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A front propagation model

• Consider an initial (closed) set Ω0 ⊂ Rn, we want to compute
the reachable set

Ωt := {yαx (t), α ∈ L∞((0, t),A), x ∈ Ω0}.

where y = yαx (.) denotes the solution of the ODE:

ẏ(s) = f (y(s), α(s)), a.e. s ∈ (0, t)
y(0) = x

• Front: modelized by ∂Ωt

• minimal time problem: T (x) := inf{t ≥ 0, x ∈ Ωt}

• Target problem

• Capture basin set: Replace f (x , α) by Conv{0, f (x , α)}, . . .
O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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Level set approach

Let ϕ Lipschitz continuous, be such that

Ω0 = {x , ϕ(x) ≤ 0}.

Let
u(t , x) := inf{ϕ(yαx (−t)), α ∈ U}

Proposition 1:
Ωt = {x , u(t , x) ≤ 0}.

Proposition 2: We have a dynamic programming principle
(DPP) and the following HJ equation 1{

ut + max
a∈A

(f (x ,a) · ∇u) = 0, t > 0, x ∈ Rn,

u(0, x) = ϕ(x), x ∈ Rn

1Assumptions (i) A compact, (ii) f (x , A) convex, and
(iii) ∃L ∀x , y , a, |f (x , a)− f (y , a)| ≤ L|x − y |.
O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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State constraints

• Let K be a nonempty closed set, we now want to compute

ΩK
t := {yαx (t), α ∈ L∞(0, t), x ∈ Ω0,

(
yαx (θ) ∈ K, ∀θ ∈ [0, t]

)
}.

•We still have ΩK
t = {x , u(t , x) ≤ 0} where

u(t , x) :=

 inf
{
ϕ(yαx (−t)), α ∈ L∞(0, t),

(
yαx (θ) ∈ K, ∀θ ∈ [0, t]

)}
+∞ if there is no feasible trajectory

• u discontinuous, no simple HJ equation for u ! 2

2see however B.-Forcadel-Zidani, COCV 2010
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Second way B.- Forcadel - Zidani SICON 2010

• Let g be Lipschitz constinuous and such that

g(x) ≤ 0⇔ x ∈ K.

Instead of u, we consider an "L∞- penalized" problem

v(t , x) := inf
α∈L∞(0,t)

max
(
ϕ(yαx (−t)), max

θ∈[0,t]
g(yαx (−θ))

)
• Proposition 1. {x , u(t , x) ≤ 0} = {x , v(t , x) ≤ 0} = ΩK

t .

• Proposition 2. v is the unique viscosity solution of:

min
(

vt + max
a∈A

(f (x ,a) · ∇v), v− g(x)

)
= 0, t > 0, x ∈ Rn,

v(0, x) = max(g(x), ϕ(x)), x ∈ Rn

• Rem: L∞-cost was already considered by Barron-Jensen.
O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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Application to minimal time

• Minimal time with state constraints K :

T (x) := inf{t ≥ 0, x ∈ ΩK
t }

(and T (x) = +∞ if there is no feasible trajecories).

• Proposition:

T (x) = inf{t ≥ 0, v(t , x) ≤ 0}.

• Application: reconstruction of optimal trajectories
- without any controllability assumptions
- with/without obstacles

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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Very short & non exhaustive Literature

• inward pointing condition: Soner (86’), Cappuzzo-Dolcetta
- Lions (90), Ishii-Koike (96), ...
• outward pointing condition: Frankowska-Plaskacz (00’),
Frankowska-Vinter
• No condition - Viability theory (Aubin) :
Cardaliaguet-Quincampoix-Saint-Pierre (97,00), Viability
algorithm (Saint-Pierre, 94’)
• No condition - Penalization approach: "Exact Penalization"
Kurzhanski and Varayiya (2006).
• Other works: Kurzhanski-Mitchell-Varaiya (2006),
• Two player games: Bardi-Koike-Soravia

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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1. Variationnal formulation

Consider the ut + ux = 0 equation, with obstacle g(x):

min(ut + ux ,u − g(x)) = 0 (1)

This is equivalent to :

⇔


ut + ux ≥ 0
u − g(x) ≥ 0
(ut + ux ).(u(t , x)− g(x)) = 0, a.e. x

⇔


ut + ux ≥ 0
u − g(x) ≥ 0
(ut + ux , u(t , .)− g) = 0,

where (., .) denotes the scalar product on L2(0,1).
O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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1. Variationnal formulation

(1’) u ≥ g and ut + ux ≥ 0, (ut + ux ,u − g(x)) = 0.

The variational formulation for (1’) is : find u(t , .) ≥ g such that

∀v ≥ g, (ut + ux , v − u(t , .)) ≥ 0.

Proof: ⇒ : v − u = (v − g)− (u − g) hence, ∀v ≥ g,

(ut + ux , v − u) = (ut + ux , v − g︸ ︷︷ ︸
≥0

) + 0 ≥ 0

⇐ : v = ϕn ≥ g, lim
n→∞

ϕn(x0) = +∞⇒ (ux + ux )(t , x0) ≥ 0.
Taking v = g, we get (ut + ux ,g − u(t , .)) ≥ 0

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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2. direct DG scheme
(Cheng & Shu, JSC 2007)

• At first consider the case of

ut + ux = 0, t > 0, x ∈ (0,1)

and with periodic boundary conditions.

• Given some mesh of (0,1) : (xj− 1
2
)j , we introduce a space of

discontinuous galering elements of degre k :

Vh =
{

vh, vh ∈ Pk (Ij), ∀j
}
, Ij := [xj− 1

2
, xj+ 1

2
]

where Pk are the polynomials of degree at most k .

• Notations: (vh)±
j− 1

2
= vh(x±

j− 1
2
), [vh]j− 1

2
= vh(x+

j− 1
2
)− vh(x−

j− 1
2
).

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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• Euler Forward DG formulation for ut + ux = 0:

Direct DG scheme, linear case

find un+1 in Vh,∫
un+1 − un

∆t
vh+

∫
un

x vh+
∑

j

a+[un]j− 1
2
(vh)+

j− 1
2

= 0, ∀vh ∈ Vh.

where a+ is some constant such that a+ ≥ 1.

• Taking a+ = 1, this is equivalent to the classical DG scheme.

•We may write formally the scheme as

(
un+1 − un

∆t
+H(un), vh) = 0, ∀vh ∈ Vh,

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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• Euler Forward DG formulation for ut + ux = 0:

Direct DG scheme, linear case

find un+1 in Vh,∫
un+1 − un

∆t
vh+

∫
un

x vh +
∑

j

a+[un]j− 1
2
(vh)+

j− 1
2︸ ︷︷ ︸

(h(un),vh)

= 0, vh ∈ Vh.

where a+ is some constant such that a+ ≥ 1.

• Taking a+ = 1, this is equivalent to the classical DG scheme.

•We may write formally the scheme as

(
un+1 − un

∆t
+H(un), vh) = 0, ∀vh ∈ Vh,
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• Equivalent vector formulation:

un(x) =
∑

α=0,...,k

Un,i
α ϕα(x), and Un,i =

 Un,i
0
...

Un,i
k


where (ϕα(x))α=0,...,k is some basis of Pk .

• Then the scheme becomes :

M
Un+1,i − Un,i

∆t
+ AUn,i + BUn,i−1 = 0 ∈ Rk+1

where M is the mass matrix: Mα,β = (ϕα, ϕβ).

• In the end, we get an explicit formula Un+1,i
α = F (Un)i,α.

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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3. Direct DG scheme for the obstacle case
(B. - Cheng - Shu, Preprint 2010)

• Since v ≥ g is a little bit strong for polynomials, we introduce

V g
h := {v ∈ Vh, ”v ≥ g”}

where
”v ≥ g”⇔ v(x i

α) ≥ g(x i
α), ∀i , α

and where (x i
α)α=0,...,k are the k + 1 gauss points on cell Ii .

Direct DG scheme, obstacle case

find un+1 in Vh, ”un+1 ≥ g”,

(
un+1 − un

∆t
+ h(un), vh − un+1) ≥ 0, ∀vh ∈ V g

h

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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4. Simplification

• In matrix form, the problem becomes (∀i):

∑
α

(M
Un+1,i − Un,i

∆t
+ AUn,i + BUn,i−1)α (Vα − Un+1,i

α ) ≥ 0,

∀Vα ≥ g(x i
α),

• As in the continuous case, it is equivalent to (∀i),

min
(

(M
Un+1,i − Un,i

∆t
+AUn,i+BUn,i−1)α, Un+1,i

α −g(x i
α)

)
≥ 0, ∀α

This is still a non-linear system to solve !

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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• Simple idea: consider the dual basis associated to the
gaussian points: s.t. ϕα(xβ) = δαβ. Then

M = diag(w0, . . . ,wk ) with wα > 0

• Now the system becomes (∀i):

min
(

wα
Un+1,i
α − Un,i

α

∆t
+(AUn,i +BUn,i−1)α, Un+1,i

α −g(x i
α)

)
≥ 0.

... which can be solved explicitly :

• Remark: This is similar with a Finite Difference Euler Forward
scheme for min(ut + ux ,u − g(x)) = 0 !

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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5. Non linear + obstacle :
(Cheng-Shu JSC 07’, B.-Cheng-Shu SJSC)

• For ut + H(x ,ux ) = 0, consider any DG scheme, for instance:

• ∀v ∈ Vh,∫
Ij

{
(uh)t + H(x , (uh)x )

}
v + H1,+

j− 1
2
[ũh]j− 1

2
v+

j− 1
2

+ H1,−
j+ 1

2
[ũh]j+ 1

2
v−

j+ 1
2

= 0

where

H1,+
j− 1

2
:= max

(
0, max

x∈I
j− 1

2

∂H
∂ux

(xj− 1
2
,uhx (x))

)

H1,−
j+ 1

2
:= min

(
0, min

x∈I
j+ 1

2

∂H
∂ux

(xj+ 1
2
,uhx (x))

)
These terms are for STABILITY.
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6. The scheme in 2d

• Consider Qk elements generated by

xp
1 xq

2 , 0 ≤ p,q ≤ k

•We take an explicit and stable TVD − RK 3 scheme,

Un+1 = F (Un).

• The full scheme reads

Un+1,i
α = max

(
F (Un)i

α, g(x i
α)
)

where x i
α = (x i1

α1 , x
i2
α2) (using 1−−d gauss points)

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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Good long time behavior

{
ϕt + f (x) · ∇ϕ = 0, x ∈ Ω, t ∈ [0,T ]
ϕ(0,x) = ϕ0(x)

with Ω ⊂ R2.

ϕ0 : R2 → R is a Lipschitz continuous function such that

Ω0 (target) ≡ {x , ϕ0(x) ≤ 0}

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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1. Rotation of a circle

Dynamics: f (x , y) := 2π(−y , x)

Initial data:
ϕ0(x , y) = min(r0, ‖x − xA‖2 − r0), r0 = 0.5, A = (0,1)

−2
−1

0
1

2
−2

−1

0

1

2

−0.5

0

0.5

y

x
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P2 : Local error (region s.t. |ϕ(t , .)| < 0.15), Hausdorff distance

t = 1

Nx ∆x L1-error order L2-error order L∞-error order dH order

10 0.5 1.03e-2 - 1.34e-2 - 3.84e-2 - 3.29e-2 -
20 0.25 4.27e-3 1.2 5.36e-3 1.3 1.76e-2 1.1 9.86e-3 1.7
40 0.125 4.28e-4 3.3 5.66e-4 3.2 2.90e-3 2.6 1.64e-3 2.5
80 0.0675 4.76e-5 3.1 6.22e-5 3.1 2.55e-4 3.5 1.33e-4 3.6

t = 10

Nx ∆x L1-error order L2-error order L∞-error order dH order

10 0.5 4.66e-2 - 5.62e-2 - 1.30e-1 - 1.17e-1 -
20 0.25 8.59e-3 2.4 1.01e-2 2.4 2.33e-2 2.4 1.19e-2 3.3
40 0.125 1.65e-3 2.3 1.99e-3 2.3 6.09e-3 1.9 3.33e-3 1.8
80 0.0675 2.31e-4 2.8 2.91e-4 2.7 7.89e-4 2.9 2.73e-4 3.6

Hausdorff distance: dH(A,B) := max(max
a∈A

d(a,B), max
b∈B

d(b,A)).

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles
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2. Rotation of a square
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Rotation of a square. t = 1 (left), and t = 10 (right),
with P3 and Nx = Ny = 40 (≡ 1252 values)
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We observe

• P3 is better to well catch the corners

• First order (but the solution is only Lipschitz continuous)

• Very good long time behavior
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3. Deformation test

•We consider

f (t , x , y) := sign (T − t)

a(‖x‖)︷ ︸︸ ︷
max(1− ‖x‖2,0)

(
−2π y

2π x

)
where ‖x‖2 :=

√
x2 + y2 and

ϕ0(x , y) = min(max(y ,−1),1). (2)

The function ϕ0 has a 0-level set which is the x axis:

{ϕ0 = 0} ≡ {y = 0}

• Exact solution for t ≤ T :

u(t ,x) := u0(R−2πta(x)x) where Rθ :=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
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Figure: Plots at times t = 1, t = 3, with P4 and 24× 24 mesh cells.
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Figure: Plots at times t = 5 and t = 10 (return to initial data) - with
P4 and 24× 24 mesh cells (' 1002 values)
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Example coming from ẍ = α: ut − yux + |uy| = 0
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Figure: Comparison at time t = 1.0: DG scheme with 442 cells, P2

(left) and traditional level set method using a second order
Lax-Friedrich type scheme (right) with 4012 mesh cells
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B - With obstacles
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Example 1 (1–d, linear + obstacle)

We first consider a one-dimensional test:

min(ut + ux ,u− g(x)) = 0, t > 0, x ∈ [−1,1], (3)
u(0, x) = u0(x), x ∈ [−1,1], (4)

with periodic boundary conditions and g(x) := sin(πx),
u0(x) := 0.5 + sin(πx). In that case, for times 0 ≤ t ≤ 1, the
exact solution can be computed analytically.
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The numerical solution agrees well with the exact solution
everywhere.
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Figure: Example 1, times t = 0 (initial data), t = 0.5 and t = 1, using
P2 elements with Nx = 20 mesh cells (obstacle : green dotted line)
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Table: Example 1. t = 0.5. P2 elements (error at distance d = 0.1
away from singular points)

Nx ∆x L1-error order L2-error order L∞-error order

40 5.00e-2 3.34e-05 2.41 1.01e-04 1.98 7.02e-04 2.20
80 2.50e-2 1.77e-06 4.24 3.64e-06 4.79 2.82e-05 4.64

160 1.25e-2 1.78e-07 3.31 2.91e-07 3.64 2.40e-06 3.55
320 6.25e-3 2.13e-08 3.06 3.43e-08 3.08 1.28e-07 4.23
640 3.13e-3 2.66e-09 3.00 4.28e-09 3.00 1.60e-08 3.00

1280 1.56e-3 3.32e-10 3.00 5.35e-10 3.00 2.00e-09 3.00

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles



HJ equation for Front Propagation with constraints
DG scheme

Numerical results

Without obstacles
With obstacles

Example 2 (1–d, nonlinear + obstacle)

We consider a one-dimensional test with a nonlinear
Hamiltonian:

min(ut + |ux |,u − g(x)) = 0, t > 0, x ∈ [−1,1], (5)
u(0, x) = u0(x), x ∈ Ω, (6)

with periodic boundary conditions and g(x) := sin(πx),
u0(x) := 0.5 + sin(πx). In this particular case, the exact
solution is given by:

u(t , x) = max(ū(t , x), g(x))

where ū is the solution of the Eikonal equation ut + |ux | = 0 and
can be computed analytically.
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Figure: Example 2, numerical and exact solutions at times t = 0.2
and t = 0.4, Nx = 20, using P2 (obstacle : green dotted line).

⇒ good agreement with the exact solution.
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Example 3 (2–d, linear + obstacle, accuracy test)

The equation solved is

min(ut +
1
2

ux +
1
2

uy ,u − g(x , y)) = 0, t > 0, (x , y) ∈ Ω,(7)

u(0, x , y) = u0(x , y), (x , y) ∈ Ω, (8)

where g(x , y) := sin(π(x + y)), u0(x , y) = 0.5 + g(x , y), and
Ω = [−1,1]2 with periodic boundary conditions. The exact
solution is known :

u(t , x , y) = u(1)(t , x + y)

(where u(1) is the exact solution for 1–d Example 1).
The errors are computed away from the singular zone :

{(x , y) ∈ Ω, 1 ≤ i ≤ 3, d(x + y − si ,2Z) ≥ δ)} (δ = 0.1)
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Table: Example 3. t = 0.5. Q2 elements.

Nx ∆x L1-error order L2-error order L∞-error order

10 2.00e-1 7.70e-03 - 1.03e-02 - 1.04e-01 -
20 1.00e-1 9.27e-04 3.05 1.28e-03 3.01 8.71e-03 3.58
40 5.00e-2 9.48e-05 3.29 1.67e-04 2.94 1.04e-03 3.06
80 2.50e-2 7.15e-06 3.73 1.11e-05 3.91 1.02e-04 3.34

⇒We observe optimal convergence rate in this example.
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Example 4 (2–d, linear + obstacle)

The initial data is u0(x) := ‖x− (−0.5,0)‖2 − 0.3.
The obstacle is coded by g(x) := 0.25− ‖x− (0,0.25)‖2.
The problem is

min(ut + ux ,u − g(x , y)) = 0, t > 0, (x , y) ∈ Ω, (9)
u(0, x , y) = u0(x , y), (x , y) ∈ Ω, (10)

on Ω := [−1,1]2 with periodic boundary conditions.
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Figure: Example 4(Nx = Ny = 40), times t ∈ {0, 0.5, 1}
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Example 5 (2–d, linear + obstacle, variable
coefficients)

We consider

f (x , y) :=

(
−2π y

2π x

)
max(1− ‖x‖2,0)

where ‖x‖2 :=
√

x2 + y2 and with a Lipschitz continuous initial
data u0:

u0(x , y) = min(max(y ,−1),1). (11)

The function u0 has a 0-level set which is the x axis:
{x = (x , y) ∈ R2 | y = 0}. When there is no obstacle function,
the exact solution is known.
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Figure: Q2 and 40× 40 mesh cells.
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Example 6 (2–d, nonlinear)

The problem is

min(ut + max (0,2π(−y , x) · ∇u) ,u − g(x , y)) = 0, (12)
u(0, x , y) = u0(x , y), (x , y) ∈ Ω, (13)

Domain Ω := [−2,2]2,
Initial data : u0(x , y) := ‖(x , y)− (1,0)‖2 − 0.5,
Obstacle : g(x , y) := 0.5− ‖(x , y)− (0, 0.5)‖2

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles



HJ equation for Front Propagation with constraints
DG scheme

Numerical results

Without obstacles
With obstacles

Figure: Example 6, t ∈ {0, 0.25, 0.5, 0.75}, Q2, 80× 80 cells.
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More complex example

We consider the problem

min(ut + max
(

0,ux +
1
2
|uy |

)
,u − g(x , y)) = 0, t > 0,(14)

u(0, x , y) = u0(x , y), x ∈ Ω, (15)

with u0(x) := ‖x− (−1.0, 0)‖∞ − 0.5 and

g(x) := min
(

0.25, ‖x− (0.2, 0)‖2 − 0.5
)

, corresponding to a

square initial data and a disk obstacle.
In this example the “entropy fix" is needed.
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Example 8 - Narrow band algorithm

.

define a “cutoff" value (C := 2∆x),
The initial data u0 is transformed into

ũ0(x , y) := min(C,max(−C,u0(x , y))).

At each time step, (i) for each cell (centered at (xi , yj)) :

nlogo0
i,j :=

{
1 if |un(xi , yj)| ≤ 0.99 C,
0 otherwise

(ii) for all index i , j , compute

nlogoi,j := max(nlogo0
i,j ,nlogo0

i,j±1,nlogo0
i±1,j)

(iii) Do the DG computations only on cells (i , j) such that
nlogoi,j = 1.

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles



HJ equation for Front Propagation with constraints
DG scheme

Numerical results

Without obstacles
With obstacles

Narrow band example

•We consider

ut + 2π(−y , x) · ∇u = 0, t > 0, (x , y) ∈ Ω, (16a)
u(0, x , y) = u0(x , y), (x , y) ∈ Ω, (16b)

and same initial data u0 as for the rotation example.
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Figure: (Example 8) Narrow band as in example 6, t ∈ {0,0.25,0.5},
Q2, 80× 80 cells.
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Table: (Example 8) comparison of CPU times (in sec.) for full and
narrow band approaches for (??), t = 0.5

Nx full "order" narrow band "order" Gain (full / band)

20 8.1 s - 6.9 s - 1.17
40 45.2 s 5.58 17.1 s 2.47 2.64
80 347.4 s 7.68 83.4 s 4.87 4.16

160 2705.3 s 7.78 386.0 s 4.62 7.00

The “order" is computed as the ratio of CPU times
time(Nx )/time(Nx/2).
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FUTUR WORK :

improvement of the narrow band approach
convergence proof (linear + obstacle case)
applications to optimal control (higher dimensional
problems)

O. Bokanowski, Y. Cheng, C.-W. Shu A DG solver for front propagation with obstacles


	HJ equation for Front Propagation with constraints
	DG scheme
	linear + obstacle
	Non linear case

	Numerical results
	Without obstacles
	With obstacles


