(Fast) Iterative and Non-iterative

Methods for Discrete & Continuous

Dynamic Programming Equations.

Alexander Vladimirsky

Department of Mathematics, Cornell University, Ithaca, NY 14853

vlad@math.cornell.edu

Deterministic Shortest Paths in a Graph.

Bounded degree of nodes: $|N(\boldsymbol{x}_i)| < \kappa \ll M$ for all *i* Transition time-penalty: $K_{ij} \ge \delta > 0$ (assumed $+\infty$ if $x_j \notin N(x_i)$) Exit time-penalty: $q(x_i)$ for all $x_i \in Q \subset X$ Nodes: $X = \{x_1, ..., x_M\}$

is the minimum required total-time-to-exit starting from x_i . Dynamic Programming: The value function $U(x_i) = U_i$

Bellman's Optimality Principle:

The vector $U = (U_1, \ldots, U_M)$ is a fixed point of an operator $\mathcal{F} = \tilde{\mathbf{R}}^M \mapsto \tilde{\mathbf{R}}^M$.

$$U_i = \mathcal{F}_i(U) = egin{cases} \min x_{j \in N}(x_i) \left\{ K_{ij} + U_j
ight\}, & ext{if } x_i
ot \in Q; \ q(x_i), & ext{if } x_i \in Q. \end{cases}$$

A coupled system of M non-linear equations!

General Fixed Point Iterations

Consider a **general** coupled nonlinear system $U = \mathcal{F}(U)$.

O(M) cost per one iteration, assuming $\mathcal{F}_i(V)$ evaluation costs O(1). Fixed point iterations: $U^{k+1} = \mathcal{F}(U^k)$, where $U^0 \in \tilde{\mathbf{R}}^M$ is a suitable initial guess.

- Similar to recovering a stationary solution of a "time-dependent" problem.
- In Dynamic Programming known as the "Value Iterations".
- (on an infinite-precision computer). Infinitely many iterations are generally needed to converge
- Estimates for the rate of convergence are not always available.
- Causal properties ↓ finitely many iterations for any U^0

So, (# of iterations) \leq (the maximum # of links in a shortest path) $\leq M$. $U_i^k = U_i$ for any \boldsymbol{x}_i whose optimal path has length $\leq k$. E.g., for shortest path in a graph with $\delta > 0$,

Fast methods: speed up convergence either by increasing the rate or

Thus, the total cost is $O(M^2)$, assuming a fixed $\kappa \ll M$.

by decreasing the total number of needed iterations (in finitely-convergent problems).

"Relaxed Iterations" and Types of Causality

Gauss-Seidel Relaxation:

$$U_i^{k+1} = \mathcal{F}_i(U_1^{k+1}, \dots, U_{i-1}^{k+1}, U_i^k, \dots, U_M^k).$$

ordering of the variables/nodes/gridpoints ! In finitely-convergent problems, the number of iterations now heavily depends on the

The ordering is **causal** if using it a *single* G-S iteration leads to convergence.

The operator \mathcal{F} is causal

- causal if there exists a causal ordering of gridpoints
- explicitly causal if a causal ordering is a priori known.
- monotone-causal if in the causal ordering $U_i < U_j$ ↓ i < j.

schemes for time-dependent PDEs Explicitly causal examples: shortest paths in acyclic graphs, explicit time-marching

finite-difference discretization of the Eikonal PDE Monotone-causal example: shortest paths in di-graphs with $K_{ij} > \delta \geq 0$, upwind

of iterations needed to reach a fixed tolerance? For non-causal problems: can a good ordering improve the rate or decrease the number

Generic Label-Correcting Algorithm

- Dynamically defined ordering.
- Temporary labels V_i 's.
- Maintains a list L of recently updated nodes.

on it are re-evaluated and added to L (if not there yet). Every time a node is removed from L, all those potentially depending

- Terminates when L is empty.
- Upon termination $V_i = U_i$ for all nodes \boldsymbol{x}_i ,

regardless of the particular add/remove choices

Always converges in at most M^2 evaluations for all causal problems.

Good add/remove choices might reduce the number of evaluations.

Generic Label-Correcting Algorithm

Initialization:

for each
$$x_i \in Q$$
 do
 $V_i \leftarrow q_i$
for each $x_i \notin Q$ do
if $N(x_i) \bigcap Q \neq \emptyset$ then
 $V_i \leftarrow \min_{\substack{x_j \in N(x_i) \bigcap Q \\ add x_i \text{ to the list } L}} \{K_{ij} + q_j\}$

else

 $V_i \leftarrow \infty$

Main Loop:

while L is nonempty **do**

Remove a node \boldsymbol{x}_j from the list L

for each $x_i \notin Q$ such that $x_j \in N(x_i)$ and $V_j < V_i$ do

 $egin{aligned} V \leftarrow K_{ij} + V_j \ extsf{if} \ \widetilde{V} < V_i \ extsf{then} \ V_i \leftarrow \widetilde{V} \ extsf{if} \ egin{aligned} x_i
otin & x_i
otin \ egin{aligned} x_i
otin \ egin{aligned}$

add \boldsymbol{x}_i to the list L

How to add & remove nodes from L?

• Bellman-Ford [1957] :

L is a queue; remove from the top, add to the bottom.

To speed up things: process "the most influential" nodes first.

not the first time for this node. **D'Esopo-Pape** [1974]: same as B-F, but add at the top if that's

influential". Instead, smaller label \iff more influence But for these problems "added early" is not the same as "more

Dijkstra [1959] : remove the smallest label;

natural implementation: L is a binary heap.

simultaneously; natural implementation: L is a collection of "buckets". **Dial** [1969] : remove a bunch of closely clustered "smallest" labels

once removed from L, a node never re-enters it. These latter **label-setting** methods have a great property:

As a result, the number of re-evaluations per node is bound by κ .

structures and are harder to parallelize number of "iterations" is independent from M and known in advance. These are **single-pass** or essentially **non-iterative** – the bound on the **Causality:** Each node depends only on the "smaller" neighbors. **Dial's** has O(M) complexity relying on a list of "buckets" of width δ . **Dijkstra's** has $O(M \log M)$ complexity if implemented using heap-sort. **Disadvantages**: label-setting methods rely on more sophisticated data "If you use The Known to tentatively compute The Still Unknown Label-Setting Methods then the smallest of The Tentatively Known is actually Known."

Again: how to add & remove nodes from L?

properties of label-setting methods, but without sorting the labels. Many label-correcting algorithms strive to attain the same good

Three label-correcting algorithms by Bertsekas (& co-authors):

- if the label is smaller than the current top. SLF (Small Labels First) [1993]: same as B-F, but add at the top
- currently in L; if the top is bigger than V, don't remove but simply shift it to the bottom instead LLL (Large Labels Last) [1996]: let \overline{V} be the average of labels
- **SLF/LLL :** an obvious combination of the above.

Parallel/Asynchronous versions also available (& scale fairly well).

to L_2 . Once L_1 is empty, increment V (by how much?), interchange L_1 & threshold value \hat{V} ; if the new label is below V, add it to L_1 ; otherwise L_2 , and continue. [Glover, F., Glover, R., and Klingman; 1986]. **Thresholding** : split L into two queues L_1 and L_2 ; maintain a

Discretizing Hyperbolic Boundary Value Problems.

 $H(
abla u(oldsymbol{x}),u(oldsymbol{x}),oldsymbol{x})=0,$ $oldsymbol{x}\in\Omega\subset R^{n};$ $u(\boldsymbol{x}) = 0 \text{ on } \partial \Omega$

Wanted: the "correct" solution $u(\boldsymbol{x})$.

 $NU(\boldsymbol{x_i}) = \{ U_j | \boldsymbol{x_j} \text{ is adjacent to } \boldsymbol{x_i} \}.$ Usual discretization strategy: $\nabla u(\boldsymbol{x_i})$ is approximated using U_i and

Need to solve $\overline{H}(U_i, NU(\boldsymbol{x}_i), \boldsymbol{x}_i) = 0$ at each grid point.

- system of *M* non-linear **coupled** equations;
- solved by iterations (sometimes with Gauss-Seidel relaxation);
- often too slow (even with relaxation)

Can we do any better?

Can we de-couple the system and solve equations one at a time?

Causality in PDE discretizations.

$$H(
abla u(oldsymbol{x}),u(oldsymbol{x}),oldsymbol{x})=0, \quad oldsymbol{x}\in\Omega\subset R^2; \qquad u(oldsymbol{x})=0 \,\, ext{on} \,\, \partial\Omega$$

Wanted:

the ordering of grid points x_1, \ldots, x_M such that if U_i depends upon U_j then i > j.

- finding such an ordering \bigcirc de-coupling the system
- only some discretizations possess this property

point \boldsymbol{x} , then solve for $U(\boldsymbol{x})$ the discretized equation $H(U(\boldsymbol{x}), U(\boldsymbol{x_1}), U(\boldsymbol{x_2}), \boldsymbol{x}) = 0$. **Upwinding discretization:** If simplex xx_1x_2 contains the characteristic for the

A slight problem: characteristic direction not known in advance.

traversing from the leaves up will give a causal ordering. Easy to check/exploit in the linear case (Lesaint & Raviart 1974). Our hope: the dependency graph for the computational elements will be acyclic;

But what if the dependency graph is not acyclic ?

not allowed to involve "higher" layers. **One solution:** a multi-layer graph structure with the inter-dependency cycles

Resolve each level (if necessary - by iterations) before moving up.

Additional step: build your mesh to avoid the cycles (if possible).

Several methods based on the above :

• Discontinuous Galerkin:

Haber et al. 2001 (hyperbolic conservation laws); Barth 2001 (static Eikonal).

• Heuristic speed-up in iterative solvers for static HJ :

Polymenakos, Bertsekas, & Tsitsiklis 1998; ... Falcone et al. 1997; Bornemann & Rasch 2004;

Four more ideas for the non-linear case:

- raise the dimensionality to enable time-marching (e.g., *Level Set Methods*);
- pretend that one of the dimensions is time-like (e.g., *Paraxial Approximation*);
- locally enlarge the stencil to ensure the cycles are absent (e.g., Ordered Upwind);
- alternate between different guesses for the acyclic structure (e.g., Fast Sweeping).

11 minutes of driving

Driving directions: explicit causality?

8 minutes of driving

Driving directions: non-explicit causality!

Continuous Optimal Trajectory Problem

Controlled system :

$$\begin{cases} \mathbf{y}'(t) = f(\mathbf{y}(t), \mathbf{a}(t)) \ \mathbf{a}(t), & \|\mathbf{a}(t)\| = 1, & f: R^2 \times S_1 \longmapsto R_+ \\ \mathbf{y}(0) = \mathbf{x}, & \mathbf{x} \in \Omega \subset R^2 \end{cases}$$

Time-to-boundary $T(\boldsymbol{x}, \boldsymbol{a}(\cdot)) = \inf\{t \in R_{+,0} | \boldsymbol{y}(t) \in \partial \Omega\}.$ **Assumptions** : f and q are Lipschitz, $0 < F_1 \leq f(\boldsymbol{x}, \boldsymbol{a}) \leq F_2$, $\Upsilon = F_2/F1$.

Total Time Cost $(\boldsymbol{x}, \boldsymbol{a}(\cdot)) = T(\boldsymbol{x}, \boldsymbol{a}(\cdot)) + q(\boldsymbol{y}(T(\boldsymbol{x}, \boldsymbol{a}(\cdot)))).$ Exit time-penalty $q: \partial\Omega \longmapsto R_{+,0}$.

Value function : $u(\boldsymbol{x}) = \inf_{\boldsymbol{a}(\cdot)} \operatorname{Cost}(\boldsymbol{x}, \boldsymbol{a}(\cdot)).$

Bellman's Optimality Principle : $u(\boldsymbol{x}) = \inf_{\boldsymbol{a}(\cdot) \in \mathcal{A}} \{ \tau + u(\boldsymbol{y}(\tau)) \}$.

Hamilton-Jacobi-Bellman PDE:

$$\begin{aligned} \max \boldsymbol{a}_{\in S_1} \{ (\nabla u(\boldsymbol{x}) \cdot (-\boldsymbol{a})) f(\boldsymbol{x}, \boldsymbol{a}) \} &= 1, & \boldsymbol{x} \in \Omega \\ u(\boldsymbol{x}) = q(\boldsymbol{x}), & \boldsymbol{x} \in \partial \Omega \end{aligned}$$

Hamilton-Jacobi-Bellman PDE

Naive derivation:

$$u(\boldsymbol{x}) = \tau + \inf_{\boldsymbol{a}(\cdot)} \{u(\boldsymbol{y}(\tau))\}$$

= $\tau + \inf_{\boldsymbol{a}(\cdot)} \{u(\boldsymbol{x} + \tau f(\boldsymbol{x}, \boldsymbol{a}(0))\boldsymbol{a}(0) + O(\tau^2))\}$

$$\min_{\boldsymbol{a} \in S_1} \left\{ \tau + u \left(\boldsymbol{x} + \tau f(\boldsymbol{x}, \boldsymbol{a}) \boldsymbol{a} + O(\tau^*) \right) \right\}$$

$$= \min_{\boldsymbol{a} \in S_1} \left\{ \tau + u(\boldsymbol{x}) + \tau(\nabla u(\boldsymbol{x}) \cdot \boldsymbol{a}) f(\boldsymbol{x}, \boldsymbol{a}) + O(\tau^2) \right\}$$

$$= \tau \min_{\boldsymbol{a} \in S_1} \{1 + (\nabla u(\boldsymbol{x}) \cdot \boldsymbol{a}) f(\boldsymbol{x}, \boldsymbol{a}) + O(\tau)\} + u(\boldsymbol{x}).$$

Thus,

$$\min_{\boldsymbol{a}\in S_1} \{ (\nabla u(\boldsymbol{x}) \cdot \boldsymbol{a}) f(\boldsymbol{x}, \boldsymbol{a}) \} + 1 = 0.$$

Isotropic case: $f = f(\boldsymbol{x}) \implies$ Eikonal PDE:

$$egin{array}{ll} |
abla u(oldsymbol{x})||f(oldsymbol{x})&=1, & oldsymbol{x}\in\Omega\ u(oldsymbol{x})=q(oldsymbol{x}), & oldsymbol{x}\in\partial\Omega. \end{array}$$

The simplest example : $\|\nabla u\| = 1$.

$$\begin{cases} \|\nabla u(\boldsymbol{x})\| = 1, \quad \boldsymbol{x} \in \Omega \subset R^d \\ u(\boldsymbol{x}) = 0, \qquad \boldsymbol{x} \in \partial \Omega \end{cases}$$

Interpretations of $u(\boldsymbol{x})$:

- Distance from the boundary.
- Value function for the optimal trajectory problem for the unit speed/cost vehicle movement.

Shocks - wherever the closest point on the boundary is not unique. Optimal trajectories - straight lines to the closest points on the boundary.

Defining solutions of HJB PDEs

- Non-existence of smooth solutions.
- Non-uniqueness of Lipschitz-continuous weak solutions.
- The viscosity solution as defined by Crandall, Evans and Lions. u is the viscosity solution if for every function $\eta \in C^1(\Omega)$ the following holds: (i) if $u - \eta$ has a local minimum at $\boldsymbol{x_0} \in \Omega$ then

$$\min_{\boldsymbol{a}\in S_1} \left\{ (\nabla \eta(\boldsymbol{x}_0) \cdot \boldsymbol{a}) f(\boldsymbol{x}_0, \boldsymbol{a}) \right\} + 1 \le 0;$$
(1)

(ii) if $u - \eta$ has a local maximum at $\boldsymbol{x_0} \in \Omega$ then

$$\min_{\boldsymbol{a}\in S_1} \left\{ (\nabla \eta(\boldsymbol{x_0}) \cdot \boldsymbol{a}) f(\boldsymbol{x_0}, \boldsymbol{a}) \right\} + 1 \ge 0;$$

(2)

Modified definition (Sethian & AV 2001) : use $S_1^{\eta, \boldsymbol{x}} = \{ \boldsymbol{a} \in S_1 \mid \boldsymbol{a} \cdot \nabla \eta(\boldsymbol{x}) \leq - \|\nabla \eta(\boldsymbol{x})\| \Upsilon^{-1} \}$ instead of S_1 .

the viscosity solution **Implication**: a bound on the angle between characteristic direction and gradient of

X I

×

 \mathbf{x}_{s2}

• $\tilde{\boldsymbol{x}} = \zeta \boldsymbol{x}_{s,1} + (1-\zeta) \boldsymbol{x}_{s,2}$

•
$$\tau(\zeta) = \| \tilde{x} - x \| = \| (\zeta x_{s,1} + (1 - \zeta) x_{s,2}) - x \|.$$

•
$$oldsymbol{a} = oldsymbol{a}_{\zeta} = rac{oldsymbol{x} - oldsymbol{x}}{ au(\zeta)}$$

$$V_{s}(\boldsymbol{x}) = \min_{\boldsymbol{\zeta} \in [0,1]} \left\{ \frac{\tau(\boldsymbol{\zeta})}{f(\boldsymbol{x},\boldsymbol{a}_{\boldsymbol{\zeta}})} + \boldsymbol{\zeta} U(\boldsymbol{x}_{s,1}) + (1-\boldsymbol{\zeta}) U(\boldsymbol{x}_{s,2}) \right\};$$

$$U(\boldsymbol{x}) = \min_{\boldsymbol{s} \in S(\boldsymbol{x})} V_{s}(\boldsymbol{x}).$$

A coupled system of M non-linear equations!

Another semi-Lagrangian discretization:

The idea: just keep going straight until the time τ .

- $\tilde{\boldsymbol{x}}_{\boldsymbol{a}} = \boldsymbol{x} + \tau f(\boldsymbol{x}, \boldsymbol{a}) \in s$
- $\tilde{x}_a = \zeta_1 x_{s,1} + \zeta_2 x_{s,2} + \zeta_3 x_{s,3}$, where $\sum \zeta_i = 1$
- $U(\tilde{x}_{a}) = \zeta_1 U(x_{s,1}) + \zeta_2 U(x_{s,2}) + \zeta_3 U(x_{s,3})$

$$V(\boldsymbol{x}) = \tau + \min_{\boldsymbol{a} \in S_1} \{U(\tilde{\boldsymbol{x}}\boldsymbol{a})\}$$

- same as the previous if τ is so small that $s \in S(\boldsymbol{x})$;
- relies on convergence of a time-discrete control approximation;
- generally solved iteratively (possibly with GS relaxation).

then the scheme converges in at most $D/(\tau F_1)$ iterations and each mesh point is updated exactly once. Resulting complexity: O(M). Resulting Error: $O(h/F_1)$. Falcone, 1994 : For isotropic f, if $\tau \ge h/F_1$ and the mesh is "consistent", viability-kernel computation methods **Related to:** Dial-like method isotropic solvers (e.g., **Tsitsiklis**, 1994) and

(e.g., Saint-Pierre, 2001; Bayen, Cruck, & Tomlin, 2002).

Dijkstra-like methods for HJB Equations?

of The Tentatively Known is actually Known." "If you use The Known to tentatively compute The Still Unknown, then the smallest If the motion is **isotropic** (i.e. $f(\boldsymbol{x}, \boldsymbol{a}) = f(\boldsymbol{x})$), the same monotone de-coupling works:

- Isotropic Optimal Trajectory Problem: Tsitsiklis' Algorithm (1994).
- Isotropic Front Propagation Problem: Sethian's Fast Marching Method (1996).
- Different perspectives (semi-Lagrangian vs. Eulerian).
- Same decoupling: both compute U_i before U_j iff $U_i \leq U_j$.
- Both non-iterative with complexity $O(M \log M)$.

Causality : characteristics = gradient lines for the Eikonal PDE.

Dial-like: Tsitsiklis (1995); Kim et al.(2000); on triangulated meshes: $\delta = \frac{h \cos \beta}{F_2}$, [AV, 2007]

In the general (**anisotropic**) case, this discretization need not be causal.

Ordered Upwind Methods: dynamically extend the stencil

just enough to restore the monotone causality [Sethian & AV, 2001].

Resulting computational complexity: $O(\Upsilon M \log M)$.

Causal Numerical Methods

- Shortest paths on graphs [Dijkstra, 1959]; [Dial, 1969];
- Isotropic optimal control/front propagation [Tsitsiklis, 1994]; [Sethian, 1996];
- Anisotropic optimal control/front propagation [Sethian & AV, 2001];
- Hybrid optimal control [Branicky et al., 1999]; [Sethian & AV, 2003];
- Invariant manifolds & quasi-linear PDEs [Guckenheimer & AV, 2004];
- Stochastic shortest paths on graphs [Bertsekas, 2001]; [AV, 2007];
- Games and mean curvature motion [Cristiani & Falcone, 2006]; [Carlini, 2007];
- Homogenization of HJB PDEs [Oberman, Takei & AV, 2009];
- Multi-objective optimal control [Kumar & AV, 2010];
- Randomly-terminated optimal control [Andrews & AV, 2010];
- Multi-valued solutions of PDEs [Guckenheimer, Sethian & AV, in progress];
- •

Relevant in many PDEs & applications (not just HJ & optimal control). Provable causality (not just a heuristic) \implies efficient computations Details: http://www.math.cornell.edu/~vlad/

Label-Correcting Methods for HJB PDEs

Bellman-Ford-like:

- for general static HJB [Bornemann and Rasch; 2006]
- asynchronous, for GPU-architectures [Jeong and Whitaker; 2008]
- for Eikonal [Bak, McLaughlin, and Renzi; 2009]

SLF/LLL-like:

- for Eikonal [Polymenakos, Bertsekas, and Tsitsiklis; 1998]
- asynchronous [Bertsekas, Guerriero, and Musmanno; 1996]

Thresholding-like:

for Eikonal [Bak, McLaughlin, and Renzi; 2009]

Comprehensive/representative benchmarks are needed problems on which each of these methods outperforms the others **Up to this moment:** insufficient testing to determine the exact class of

Alternating Direction Gauss-Seidel

- Danielsson, 1980;
- Boue & Dupuis, 1999;
- Dupuis & Szpiro, 2001;
- Tsai, Osher, Zhao, 2002-2004;
- Kao, Osher, Qian, 2004;
- Zhao, 2005;
- Zhang, Qian, Zhao, 2006;
- Bak, McLaughlin, Renzi, 2009; ("locking sweeping" version)

•

switches from-quadrant-to-quadrant by a characteristic. The complexity (in Eikonal case): $\approx O(kM)$, where k is the max number of

inhomogeneity even in the absence of anisotropy. the domain geometry is simple, but in general - pay the price for Very fast for problems where characteristics are largely straight lines and

See (Gremaud & Kuster, 2006); (Hysing & Turek, 2005).

Anisotropic speed: the failure of Dijkstra-like methods.

The "monotone ordering" decoupling does not work here:

same. Nor do they have to lie in the same simplex! For $H(\nabla u(\boldsymbol{x}), \boldsymbol{x}) = 1$ the characteristics and the gradient lines do not have to be the

characteristic for x lies in the simplex xx_1x_2

 $u(x) > \max\{u(x_1), u(x_2)\}$

 \Rightarrow

Building OUMs for Anisotropic Problems.

A more general **causality principle** is needed.

set at some point \tilde{x} . If \bar{x} is distance d away from the level set then curve $u(\mathbf{x}) = C$, where $q_{max} < C < u(\bar{\mathbf{x}})$. The characteristic intersects that level **Lemma 1.** Consider the characteristic passing through a point $\bar{x} \in \Omega$ and a level

$$\tilde{\boldsymbol{x}} - \bar{\boldsymbol{x}} \| \le d \frac{F_2}{F_1} = d\Upsilon.$$
 (3)

the characteristic passing through $\bar{\boldsymbol{x}}_i$ intersects that curve at some point $\tilde{\boldsymbol{x}}_i$ then point \bar{x}_i has the smallest value $u(\bar{x}_i)$ of all of the mesh points inside the curve. If there exists a mesh point y inside Γ such that $\|x - y\| < h$. Suppose the mesh simple closed curve Γ lying inside Ω with the property that for any point \boldsymbol{x} on Γ , **Lemma 2.** Consider an unstructured mesh X of diameter h on Ω . Consider a

$$\|\tilde{\boldsymbol{x}}_i - \bar{\boldsymbol{x}}_i\| \le h \frac{F_2}{F_1} = h\Upsilon.$$
(4)

 $NF(\boldsymbol{x_i}) = \left\{ (\boldsymbol{x_j}, \boldsymbol{x_k}) \in AF \mid \exists \tilde{\boldsymbol{x}} \text{ on } (\boldsymbol{x_j}, \boldsymbol{x_k}) \text{ s.t. } \| \tilde{\boldsymbol{x}} - \boldsymbol{x_i} \| \leq h \frac{F_2}{F_1} \right\}$

AcceptedFront, Considered Nodes, and NearFront.

OUMs for Anisotropic Optimal Trajectories.

General OUM (Sethian and AV, 2001)

- non-iterative (complexity $O(\Upsilon M \log M)$ on a fixed grid);
- order of convergence depends on a particular simplex-update formula;
- speed up through localizing Υ ;
- no extra cost for high inhomogeneity of f;
- extended to hybrid control & a class of quasi-linear PDEs;
- relaxation of small-time-controllability condition.

$$f(x, y, \boldsymbol{a}) = \phi(\theta_{\boldsymbol{a}}) \left(1 + (\nabla g(x, y) \cdot \boldsymbol{a})^2\right)^{-\frac{1}{2}}$$

Traveling on a surface:

 $\phi_w(\theta) = \sin^6(\theta) + 0.1,$

 $\phi_s(\theta) = 2\sin^{40}(\theta) + 0.1$

 $\max_{\boldsymbol{a} \in S_1} \left\{ (\nabla u(\boldsymbol{x}) \cdot \boldsymbol{a}) f(\boldsymbol{x}, \boldsymbol{a}, u(\boldsymbol{x})) \right\} = 1$

$$f_{wm}(\boldsymbol{y}, \boldsymbol{a}, t) = f_w(\boldsymbol{y}, \boldsymbol{a})\psi(t) \qquad (\text{e.g., } \psi(t) = 1 + \frac{1}{2}\sin\left(\frac{t\,\pi}{20}\right))$$

Walking & mood swings (weather changes in SF?).

OUM for Hybrid Optimal Control.

Discrete links (change in continuous state, change in dynamics) :

 $L_{\text{to}}(\boldsymbol{x_i}) = \{ \text{ nodes, to which there is a discrete transition from } \boldsymbol{x_i} \}$

Assumption : cardinality of $L_{to}(\boldsymbol{x}_i)$ is uniformly bounded by some constant d. Discretized equation for the value function :

$$U(\boldsymbol{x_i}) = \min\left\{\min_{s \in S(\boldsymbol{x_i})} V_s(\boldsymbol{x_i}), \min_{\boldsymbol{x_r} \in L_{to}(\boldsymbol{x_i})} \{U_r + C_{ir}\}\right\}$$

Merging discrete and continuous *causality principles* :

$$LA_{to}(\boldsymbol{x_i}) = L_{to}(\boldsymbol{x_i}) \bigcap Accepted$$

The resulting update formula :

$$U(\boldsymbol{x_i}) = \min \left\{ \min_{(\boldsymbol{x_j}, \boldsymbol{x_k}) \in NF(\boldsymbol{x_i})} V_{j,k}(\boldsymbol{x_i}), \min_{\boldsymbol{x_r} \in LA_{to}(\boldsymbol{x_i})} \{U_r + C_{ir}\} \right\}$$

The resulting computational complexity : $O((\Upsilon + d)M \log M)$ on a fixed grid.

Hybrid Dynamics: walking AND/OR catching a bus.

Struggling with a "flow".

"Flow":
$$b(x, y) = \frac{-.9\sin(4\pi x)\sin(4\pi y)}{\sqrt{x^2 + y^2}} \begin{bmatrix} x \\ y \end{bmatrix}$$
.

 $\Upsilon = 19.$

$$y'_1(t) = y_2(t);$$
 $y'_2(t) = a(t);$ $a(t) \in [-\phi(t), \phi(t)].$

Seismic Imaging: multi-layer "model".

curves $y_i(x) = C(x) + b_i$. **Computational domain:** a square $[-a, a] \times [-a, a]$, split into n layers by the

$$\mathcal{I}(x) = A\sin\left(\frac{r\pi x}{a} + \beta\right)$$

- A is the amplitude of the sinusoidal profile;
- r is the number of periods;
- β is the phase offset.

smaller axis (of length $2F_1$) normal to the curve. ellipse with the bigger axis (of length $2F_2$) tangential to the curve C(x) and the In each layer, the anisotropic speed profile S_f is given at every point (x, y) by an

• F_1 and F_2 are constants in each layer.

... & the last slide.

to build efficient computational methods *Causality* in the original problem should always be used

- Discretizations sometimes have worse causal properties than the original PDEs.
- Explicit causality is the easiest to exploit.
- But raising dimensionality just to ensure (explicit) causality is rarely a lower-dimensional domain. worthwhile. It is typically much better to use non-explicit causality in
- Label-Setting type methods can be built to exploit monotone causality.
- Label-Correcting type methods aim to do the same, but can speed up convergence even in some not-fully-causal problems.
- Carefully selected benchmarks and tests are needed for

a comprehensive comparison of various "Fast" Methods.