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Related equations

Related equation /1

Eikonal equation {
c(x)|∇u(x)| = 1 , x ∈ Rn\Γ0

u(x) = 0 , x ∈ Γ0

Kružkov transform: Defining v = 1− e−u (v ∈ [0, 1]){
v(x) + max

a∈B(0,1)
{c(x)a · ∇v(x)} = 1 , x ∈ Rn\Γ0

v(x) = 0 , x ∈ Γ0

Anisotropic eikonal equation

v(x) + max
a∈B(0,1)

{c(x , a)a · ∇v(x)} = 1 , x ∈ Rn\Γ0
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Related equations

Related equation /2

Hamilton-Jacobi-Bellman equation

v(x) + max
a∈A
{−f (x , a) · ∇v(x)} = 1 , x ∈ Rn\Γ0

Hamilton-Jacobi-Isaacs equation

v(x) + min
b∈B

max
a∈A
{−f (x , a, b) · ∇v(x)} = 1 , x ∈ Rn\Γ0
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Related equations

Remarks

All these equations share some properties:

Information propagates from Γ0 to the rest of the space along
characteristics.

The solution v (or u) is increasing along characteristics.

The t-level set Γt = {x : u(x) = t} can be interpreted as an
expanding front at time t.

E. Cristiani (2011) Two new OUMs for HJ equations February 13–18, 2011 5 / 30



Related equations

Remarks

All these equations share some properties:

Information propagates from Γ0 to the rest of the space along
characteristics.

The solution v (or u) is increasing along characteristics.

The t-level set Γt = {x : u(x) = t} can be interpreted as an
expanding front at time t.

E. Cristiani (2011) Two new OUMs for HJ equations February 13–18, 2011 5 / 30



Related equations

Remarks

All these equations share some properties:

Information propagates from Γ0 to the rest of the space along
characteristics.

The solution v (or u) is increasing along characteristics.

The t-level set Γt = {x : u(x) = t} can be interpreted as an
expanding front at time t.

E. Cristiani (2011) Two new OUMs for HJ equations February 13–18, 2011 5 / 30



Related equations

Remarks

All these equations share some properties:

Information propagates from Γ0 to the rest of the space along
characteristics.

The solution v (or u) is increasing along characteristics.

The t-level set Γt = {x : u(x) = t} can be interpreted as an
expanding front at time t.

E. Cristiani (2011) Two new OUMs for HJ equations February 13–18, 2011 5 / 30



The Fast Marching method and its limitations

The Fast Marching method
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The Fast Marching method and its limitations

Limitations of FM method

The FM method accepts the node Xmin = arg min
X∈NB

{u(X )} and enlarges

the NB starting from that point.

⇒ The solution is computed following the gradient flow instead of the
characteristic flow as required.

⇒ The FM works only for hyperbolic equations such that the gradient and
the characteristic flow lie on the same simplex (f.e. the eikonal equation).
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The Fast Marching method and its limitations

The FM method fails: an example

Anisotropic eikonal equation in R2

c(x , y , a1, a2) =
1√

1 + (λa1 + µa2)2
, (a1, a2) ∈ B2(0, 1) , Γ0 = (0, 0)

Solution: u(x , y) =
√

(1 + λ2)x2 + (1 + µ2)y 2 + 2λµxy

λ = 5 , µ = 5
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The Buffered Fast Marching method
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The Buffered Fast Marching method The algorithm

Buffered Fast Marching: main idea

In the BFM method the node in NB with the minimum value is not
directly accepted but it is moved into a buffer region BUF . The node exits
the buffer only when another accepting condition is satisfied.

The minimal buffer size needed to accept at least one node depends on
the anisotropy of the problem.
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The Buffered Fast Marching method The algorithm

New condition to accept nodes

−→ v with v(ΓNB) and v(ΓACC ) unchanged,
−→ v0 with v(ΓNB) = 0 and v(ΓACC ) unchanged,
−→ v1 with v(ΓNB) = 1 and v(ΓACC ) unchanged.

new accepted nodes = {X ∈ BUF : v(X ) = v0(X ) = v1(X )}.
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The Buffered Fast Marching method The algorithm

BFM Algorithm

Modifications for the real algorithm

1 We remove from BUF and label as ACC the nodes whose value is changed
less than a given tolerance ε.

2 v = 0 is substituted by vmin = minNB{v}.
3 v1 is not computed.
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The Buffered Fast Marching method Numerical experiments

Test 1: Anisotropic front propagation
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The Buffered Fast Marching method Numerical experiments

Test 1: Anisotropic front propagation

The L1 error is computed with respect to the solution of the iterative
algorithm accelerated by the Fast Sweeping method.

method nodes ∆x ε L1 error CPU time (sec)

IT (FS) 1002 0.04 – – 2.49

BFM 1002 0.04 10−3 0.01 0.45

FM 1002 0.04 – 1.02 0.09

IT (FS) 2002 0.02 – – 13.55

BFM 2002 0.02 10−3 0.02 1.67

FM 2002 0.02 – 1.01 0.4
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The Buffered Fast Marching method Numerical experiments

Test 2: Lunar landing

Γ0 = (0, 0) , f (x , y , a) = (y , a) , a ∈ {−1, 1}

ITER BFM FM
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The Buffered Fast Marching method Numerical experiments

Test 2: Lunar landing

The L1 error is computed with respect to the solution of the iterative
algorithm accelerated by the Fast Sweeping method.

method nodes ∆x ε L1 error CPU time (sec)

IT (FS) 1002 0.1 – – 0.67

BFM 1002 0.1 10−4 0.07 0.15

FM 1002 0.1 – 3.21 0.02

IT (FS) 2002 0.05 – – 3.91

BFM 2002 0.05 10−5 0.05 2.05

FM 2002 0.05 – 6.11 0.11
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The Buffered Fast Marching method Numerical experiments

Test 3: Differential games with state constraints

f (x , y , a, b) = (2a, b), a ∈ [−1, 1], b ∈ [−1, 1]

EXACT BFM FM
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The Progressive Fast Marching method
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The Progressive Fast Marching method The algorithm

Progressive Fast Marching: main idea

The PFM method is inspired by the BFM, but it is kept local. The node
to be accepted is found by means of computations which involve only the
nodes in NB and in NB’s first neighbours NBN.
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The Progressive Fast Marching method The algorithm

The algorithm /1

1. Solve the equation in NB iteratively until all values stabilize (⇒ at
least one node has the ”exact” value).

2. Find vmin = minX∈NB{v(X )}.
3. The value vmin is assigned to the nodes in NBN.
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The Progressive Fast Marching method The algorithm

The algorithm /2

4. Re-solve the equation in NB and compare new and old values.
5. If vnew (X ) 6= vold(X ) for all X ∈ NB it means that now all the values

of the nodes in NB do not depend on ACC zone, and this is
impossible because of step 1. Then, we slightly increment the value
vmin and repeat the procedure until a node Y ∈ NB satisfies
vnew (Y ) = vold(Y ).

6. The node Y is labelled as ACC .
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The Progressive Fast Marching method The algorithm

Some comments

To our knowledge PFM method is the only one able to find the
correct order of acceptance, keeping the computation local.

PFM method recovers standard FM method when solving the eikonal
equation.

More than one node per iteration can be accepted, as in
Characteristic FM and Group FM methods.
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The Progressive Fast Marching method Numerical experiments

Test 1: anisotropic front propagation

Anisotropic eikonal equation in R2

c(x , y , a1, a2) =
1√

1 + (λa1 + µa2)2
, (a1, a2) ∈ B2(0, 1) , Γ0 = (0, 0)

Solution: u(x , y) =
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The Progressive Fast Marching method Numerical experiments

Test 2: Zermelo navigation problem

Γ0 = (0, 0) , f (x , y , a) = 2.1a + (2, 0) , a ∈ B2(0, 1)
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The Progressive Fast Marching method Numerical experiments

Test 3: differential games with state constraints

f (x , y , a, b) = (2a, b), a ∈ [−1, 1], b ∈ [−1, 1]
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The Progressive Fast Marching method Numerical experiments
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