A Generalized Fast Marching Method on Unstructured Grids

E.Carlini
joint work with M.Falcone, P.Hoch

Università Sapienza di Roma
Dip.Matematica
Advancing numerical methods for viscosity solutions and applications

Banff, 14-18 February 2011

Outline

- The model problem
- The Generalized Fast Marching Method (GFMM)
- GFMM on Unstructured grids
- Properties and Numerical simulations

Propagation of front: level set approach

The curve

$$
\Gamma_{t}=\left\{(x, y) \in \mathbb{R}^{2}, v(x, y, t)=0\right\}
$$

moves with normal velocity c, if the function v solves the PDE

$$
\begin{cases}v_{t}=c(x, y, t)|D v| & \mathbb{R}^{2} \times(0, T) \\ v(x, y, 0)=\operatorname{dist}\left(x, y, \Gamma_{0}\right) . & \end{cases}
$$

in the class of continuous viscosity solutions. Ref. Crandall, Lions, Evans, Ishii, etc...

Some references

- $c(x, y)>0$

Fast Marching Method
(Tsitsiklis 95, Sethian 96)

- $c(x, y) \geq 0$

Semi-Lagrangian Fast Marching Methods
(Falcone, Cristiani 05)

- $c(x, y, t)>0$

Ordered Upwind Method
(Sethian, Vladimirsky 01)

- non-signed $c(x)$

Bidirectional Fast Marching Method
(Chopp 09)

- non-signed $c(x, y, t)$

Generalized Fast Marching Method (C., Falcone, Forcadel, Monneau 08)

A Generalized Fast Marching Method (GFMM)

AIM: to extend the FMM to the case $c(x, y, t)$ non signed.

ADVANTAGE:

1. no need of techniques of reinitialization, in case of small gradient of the solution
2. no need of extension of the speed on all the numerical domain
3. complexity $O(N \log N)$ in case of smooth speed c

TOOL : an auxiliary discontinuous function $\theta(x, y, t)$ to track the front.

Non monotone evolution

If the speed function is NOT always positive then the crossing time $u(x, y)$ is NOT single-valued function.
Then we decide to use a discontinuous function to follow the position of the front

$$
\theta(x, y, t)=\left\{\begin{array}{lll}
1 & \text { if } & x, y \in \Omega_{t} \\
-1 & \text { if } & x, y \notin \Omega_{t} .
\end{array}\right.
$$

and to solve locally in time the stationary equation for the time evolution

$$
\begin{cases}\left|c\left(x, y, t_{n}\right)\right||D u(x, y)|=1 & N B_{n} \\ u(x, y)=\widehat{u}(x, y) & \partial N B_{n}\end{cases}
$$

GFMM on UNSTRUCTURED meshes: local solver

GFMM on UNSTRUCTURED meshes: local solver

The neighborhood of the node i, is the set of nodes defined

$$
V(i)=\{N(i, l), l \in \mathcal{V}(i)\}
$$

$N(i, j)$ is the global index of j-th neighboring vertex with $j \in \mathcal{V}(i)=\left\{1, \ldots, \mathcal{N}_{v}(i)\right\}$
$\mathcal{N}_{v}(i)$ is the number of neighboring vertexes of the node i.

GFMM on UNSTRUCTURED meshes: local solver

We suppose there exists a $\gamma_{0}>0$ s.t. for any mesh

$$
\gamma_{0} \leq \frac{h_{\min }}{h_{\max }} \leq 1
$$

where $h_{\max }:=\max \left\{\left|l_{i j}\right|, i, j \in\left\{1, \ldots, \mathcal{N}_{v}\right\}\right\}$,
$h_{\text {min }}:=\min \left\{\left|l_{i j}\right|, i, j \in\left\{1, \ldots, \mathcal{N}_{v}\right\}\right\}$
and $l_{i j}$ is the edge connecting vertex i to vertex j.

GFMM on UNSTRUCTURED mesh

Local problem

$$
|D u(x)|=\frac{1}{\left|c\left(x_{i}, t_{n}\right)\right|} \quad \text { in } \quad D_{i}
$$

where D_{i} is:

General local solver
$\left.Q\left(x_{i}, u_{i},\left\{u_{N(i, j)}, u_{N(i, j+1)}\right\}_{j \in \mathcal{V}(i)}\right\}\right)=\frac{1}{\left|c\left(x_{i}, t_{n}\right)\right|} \quad i \in\left\{1, \ldots, \mathcal{N}_{v}\right\}$.

Properties Local Solver: Consistency

(H1)

For any $\psi \in C^{2}\left(\mathbb{R}^{2}\right)$, let us denote by $\psi_{i}:=\psi\left(x_{i}\right)$ for any $i \in\left\{1 \ldots \mathcal{N}_{v}\right\}$ and consider true the following assumptions:

$$
\lim _{m \rightarrow \infty} Q\left(x_{i_{m}}, \psi_{i_{m}},\left\{\psi_{N\left(i_{m}, j_{m}\right)}, \psi_{N\left(i_{m}, j_{m}+1\right)}\right\}_{j_{m} \in \mathcal{V}\left(i_{m}\right)}\right)=|D \psi(x)|
$$

where m is an index of refinement for a family of grids $\left\{\mathcal{M}_{m}^{T}\right\}_{m \geq 0}$ and $\left(x_{i_{m}}\right) \in \mathcal{M}_{m}^{T}$ is a sequence of nodes such that for $m \rightarrow \infty$

$$
\left(h_{\max }\right)_{m} \rightarrow 0 \quad \text { and } \quad x_{i_{m}} \rightarrow x
$$

Properties Local Solver: Monotonicity

(H2)

Let us suppose $u_{i} \leq \psi_{i}$ and define
$\mathcal{C}(i):=\left\{j \in \mathcal{V}(i)\right.$, s. t. $\left.u_{N(i, j)} \geq \psi_{N(i, j)}, u_{N(i, j+1)} \geq \psi_{N(i, j+1)}\right\}$ then

$$
\begin{array}{r}
Q\left(x_{i}, u_{i},\left\{u_{N(i, j)}, u_{N(i, j+1)}\right\}_{j \in \mathcal{C}(i)}\right) \leq \\
Q\left(x_{i}, \psi_{i},\left\{\psi_{N(i, j)}, \psi_{N(i, j+1)}\right\}_{j \in \mathcal{C}(i)}\right) .
\end{array}
$$

Properties Local Solver

(H3)

$$
\frac{K}{h_{\max }} \leq Q\left(x_{i}, w,\{w, w-K\}\right) \leq \frac{K}{h_{\min }}
$$

for any positive constant K, for any $w \in \mathbb{R}$.

Properties Local Solver

(H4) Let $\mathcal{I}(i), \mathcal{J}(i)$ two set of indices, s.t.

$$
\mathcal{I}(i) \subset \mathcal{J}(i),
$$

then

$$
\begin{aligned}
& Q\left(x_{i}, u_{i},\left\{u_{N(i, j)}, u_{N(i, j+1)}\right\}_{j \in \mathcal{I}(i)}\right) \leq \\
& Q\left(x_{i}, u_{i},\left\{u_{N(i, j)}, u_{N(i, j+1)}\right\}_{j \in \mathcal{J}(i)}\right) .
\end{aligned}
$$

Example of Local Solver

1. Local problem

$$
\begin{cases}|D u(x)|=\frac{1}{\left|c\left(x_{i}, t_{n}\right)\right|} & x \in D_{i} \\ u(x)=u_{h}(x) & x \in \partial D_{i}\end{cases}
$$

with u_{h} linear function, affine when restricted to a simplex.
2. The Hopf-Lax formula :

$$
u\left(x_{i}\right)=\min _{y \in \partial D_{i}}\left(u_{h}(y)+\frac{\left|x_{i}-y\right|}{\left|c\left(x_{i}, t_{n}\right)\right|}\right)
$$

Example of Local Solver: Semi-Lagrangian

From the Hopf-Lax formula

$$
\max _{y \in \partial D_{i}}\left(\frac{u\left(x_{i}\right)-u_{h}(y)}{\left|x_{i}-y\right|}\right)=\frac{1}{\left|c\left(x_{i}, t_{n}\right)\right|}
$$

and since u_{h} is affine on each simplex:
$Q\left(x_{i}, u\left(x_{i}\right),\left\{u_{N(i, j)}, u_{N(i, j+1)}\right\}_{j \in \mathcal{V}(i)}\right)=$ $\max _{j \in \mathcal{V}(i)} \max _{0 \leq \xi \leq 1}\left(\frac{u_{i}-(1-\xi) u_{N(i, j+1)}-\xi u_{N(i, j)}}{\left|\tau_{i, j}(\xi)\right|}\right)$

Ref. Sethian Vladimirsky(2006)

Example of Local Solver: Bornemann-Rash

Since u_{h} is an affine function on each simplex:

$$
u\left(x_{i}\right)=\min _{j \in \mathcal{V}(i)} \min _{y \in\left[y_{i}, z_{i}\right]}\left(u_{h}(y)+\frac{\left|x_{i}-y\right|}{\left|c\left(x_{i}, t_{n}\right)\right|}\right)=\min _{j \in \mathcal{V}(i)}\left(u_{j}^{*}\right)
$$

Example of Local Solver: Bornemann-Rash

Since u_{h} is an affine function on each simplex:

$$
u\left(x_{i}\right)=\min _{j \in \mathcal{V}(i)} \min _{y \in\left[y_{i}, z_{i}\right]}\left(u_{h}(y)+\frac{\left|x_{i}-y\right|}{\left|c\left(x_{i}, t_{n}\right)\right|}\right)=\min _{j \in \mathcal{V}(i)}\left(u_{j}^{*}\right)
$$

Example of Local Solver: Bornemann-Rash

Since u_{h} is an affine function on each simplex:

$$
u\left(x_{i}\right)=\min _{j \in \mathcal{V}(i)} \min _{y \in\left[y_{i}, z_{i}\right]}\left(u_{h}(y)+\frac{\left|x_{i}-y\right|}{\left|c\left(x_{i}, t_{n}\right)\right|}\right)=\min _{j \in \mathcal{V}(i)}\left(u_{j}^{*}\right)
$$

and defining $\Delta=\frac{\left(u_{h}\left(z_{i}\right)-u_{h}\left(y_{i}\right)\right)}{\left|z_{i}-y_{i}\right|}$,

$$
\begin{gathered}
u_{h}(y)=u_{h}\left(y_{i}\right)+\Delta\left|y-y_{i}\right|=u_{h}\left(z_{i}\right)-\Delta\left|y-z_{i}\right| \\
u_{j}^{*}=u_{h}\left(y_{i}\right)+\min _{y \in\left[y_{i}, z_{i}\right]}\left(\Delta\left|y-y_{i}\right|+\frac{\left|x_{i}-y\right|}{\left|c\left(x_{i}, t_{n}\right)\right|}\right)
\end{gathered}
$$

Example of Local Solver: Bornemann-Rash

By geometric argument, the min can be expliclty evaluated

$$
u_{j}^{*}=u_{h}\left(y_{i}\right)+\min _{y \in\left[y_{i}, z_{i}\right]}\left(\Delta\left|y-y_{i}\right|+\frac{\left|x_{i}-y\right|}{\left|c\left(x_{i}, t_{n}\right)\right|}\right)
$$

Defining $\cos (\delta)=\Delta$, if $|\Delta| \leq 1$, we get

Example of Local Solver: Bornemann-Rash

By geometric argument, the min can be expliclty evaluated

$$
u_{j}^{*}=u_{h}\left(y_{i}\right)+\min _{y \in\left[y_{i}, z_{i}\right]}\left(\Delta\left|y-y_{i}\right|+\frac{\left|x_{i}-y\right|}{\left|c\left(x_{i}, t_{n}\right)\right|}\right)
$$

Defining $\cos (\delta)=\Delta$, if $|\Delta| \leq 1$, we get

Example of Local Solver: Bornemann-Rash

By geometric argument, the min can be expliclty evaluated

$$
u_{j}^{*}=u_{h}\left(y_{i}\right)+\min _{y \in\left[y_{i}, z_{i}\right]}\left(\Delta\left|y-y_{i}\right|+\frac{\left|x_{i}-y\right|}{\left|c\left(x_{i}, t_{n}\right)\right|}\right)
$$

Defining $\cos (\delta)=\Delta$, if $|\Delta| \leq 1$, we get

Example of Local Solver: Bornemann-Rash

By geometric argument, the min can be expliclty evaluated

$$
u_{j}^{*}=u_{h}\left(y_{i}\right)+\min _{y \in\left[y_{i}, z_{i}\right]}\left(\Delta\left|y-y_{i}\right|+\frac{\left|x_{i}-y\right|}{\left|c\left(x_{i}, t_{n}\right)\right|}\right)
$$

Defining $\cos (\delta)=\Delta$, if $|\Delta| \leq 1$, we get
$u_{j}^{*}= \begin{cases}u_{h}\left(y_{i}\right)+\frac{\left|y_{i}-x_{i}\right|}{\left|c\left(x_{i}, t_{n}\right)\right|}, & \cos (\alpha)<\Delta, \\ u_{h}\left(y_{i}\right)+\cos (\delta-\alpha) \frac{\left|y_{i}-x_{i}\right|}{\left|c\left(x_{i}, t_{n}\right)\right|}, & -\cos (\beta) \leq \Delta \leq \cos (\alpha), \\ u_{h}\left(z_{i}\right)+\frac{\left|z_{i}-x_{i}\right|}{\left|c\left(x_{i}, t_{n}\right)\right|}, & \Delta<-\cos (\beta) .\end{cases}$

Ref. Kimmel and Sethian (1998), Bornemann-Rash(2005)

GFMM on UNSTRUCTURED meshes

We introduce an auxiliary discrete function

$$
\theta_{i}^{n}= \begin{cases}1 & \text { if } x_{i} \in \Omega_{n} \\ -1 & \text { otherwise }\end{cases}
$$

We give a slightly different definition, of the two phases:
Definition

$$
\Theta_{ \pm}^{n} \equiv\left\{i: \theta_{i}^{n}= \pm 1 \text { and } \exists j \in V(i) \text { such that } \theta_{j}^{n}= \pm 1\right\}
$$

Note: isolated nodes:

$$
I N_{ \pm}^{n} \equiv\left\{i: \theta_{i}^{n}= \pm 1 \text { and } \theta_{j}^{n}=\mp 1 \text { for all } j \in V(i)\right\}
$$

An isolated node can only change its phase but it can not contribute to change the phase of its neighboring.

GFMM on UNSTRUCTURED meshes

GFMM on UNSTRUCTURED meshes

We define

- the fronts $F_{ \pm}^{n}$

$$
F_{+}^{n} \equiv V\left(\Theta_{-}^{n}\right) \backslash \Theta_{-}^{n}, \quad F_{-}^{n} \equiv V\left(\Theta_{+}^{n}\right) \backslash \Theta_{+}^{n}
$$

GFMM on UNSTRUCTURED meshes

- the Narrow Bands $N B_{ \pm}^{n}$

$$
N B_{+}^{n}=F_{+}^{n} \cap\left\{i, \hat{c}_{i}^{n}<0\right\}, \quad N B_{-}^{n}=F_{-}^{n} \cap\left\{i, \hat{c}_{i}^{n}>0\right\} .
$$

GFMM on UNSTRUCTURED meshes

- the Useful nodes for $i \in N B_{ \pm}^{n}$

$$
\mathcal{U}^{n}(i)=\left\{j \in V(i), j \in \Theta_{\mp}^{n}\right\}, \quad \mathcal{U}^{n}=\bigcup_{i \in N B^{n}} \mathcal{U}^{n}(i)
$$

GFMM on Unstructured Meshes

Initialization

- Initialization of the matrix θ^{0}

$$
\theta_{i}^{0}= \begin{cases}1 & x_{i} \in \Omega_{0} \\ -1 & x_{i} \notin \Omega_{0}\end{cases}
$$

- Initialization of the time on the front
$u_{i}^{0}=0$ for all $i \in \mathcal{U}^{0}$
- $n=1$

GFMM on Unstructured Mesh

Main Cycle
1 Compute the time \tilde{u}_{i}^{n-1} in the $N B_{+}^{n-1}$ and $N B_{-}^{n-1}$ using a local solver

$$
Q\left(x_{i}, \tilde{u}_{i}^{n-1},\left\{u_{N(i, j)}^{n-1}, u_{N(i, j+1)}^{n-1}\right\}_{j \in V(i)}\right)=\frac{1}{\left|c\left(x_{i}, t_{n}\right)\right|}
$$

using respectively the values u^{n-1} defined on $\mathcal{U}^{n-1} \cap F_{-}^{n-1}$ or $\mathcal{U}^{n-1} \cap F_{+}^{n-1}$.
2 Compute the minimal time $\widetilde{t}_{n}=\min \left\{\tilde{u}^{n-1}, i \in N B_{ \pm}^{n-1}\right\}$
$3 t_{n}=\max \left\{t_{n-1}, \min \left\{\widetilde{t}_{n}, t_{n-1}+\Delta t\right\}\right.$
4 if $t_{n}<\widetilde{t}_{n}$ go to 1

GFMM on Unstructured Mesh

Main Cycle
5 Initialize the new accepted points

$$
N A_{ \pm}^{n}=\left\{i \in N B_{ \pm}^{n-1} u_{i}^{n}=\widetilde{t}_{n}\right\}
$$

6 Update θ^{n}

$$
\theta_{i}^{n}= \begin{cases}-\theta_{i}^{n-1} & \text { for } i \in N A^{n} \\ \theta_{i}^{n-1} & \text { elsewhere }\end{cases}
$$

7 Update $F_{ \pm}^{n}$ and $N B_{ \pm}^{n}$
8 If $i \in \mathcal{U}^{n}$ then

- if $i \notin \mathcal{U}^{n-1}$ or $i \in N A^{n}$, then $u_{i}^{n}=t_{n}$.
- if $i \in \mathcal{U}^{n-1} \backslash N A^{n}$, then $u_{i}^{n}=u_{i}^{n-1}$.

9 Remove isolated points If $i \in I N^{n}$ and $i \in I N^{n-1}$ then $\theta_{i}^{n}=-\theta_{i}^{n-1}$
$10 n:=n+1$ and go to 1

Non constant time step!

The time step $\Delta t_{n}=t_{n+1}-t_{n}$ is not constant and we can actually have:

1. $\Delta t_{n} \gg 1$ too large time step
2. $\Delta t_{n}<0$ not increasing time

To avoid case 1. we choose

$$
\widehat{t}_{n} \equiv t_{n}+\Delta t
$$

and to avoid case 2.

$$
t_{n}=t_{n-1} .
$$

Then one always gets

$$
0 \leq \Delta t_{n}<\Delta t
$$

If case 1) occurs: do not advance the front!

GFMM on UNSTRUCTURED MESH: Definition of $\theta^{\epsilon}(x, t)$

$\left\{t_{k_{n}}, n \in \mathbb{N}\right\}$ is a strictly increasing subsequence of $\left(t_{n}\right)_{n}$ such that

$$
t_{k_{n-1}}<t_{k_{n}}<t_{k_{n+1}} .
$$

Extension of $\left(\theta_{i}^{n}\right)_{n, i}$ on the continuous time interval $[0, T]$

$$
\theta\left(x_{i}, t\right)=\theta_{i}^{k_{n+1}-1} \quad \text { if }\left(x_{i}, t\right) \in\left\{x_{i}\right\} \times\left[t_{k_{n}}, t_{k_{n+1}}[\right.
$$

(Same extension on structured grids.)

GFMM on UNSTRUCTURED MESH: Definition of $\theta^{\epsilon}(x, t)$

Let $\epsilon=\left(h_{\text {max }}, \Delta t\right)$ and $\theta^{\epsilon}(x, t)$ be an extension of $\left(\theta\left(x_{i}, t_{n}\right)\right)_{i}$ on a continuous domain Ω of \mathbb{R}^{2}

- $\theta=1$, • $\theta=-1$

(Different than structured grids!)

GFMM on UNSTRUCTURED MESH: Definition of $\theta^{\epsilon}(x, t)$

Let $\epsilon=\left(h_{\text {max }}, \Delta t\right)$ and $\theta^{\epsilon}(x, t)$ be an extension of $\left(\theta\left(x_{i}, t_{n}\right)\right)_{i}$ on a continuous domain Ω of \mathbb{R}^{2}

- $\theta=1$, • $\theta=-1$

GFMM on UNSTRUCTURED MESH: Definition of $\theta^{\epsilon}(x, t)$

Let $\epsilon=\left(h_{\max }, \Delta t\right)$ and $\theta^{\epsilon}(x, t)$ be an extension of $\left(\theta\left(x_{i}, t_{n}\right)_{i}\right)$ on a continuous domain Ω of \mathbb{R}^{2}

- $\theta=1$, • $\theta=-1$

Convergence result

Theorem (C., Falcone, Hoch)

Let $c(x, t)$ be globally Lipschitz continuous in space and time, the initial set Ω_{0} be with piece wise smooth boundary then

$$
\bar{\theta}^{0}(x, t)=\limsup _{\epsilon \rightarrow 0, z \rightarrow x, s \rightarrow t} \theta^{\epsilon}(z, s)
$$

(resp. $\left.\underline{\theta}^{0}(x, t)=\liminf _{\epsilon \rightarrow 0, z \rightarrow x, s \rightarrow t} \theta^{\epsilon}(z, s)\right)$ is a viscosity sub-solution (resp. super-solution) of the problem

$$
\begin{cases}\theta_{t}=c(x, y, t)|D \theta| & \mathbb{R}^{2} \times(0, T) \\ \theta=1_{\Omega_{0}}-1_{\Omega_{0}^{c}} & \mathbb{R}^{2} .\end{cases}
$$

Skip Proof

Idea of the proof

By contradiction, assume that there are $\left(x_{0}, t_{0}\right)$ and $\varphi \in C^{2}$ such that $\left(\bar{\theta}^{0}\right)-\varphi$ reaches a strict maximum $\left(x_{0}, t_{0}\right)$ with $\left(\bar{\theta}^{0}\right)\left(x_{0}, t_{0}\right)=\varphi\left(x_{0}, t_{0}\right)=1$ and

$$
\varphi_{t}\left(x_{0}, t_{0}\right)>c\left(x_{0}, t_{0}\right)\left|D \varphi\left(x_{0}, t_{0}\right)\right|,
$$

Idea of the proof

By contradiction, assume that there are $\left(x_{0}, t_{0}\right)$ and $\varphi \in C^{2}$ such that $\left(\bar{\theta}^{0}\right)-\varphi$ reaches a strict maximum $\left(x_{0}, t_{0}\right)$ with $\left(\bar{\theta}^{0}\right)\left(x_{0}, t_{0}\right)=\varphi\left(x_{0}, t_{0}\right)=1$ and

$$
\varphi_{t}\left(x_{0}, t_{0}\right)>c\left(x_{0}, t_{0}\right)\left|D \varphi\left(x_{0}, t_{0}\right)\right|,
$$

If $\left|D \varphi\left(x_{0}, t_{0}\right)\right| \neq 0$, there exists $\alpha>0$ s.t.

$$
\varphi_{t}\left(x_{0}, t_{0}\right)=\alpha+c\left(x_{0}, t_{0}\right)\left|D \varphi\left(x_{0}, t_{0}\right)\right|=\bar{c}\left|D \varphi\left(x_{0}, t_{0}\right)\right|
$$

with $\bar{c}>c\left(x_{0}, t_{0}\right)$

Idea of the proof

By contradiction, assume that there are $\left(x_{0}, t_{0}\right)$ and $\varphi \in C^{2}$ such that $\left(\bar{\theta}^{0}\right)-\varphi$ reaches a strict maximum $\left(x_{0}, t_{0}\right)$ with
$\left(\bar{\theta}^{0}\right)\left(x_{0}, t_{0}\right)=\varphi\left(x_{0}, t_{0}\right)=1$ and

$$
\varphi_{t}\left(x_{0}, t_{0}\right)>c\left(x_{0}, t_{0}\right)\left|D \varphi\left(x_{0}, t_{0}\right)\right|,
$$

By classical argument, $\exists\left(x_{\epsilon}, t_{\epsilon}\right) \rightarrow\left(x_{0}, t_{0}\right)$ as $\epsilon \rightarrow 0$ s.t.

$$
\left.\left.\max \left(\left(\theta^{\epsilon}\right)^{*}-\varphi\right)\right)=\left(\left(\theta^{\epsilon}\right)^{*}-\varphi\right)\right)\left(x_{\epsilon}, t_{\epsilon}\right)=0
$$

where

$$
\left(\theta^{\epsilon}\right)^{*}(x, t)=\limsup _{z \rightarrow x, s \rightarrow t} \theta^{\epsilon}(z, s)
$$

Idea of the proof

- $c\left(x_{0}, t_{0}\right)>0$

Since $\varphi_{t}\left(x_{0}, t_{0}\right)>0$ (by the property of φ and the $\left.\left(\theta^{\epsilon}\right)^{*}\right) \Rightarrow$

$$
\theta_{i}^{n-1}=-1, \quad \theta_{i}^{n}=1
$$

where $\left(x_{i}, t_{n}\right) \in B_{r}\left(x_{0}, t_{0}\right)$

Idea of the proof

- $c\left(x_{0}, t_{0}\right)>0$

Since $\varphi_{t}\left(x_{0}, t_{0}\right)>0$ (by the property of φ and the $\left.\left(\theta^{\epsilon}\right)^{*}\right) \Rightarrow$

$$
\theta_{i}^{n-1}=-1, \quad \theta_{i}^{n}=1
$$

where $\left(x_{i}, t_{n}\right) \in B_{r}\left(x_{0}, t_{0}\right)$
and (by the Implicit Function theorem) there exists a function Ψ s.t.

$$
\{\varphi(x, t) \geq 1\}=\{t \geq \Psi(x)\}
$$

then, since $\left(\theta^{\epsilon}\right)^{*}(x, t) \leq \varphi(x, t)$

$$
\left\{\left(\theta^{\epsilon}\right)^{*}(x, t)=1\right\} \subset\{t \geq \Psi(x)\}
$$

for any $(x, t) \in B_{r}\left(x_{0},, t_{0}\right)$

Idea of the proof

Then applying the local solver on the test function Ψ and numerical solution u, we obtain an absurd

$$
\bar{c}\left(x_{0}, t_{0}\right) \leq c\left(x_{0}, t_{0}\right)
$$

Idea of the proof: difficulty with unstructured grids Let us suppose φ is a test function s.t. $\varphi \geq\left(\theta^{\epsilon}\right)^{*}$ and $\varphi_{t}\left(x_{\epsilon}, t_{\epsilon}\right)>0$. Then

$$
\theta_{i}^{n-1}=-1, \quad \theta_{i}^{n}=1
$$

Back to proof

Idea of the proof: difficulty with unstructured grids

 Let us suppose φ is a test function s.t. $\varphi \geq\left(\theta^{\epsilon}\right)^{*}$ and $\varphi_{t}\left(x_{\epsilon}, t_{\epsilon}\right)>0$. Then$$
\theta_{i}^{n-1}=-1, \quad \theta_{i}^{n}=1
$$

Idea of the proof: difficulty with unstructured grids Then $\left\{\left(\theta^{\epsilon}\right)^{*}(x, t)=1\right\} \subset\{\varphi(x, t) \geq 1\}$

Idea of the proof: difficulty with unstructured grids

We would like to define a φ_{ϵ} such that $\varphi_{\epsilon}\left(x_{i}\right)=\varphi\left(x_{\epsilon}\right)$. But translations of φ on unstructured grids do not generally maintain the same definition of $\left(\theta^{\epsilon}\right)^{*}$!

$$
\{\varphi(x, t) \geq 1\}
$$

$$
x_{\epsilon}
$$

Numerical tests: rotating line
Speed $c(x, y, t)=x$

Hausdorff Error	
$h_{\max }$	$H\left(C^{e x}, C^{a p}\right)$
.04	0.0350906
.02	0.0169257
.01	0.00886822
.005	0.00436559

Numerical tests: evolution of one circles

Speed $c(x, y, t)=0.1 t-x$

Hausdorff Error	
$h_{\max }$	$H\left(C^{e x}, C^{a p}\right)$
0.08	0.0745711
0.04	0.0319709
0.02	0.0189972
0.01	0.0133406

Numerical tests: evolution of two circles

Speed $c(x, y, t)=1-t$

Increasing (left) and decreasing (right) evolution of two circles

Numerical tests: general domain

Speed $c(x, y, t)=x$

References

- E. Carlini, E. Cristiani, N. Forcadel, A non-monotone FM scheme modeling dislocation dynamics. Proceedings on ENUMATH 2005.
- E. Carlini, M. Falcone, N. Forcadel, R. Monneau, Convergence of a Generalized Fast Marching Method for an eikonal equation
with a velocity changing sign SIAM J.Num.Anal. (2008)
- N.Forcadel,

Comparison Principle for the Generalized Fast Marching Method. SIAM J.Num.Anal. (2009)

- E. Carlini, N. Forcadel, R. Monneau, Generalized Fast Marching Method for dislocation dynamics. Submitted SIAM J.Num.Anal.
- E. Carlini, M. Falcone, P. Hoch, A Generalized Fast Marching Method on Unstructured Grids In preparation.

