t}+u_{x}, u-g(x)\right)=0$!
- Simple idea: consider the dual basis associated to the gaussian points: s.t. $\varphi_{\alpha}\left(x_{\beta}\right)=\delta_{\alpha \beta}$. Then

$$
M=\operatorname{diag}\left(w_{0}, \ldots, w_{k}\right) \quad \text { with } w_{\alpha}>0
$$

- Now the system becomes $(\forall i)$:
$\min \left(w_{\alpha} \frac{U_{\alpha}^{n+1, i}-U_{\alpha}^{n, i}}{\Delta t}+\left(A U^{n, i}+B U^{n, i-1}\right)_{\alpha}, U_{\alpha}^{n+1, i}-g\left(x_{\alpha}^{i}\right)\right) \geq 0$.
... which can be solved explicitly :

$$
U_{\alpha}^{n+1, i}=\max \left(U_{\alpha}^{n, i}-\frac{\Delta t}{w_{\alpha}}\left(A U^{n, i}+B U^{n, i-1}\right)_{\alpha}, g\left(x_{\alpha}^{i}\right)\right)
$$

> - Remark: This is similar with a Finite Difference Euler Forward scheme for $\min \left(u_{t}+u_{x}, u-g(x)\right)=0!$

- Simple idea: consider the dual basis associated to the gaussian points: s.t. $\varphi_{\alpha}\left(x_{\beta}\right)=\delta_{\alpha \beta}$. Then

$$
M=\operatorname{diag}\left(w_{0}, \ldots, w_{k}\right) \quad \text { with } w_{\alpha}>0
$$

- Now the system becomes $(\forall i)$:
$\min \left(w_{\alpha} \frac{U_{\alpha}^{n+1, i}-U_{\alpha}^{n, i}}{\Delta t}+\left(A U^{n, i}+B U^{n, i-1}\right)_{\alpha}, U_{\alpha}^{n+1, i}-g\left(x_{\alpha}^{i}\right)\right) \geq 0$.
... which can be solved explicitly :

$$
U_{\alpha}^{n+1, i}=\max (\underbrace{U_{\alpha}^{n, i}-\frac{\Delta t}{W_{\alpha}}\left(A U^{n, i}+B U^{n, i-1}\right)_{\alpha}}_{F\left(U^{n}\right)_{\alpha}^{i}}, g\left(x_{\alpha}^{i}\right))
$$

- Remark: This is similar with a Finite Difference Euler Forward scheme for $\min \left(u_{t}+u_{x}, u-g(x)\right)=0$!

5. Non linear + obstacle : (Cheng-Shu JSC 07', B.-Cheng-Shu SJSC)

- For $u_{t}+H\left(x, u_{x}\right)=0$, consider any DG scheme, for instance:
- $\forall v \in V_{h}$,

$$
\int_{l_{j}}\left\{\left(u_{h}\right)_{t}+H\left(x,\left(u_{h}\right)_{x}\right)\right\} v+H_{j-\frac{1}{2}}^{1,+}\left[\tilde{u}_{h}\right]_{j-\frac{1}{2}} v_{j-\frac{1}{2}}^{+}+H_{j+\frac{1}{2}}^{1,-}\left[\tilde{u}_{h}\right]_{j+\frac{1}{2}} v_{j+\frac{1}{2}}^{-}=0
$$

where

$$
\begin{aligned}
& H_{j-\frac{1}{2}}^{1,+}:=\max \left(0, \max _{x \in I_{j-\frac{1}{2}}} \frac{\partial H}{\partial u_{x}}\left(x_{j-\frac{1}{2}}, u_{h x}(x)\right)\right) \\
& H_{j+\frac{1}{2}}^{1,-}:=\min \left(0, \min _{x \in I_{j+\frac{1}{2}}} \frac{\partial H}{\partial u_{x}}\left(x_{j+\frac{1}{2}}, u_{h x}(x)\right)\right)
\end{aligned}
$$

These terms are for STABILITY.

6. The scheme in 2 d

- Consider Q_{k} elements generated by

$$
x_{1}^{p} x_{2}^{q}, \quad 0 \leq p, q \leq k
$$

- We take an explicit and stable TVD - RK3 scheme,

$$
U^{n+1}=F\left(U^{n}\right)
$$

- The full scheme reads

$$
U_{\alpha}^{n+1, i}=\max \left(F\left(U^{n}\right)_{\alpha}^{i}, g\left(x_{\alpha}^{i}\right)\right)
$$

where $x_{\alpha}^{i}=\left(x_{\alpha_{1}}^{i_{1}}, x_{\alpha_{2}}^{i_{2}}\right)$ (using $1--d$ gauss points)

A - Without obstacles

Good long time behavior

$$
\left\{\begin{array}{l}
\varphi_{t}+f(\mathbf{x}) \cdot \nabla \varphi=0, \quad \mathbf{x} \in \Omega, t \in[0, T] \\
\varphi(0, \mathbf{x})=\varphi^{0}(\mathbf{x})
\end{array}\right.
$$

with $\Omega \subset \mathbb{R}^{2}$.
$\varphi^{0}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a Lipschitz continuous function such that

$$
\Omega_{0}(\text { target }) \equiv \quad\left\{x, \varphi^{0}(x) \leq 0\right\}
$$

1. Rotation of a circle

Dynamics: $f(x, y):=2 \pi(-y, x)$

Initial data:

$$
\varphi^{0}(x, y)=\min \left(r_{0},\left\|x-x_{A}\right\|_{2}-r_{0}\right), r_{0}=0.5, A=(0,1)
$$

\mathbf{P}^{2} : Local error (region s.t. $\left.|\varphi(t,)|<0.15.\right)$, Hausdorff distance

$\underline{t}=1$									
N_{x}	Δx	L^{1}-error	order	L^{2}-error	order	L^{∞}-error	order	\mathbf{d}_{H}	order
10	0.5	1.03e-2		1.34e-2		3.84e-2		3.29e-2	
20	0.25	4.27e-3	1.2	5.36e-3	1.3	1.76e-2	1.1	$9.86 \mathrm{e}-3$	1.7
40	0.125	$4.28 \mathrm{e}-4$	3.3	5.66e-4	3.2	$2.90 \mathrm{e}-3$	2.6	1.64e-3	2.5
80	0.0675	4.76e-5	3.1	6.22e-5	3.1	2.55e-4	3.5	$1.33 \mathrm{e}-4$	3.6
$\underline{t}=10$									
N_{x}	Δx	L^{1}-error	order	L^{2}-error	order	L^{∞}-error	order	\mathbf{d}_{H}	order
10	0.5	4.66e-2		5.62e-2		$1.30 \mathrm{e}-1$		1.17e-1	
20	0.25	8.59e-3	2.4	1.01e-2	2.4	2.33e-2	2.4	1.19e-2	3.3
40	0.125	1.65e-3	2.3	1.99e-3	2.3	6.09e-3	1.9	3.33e-3	1.8
80	0.0675	2.31e-4	2.8	2.91e-4	2.7	7.89e-4	2.9	2.73e-4	3.6

Hausdorff distance: $d_{H}(A, B):=\max \left(\max _{a \in A} d(a, B), \max _{b \in B} d(b, A)\right)$.

2. Rotation of a square

Rotation of a square. $t=1$ (left), and $t=10$ (right), with P^{3} and $N_{x}=N_{y}=40\left(\equiv 125^{2}\right.$ values $)$

We observe

- P3 is better to well catch the corners
- First order (but the solution is only Lipschitz continuous)
- Very good long time behavior

3. Deformation test

- We consider

$$
f(t, x, y):=\operatorname{sign}(T-t) \overbrace{\max \left(1-\|\mathbf{x}\|_{2}, 0\right)}^{a(\|\mathbf{x}\|)}\binom{-2 \pi y}{2 \pi x}
$$

where $\|\mathbf{x}\|_{2}:=\sqrt{x^{2}+y^{2}}$ and

$$
\begin{equation*}
\varphi^{0}(x, y)=\min (\max (y,-1), 1) \tag{2}
\end{equation*}
$$

The function φ^{0} has a 0-level set which is the x axis:

$$
\left\{\varphi^{0}=0\right\} \equiv\{y=0\}
$$

- Exact solution for $t \leq T$:

$$
u(t, \mathbf{x}):=u_{0}\left(R_{-2 \pi \operatorname{ta}(\mathbf{x})} \mathbf{x}\right) \quad \text { where } \quad R_{\theta}:=\left(\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

Figure: Plots at times $t=1, t=3$, with P^{4} and 24×24 mesh cells.

Figure: Plots at times $t=5$ and $t=10$ (return to initial data) - with P^{4} and 24×24 mesh cells ($\simeq 100^{2}$ values)

Example coming from $\ddot{x}=\alpha: \quad \mathbf{u}_{\mathbf{t}}-\mathbf{y} \mathbf{u}_{\mathbf{x}}+\left|\mathbf{u}_{\mathbf{y}}\right|=\mathbf{0}$

Level Set

Figure: Comparison at time $t=1.0$: DG scheme with 44^{2} cells, P^{2} (left) and traditional level set method using a second order Lax-Friedrich type scheme (right) with 401^{2} mesh cells

B - With obstacles

Example 1 (1-d, linear + obstacle)

We first consider a one-dimensional test:

$$
\begin{align*}
& \min \left(u_{t}+u_{x}, \mathbf{u}-\mathbf{g}(\mathbf{x})\right)=0, \quad t>0, x \in[-1,1] \tag{3}\\
& u(0, x)=u_{0}(x), \quad x \in[-1,1] \tag{4}
\end{align*}
$$

with periodic boundary conditions and $g(x):=\sin (\pi x)$, $u_{0}(x):=0.5+\sin (\pi x)$. In that case, for times $0 \leq t \leq 1$, the exact solution can be computed analytically.

The numerical solution agrees well with the exact solution everywhere.

Figure: Example 1, times $t=0$ (initial data), $t=0.5$ and $t=1$, using P^{2} elements with $N_{x}=20$ mesh cells (obstacle : green dotted line)

Table: Example 1. $t=0.5$. P^{2} elements (error at distance $d=0.1$ away from singular points)

N_{x}	Δx	L^{1}-error	order	L^{2}-error	order	L^{∞}-error	order
40	$5.00 \mathrm{e}-2$	$3.34 \mathrm{e}-05$	2.41	$1.01 \mathrm{e}-04$	1.98	$7.02 \mathrm{e}-04$	2.20
80	$2.50 \mathrm{e}-2$	$1.77 \mathrm{e}-06$	4.24	$3.64 \mathrm{e}-06$	4.79	$2.82 \mathrm{e}-05$	4.64
160	$1.25 \mathrm{e}-2$	$1.78 \mathrm{e}-07$	3.31	$2.91 \mathrm{e}-07$	3.64	$2.40 \mathrm{e}-06$	3.55
320	$6.25 \mathrm{e}-3$	$2.13 \mathrm{e}-08$	3.06	$3.43 \mathrm{e}-08$	3.08	$1.28 \mathrm{e}-07$	4.23
640	$3.13 \mathrm{e}-3$	$2.66 \mathrm{e}-09$	3.00	$4.28 \mathrm{e}-09$	3.00	$1.60 \mathrm{e}-08$	3.00
1280	$1.56 \mathrm{e}-3$	$3.32 \mathrm{e}-10$	3.00	$5.35 \mathrm{e}-10$	3.00	$2.00 \mathrm{e}-09$	3.00

Example 2 (1-d, nonlinear + obstacle)

We consider a one-dimensional test with a nonlinear Hamiltonian:

$$
\begin{align*}
& \min \left(u_{t}+\left|u_{x}\right|, u-g(x)\right)=0, \quad t>0, x \in[-1,1] \tag{5}\\
& u(0, x)=u_{0}(x), \quad x \in \Omega \tag{6}
\end{align*}
$$

with periodic boundary conditions and $g(x):=\sin (\pi x)$, $u_{0}(x):=0.5+\sin (\pi x)$. In this particular case, the exact solution is given by:

$$
u(t, x)=\max (\bar{u}(t, x), g(x))
$$

where \bar{u} is the solution of the Eikonal equation $u_{t}+\left|u_{x}\right|=0$ and can be computed analytically.

Figure: Example 2, numerical and exact solutions at times $t=0.2$ and $t=0.4, N_{x}=20$, using P^{2} (obstacle: green dotted line).
\Rightarrow good agreement with the exact solution.

Example 3 (2-d, linear + obstacle, accuracy test)

The equation solved is

$$
\begin{align*}
& \min \left(u_{t}+\frac{1}{2} u_{x}+\frac{1}{2} u_{y}, u-g(x, y)\right)=0, \quad t>0,(x, y) \in \Omega(Z,) \\
& u(0, x, y)=u_{0}(x, y), \quad(x, y) \in \Omega \tag{8}
\end{align*}
$$

where $g(x, y):=\sin (\pi(x+y)), u_{0}(x, y)=0.5+g(x, y)$, and $\Omega=[-1,1]^{2}$ with periodic boundary conditions. The exact solution is known :

$$
u(t, x, y)=u^{(1)}(t, x+y)
$$

(where $u^{(1)}$ is the exact solution for 1-d Example 1).
The errors are computed away from the singular zone :

$$
\left.\left\{(x, y) \in \Omega, 1 \leq i \leq 3, d\left(x+y-s_{i}, 2 \mathbb{Z}\right) \geq \delta\right)\right\} \quad(\delta=0.1)
$$

Table: Example 3. $t=0.5 . Q^{2}$ elements.

N_{x}	Δx	L^{1}-error	order	L^{2}-error	order	L^{∞}-error	order
10	$2.00 \mathrm{e}-1$	$7.70 \mathrm{e}-03$	-	$1.03 \mathrm{e}-02$	-	$1.04 \mathrm{e}-01$	-
20	$1.00 \mathrm{e}-1$	$9.27 \mathrm{e}-04$	3.05	$1.28 \mathrm{e}-03$	3.01	$8.71 \mathrm{e}-03$	3.58
40	$5.00 \mathrm{e}-2$	$9.48 \mathrm{e}-05$	3.29	$1.67 \mathrm{e}-04$	2.94	$1.04 \mathrm{e}-03$	3.06
80	$2.50 \mathrm{e}-2$	$7.15 \mathrm{e}-06$	3.73	$1.11 \mathrm{e}-05$	3.91	$1.02 \mathrm{e}-04$	3.34

\Rightarrow We observe optimal convergence rate in this example.

Example 4 (2-d, linear + obstacle)

The initial data is $u_{0}(\mathbf{x}):=\|\mathbf{x}-(-0.5,0)\|_{2}-0.3$.
The obstacle is coded by $g(\mathbf{x}):=0.25-\|\mathbf{x}-(0,0.25)\|_{2}$.
The problem is

$$
\begin{align*}
& \min \left(u_{t}+u_{x}, u-g(x, y)\right)=0, \quad t>0,(x, y) \in \Omega \tag{9}\\
& u(0, x, y)=u_{0}(x, y), \quad(x, y) \in \Omega \tag{10}
\end{align*}
$$

on $\Omega:=[-1,1]^{2}$ with periodic boundary conditions.

Figure: Example $4\left(N_{x}=N_{y}=40\right)$, times $t \in\{0,0.5,1\}$

Example 5 (2-d, linear + obstacle, variable coefficients)

We consider

$$
f(x, y):=\binom{-2 \pi y}{2 \pi x} \max \left(1-\|\mathbf{x}\|_{2}, 0\right)
$$

where $\|\mathbf{x}\|_{2}:=\sqrt{x^{2}+y^{2}}$ and with a Lipschitz continuous initial data u_{0} :

$$
\begin{equation*}
u_{0}(x, y)=\min (\max (y,-1), 1) \tag{11}
\end{equation*}
$$

The function u_{0} has a 0 -level set which is the x axis: $\left\{\mathbf{x}=(x, y) \in \mathbb{R}^{2} \mid y=0\right\}$. When there is no obstacle function, the exact solution is known.

Figure: Q^{2} and 40×40 mesh cells.

Example 6 (2-d, nonlinear)

The problem is

$$
\begin{align*}
& \min \left(u_{t}+\max (0,2 \pi(-y, x) \cdot \nabla u), u-g(x, y)\right)=0,(12) \\
& u(0, x, y)=u_{0}(x, y), \quad(x, y) \in \Omega \tag{13}
\end{align*}
$$

Domain $\Omega:=[-2,2]^{2}$,
Initial data : $u_{0}(x, y):=\|(x, y)-(1,0)\|_{2}-0.5$,
Obstacle : $g(x, y):=0.5-\|(x, y)-(0,0.5)\|_{2}$

Figure: Example $6, t \in\{0,0.25,0.5,0.75\}, Q^{2}, 80 \times 80$ cells.

More complex example

We consider the problem

$$
\begin{align*}
& \min \left(u_{t}+\max \left(0, u_{x}+\frac{1}{2}\left|u_{y}\right|\right), u-g(x, y)\right)=0, \quad t>(0,4) \\
& u(0, x, y)=u_{0}(x, y), \quad x \in \Omega \tag{15}
\end{align*}
$$

with $u_{0}(\mathbf{x}):=\|\mathbf{x}-(-1.0,0)\|_{\infty}-0.5$ and
$g(\mathbf{x}):=\min \left(0.25,\|\mathbf{x}-(0.2,0)\|_{2}-0.5\right)$, corresponding to a
square initial data and a disk obstacle. In this example the "entropy fix" is needed.

Example 8 - Narrow band algorithm

- define a "cutoff" value ($C:=2 \Delta x$),
- The initial data u_{0} is transformed into

$$
\tilde{u}_{0}(x, y):=\min \left(C, \max \left(-C, u_{0}(x, y)\right)\right) .
$$

- At each time step, (i) for each cell (centered at $\left.\left(x_{i}, y_{j}\right)\right)$:

$$
\text { nlogo }_{i, j}^{0}:= \begin{cases}1 & \text { if }\left|u^{n}\left(x_{i}, y_{j}\right)\right| \leq 0.99 C \\ 0 & \text { otherwise }\end{cases}
$$

- (ii) for all index i, j, compute

$$
n \log o_{i, j}:=\max \left(n \log o_{i, j}^{0}, n \log o_{i, j \pm 1}^{0}, n \log o_{i \pm 1, j}^{0}\right)
$$

- (iii) Do the DG computations only on cells (i, j) such that $n \log o_{i, j}=1$.

Narrow band example

- We consider

$$
\begin{align*}
& u_{t}+2 \pi(-y, x) \cdot \nabla u=0, \quad t>0, \quad(x, y) \in \Omega, \\
& u(0, x, y)=u_{0}(x, y), \quad(x, y) \in \Omega \tag{16b}
\end{align*}
$$

and same initial data u_{0} as for the rotation example.

Table: (Example 8) comparison of CPU times (in sec.) for full and narrow band approaches for (??), $t=0.5$

N_{x}	full	"order"	narrow band	"order"	Gain (full / band)
20	8.1 s	-	6.9 s	-	1.17
40	45.2 s	5.58	17.1 s	2.47	2.64
80	347.4 s	7.68	83.4 s	4.87	4.16
160	2705.3 s	7.78	386.0 s	4.62	7.00

The "order" is computed as the ratio of CPU times time $\left(N_{x}\right) /$ time $\left(N_{x} / 2\right)$.

FUTUR WORK :

- improvement of the narrow band approach
- convergence proof (linear + obstacle case)
- applications to optimal control (higher dimensional problems)

