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Propagation of front: level set approach

The curve
Γt = {(x, y) ∈ R

2, v(x, y, t) = 0}

moves with normal velocity c, if the function v solves the PDE

{
vt = c(x, y, t)|Dv| R

2 × (0, T )

v(x, y, 0) = dist(x, y,Γ0).

in the class of continuous viscosity solutions.
Ref. Crandall, Lions, Evans, Ishii, etc...
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Some references

• c(x, y) > 0
Fast Marching Method
(Tsitsiklis 95, Sethian 96)

• c(x, y) ≥ 0
Semi-Lagrangian Fast Marching Methods
(Falcone, Cristiani 05)

• c(x, y, t) > 0
Ordered Upwind Method
(Sethian,Vladimirsky 01)

• non-signed c(x)
Bidirectional Fast Marching Method
(Chopp 09)

• non-signed c(x, y, t)
Generalized Fast Marching Method
(C., Falcone, Forcadel, Monneau 08)
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A Generalized Fast Marching Method (GFMM)

AIM: to extend the FMM to the case c(x, y, t) non signed.

ADVANTAGE :

1. no need of techniques of reinitialization, in case of small
gradient of the solution

2. no need of extension of the speed on all the numerical domain

3. complexity O(NlogN) in case of smooth speed c

TOOL : an auxiliary discontinuous function θ(x, y, t)
to track the front.



Outline The model problem A Generalized Fast Marching Method (GFMM) GFMM on Unstructured grids

Non monotone evolution

If the speed function is NOT always positive then the crossing time
u(x, y) is NOT single-valued function.
Then we decide to use a discontinuous function to follow the
position of the front

θ(x, y, t) =

{
1 if x, y ∈ Ωt,
−1 if x, y 6∈ Ωt.

and to solve locally in time the stationary equation for the time
evolution {

|c(x, y, tn)||Du(x, y)| = 1 NBn

u(x, y) = û(x, y) ∂NBn
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GFMM on UNSTRUCTURED meshes: local solver
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GFMM on UNSTRUCTURED meshes: local solver

The neighborhood of the node i, is the set of nodes defined

V (i) = {N(i, l), l ∈ V(i)}

N(i, j) is the global index of j-th neighboring vertex with
j ∈ V(i) = {1, . . . ,Nv(i) }
Nv(i) is the number of neighboring vertexes of the node i.
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GFMM on UNSTRUCTURED meshes: local solver

We suppose there exists a γ0 > 0 s.t. for any mesh

γ0 ≤
hmin

hmax

≤ 1

where hmax := max{|lij |, i, j ∈ {1, . . . ,Nv}},
hmin := min{|lij |, i, j ∈ {1, . . . ,Nv}}
and lij is the edge connecting vertex i to vertex j.
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GFMM on UNSTRUCTURED mesh

Local problem

|Du(x)| =
1

|c(xi, tn)|
in Di

where Di is:

General local solver

Q
(
xi, ui, {uN(i,j), uN(i,j+1)}j∈V(i)}

)
=

1

|c(xi, tn)|
i ∈ {1, . . . ,Nv}.
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Properties Local Solver: Consistency

(H1)
For any ψ ∈ C2(R2), let us denote by ψi := ψ(xi) for any
i ∈ {1 . . .Nv} and consider true the following assumptions:

lim
m→∞

Q
(
xim , ψim , {ψN(im,jm), ψN(im,jm+1)}jm∈V(im)

)
= |Dψ(x)|

where m is an index of refinement for a family of grids {MT
m}m≥0

and (xim) ∈ MT
m is a sequence of nodes such that for m→ ∞

(hmax)m → 0 and xim → x.
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Properties Local Solver: Monotonicity

(H2)
Let us suppose ui ≤ ψi and define

C(i) := {j ∈ V(i), s. t. uN(i,j) ≥ ψN(i,j), uN(i,j+1) ≥ ψN(i,j+1)}

then

Q(xi, ui, {uN(i,j), uN(i,j+1)}j∈C(i)) ≤

Q(xi, ψi, {ψN(i,j), ψN(i,j+1)}j∈C(i)).
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Properties Local Solver

(H3)
K

hmax
≤ Q(xi, w, {w,w −K}) ≤

K

hmin

for any positive constant K, for any w ∈ R.
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Properties Local Solver

(H4) Let I(i),J (i) two set of indices, s.t.

I(i) ⊂ J (i),

then

Q(xi, ui, {uN(i,j), uN(i,j+1)}j∈I(i)) ≤

Q(xi, ui, {uN(i,j), uN(i,j+1)}j∈J (i)).
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Example of Local Solver

1. Local problem

{
|Du(x)| = 1

|c(xi,tn)|
x ∈ Di

u(x) = uh(x) x ∈ ∂Di

with uh linear function, affine when restricted to a simplex.

2. The Hopf-Lax formula :

u(xi) = min
y∈∂Di

(uh(y) +
|xi − y|

|c(xi, tn)|
)
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Example of Local Solver: Semi-Lagrangian

From the Hopf-Lax formula

max
y∈∂Di

(
u(xi)− uh(y)

|xi − y|

)
=

1

|c(xi, tn)|
,

and since uh is affine on each simplex:

Q(xi, u(xi), {uN(i,j), uN(i,j+1)}j∈V(i)) =

max
j∈V(i)

max
0≤ξ≤1

(
ui−(1−ξ)uN(i,j+1)−ξuN(i,j)

|τi,j(ξ)|

)

Ref. Sethian Vladimirsky(2006)
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Example of Local Solver: Bornemann-Rash

Since uh is an affine function on each simplex:

u(xi) = min
j∈V(i)

min
y∈[yi,zi]

(
uh(y) +

|xi − y|

|c(xi, tn)|

)
= min

j∈V(i)
(u∗j )
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Example of Local Solver: Bornemann-Rash

Since uh is an affine function on each simplex:

u(xi) = min
j∈V(i)

min
y∈[yi,zi]

(
uh(y) +

|xi − y|

|c(xi, tn)|

)
= min

j∈V(i)
(u∗j )

i

x

z

α

β

y
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Example of Local Solver: Bornemann-Rash

Since uh is an affine function on each simplex:

u(xi) = min
j∈V(i)

min
y∈[yi,zi]

(
uh(y) +

|xi − y|

|c(xi, tn)|

)
= min

j∈V(i)
(u∗j )

and defining ∆ = (uh(zi)−uh(yi))
|zi−yi|

,

uh(y) = uh(yi) + ∆|y − yi| = uh(zi)−∆|y − zi|

u∗j = uh(yi) + min
y∈[yi,zi]

(
∆|y − yi|+

|xi − y|

|c(xi, tn)|

)
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Example of Local Solver: Bornemann-Rash

By geometric argument, the min can be expliclty evaluated

u∗j = uh(yi) + min
y∈[yi,zi]

(
∆|y − yi|+

|xi − y|

|c(xi, tn)|

)

Defining cos(δ) = ∆, if |∆| ≤ 1, we get
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Example of Local Solver: Bornemann-Rash

By geometric argument, the min can be expliclty evaluated

u∗j = uh(yi) + min
y∈[yi,zi]

(
∆|y − yi|+

|xi − y|

|c(xi, tn)|

)

Defining cos(δ) = ∆, if |∆| ≤ 1, we get

x

z

α

β

y

l δ

y

i

i

i

δ

cos(δ)|y − yi|
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Example of Local Solver: Bornemann-Rash

By geometric argument, the min can be expliclty evaluated

u∗j = uh(yi) + min
y∈[yi,zi]

(
∆|y − yi|+

|xi − y|

|c(xi, tn)|

)

Defining cos(δ) = ∆, if |∆| ≤ 1, we get

δ−

x

z

αy

l

δ y*

δ

δ

i

i

i

α
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Example of Local Solver: Bornemann-Rash

By geometric argument, the min can be expliclty evaluated

u∗j = uh(yi) + min
y∈[yi,zi]

(
∆|y − yi|+

|xi − y|

|c(xi, tn)|

)

Defining cos(δ) = ∆, if |∆| ≤ 1, we get

u∗j =





uh(yi) +
|yi−xi|
|c(xi,tn)|

, cos(α) < ∆,

uh(yi) + cos(δ − α) |yi−xi|
|c(xi,tn)|

, − cos(β) ≤ ∆ ≤ cos(α),

uh(zi) +
|zi−xi|
|c(xi,tn)|

, ∆ < − cos(β).

Ref. Kimmel and Sethian (1998), Bornemann-Rash(2005)
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GFMM on UNSTRUCTURED meshes

We introduce an auxiliary discrete function

θni =

{
1 if xi ∈ Ωn

−1 otherwise.

We give a slightly different definition, of the two phases:

Definition

Θn
± ≡ {i : θni = ±1 and ∃ j ∈ V (i) such that θnj = ±1},

Note: isolated nodes:

INn
± ≡ {i : θni = ±1 and θnj = ∓1 for all j ∈ V (i)}

An isolated node can only change its phase but it can not
contribute to change the phase of its neighboring.
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GFMM on UNSTRUCTURED meshes
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GFMM on UNSTRUCTURED meshes

We define

• the fronts Fn
±

Fn
+ ≡ V (Θn

−)\Θ
n
−, Fn

− ≡ V (Θn
+)\Θ

n
+
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−
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GFMM on UNSTRUCTURED meshes

• the Narrow Bands NBn
±

NBn
+ = Fn

+ ∩ {i, ĉni < 0}, NBn
− = Fn

− ∩ {i, ĉni > 0}.
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GFMM on UNSTRUCTURED meshes

• the Useful nodes for i ∈ NBn
±

Un(i) = {j ∈ V (i), j ∈ Θn
∓}, Un =

⋃

i∈NBn

Un(i).
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GFMM on Unstructured Meshes

Initialization

• Initialization of the matrix θ0

θ0i =

{
1 xi ∈ Ω0

−1 xi /∈ Ω0

• Initialization of the time on the front
u0i = 0 for all i ∈ U0

• n = 1
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GFMM on Unstructured Mesh

Main Cycle

1 Compute the time ũn−1
i in the NBn−1

+ and NBn−1
− using a

local solver

Q(xi, ũ
n−1
i , {un−1

N(i,j), u
n−1
N(i,j+1)}j∈V (i)) =

1

|c(xi, tn)|

using respectively the values un−1 defined on Un−1 ∩ Fn−1
− or

Un−1 ∩ Fn−1
+ .

2 Compute the minimal time t̃n = min{ũn−1, i ∈ NBn−1
± }

3 tn = max{tn−1,min{t̃n, tn−1 +∆t}
4 if tn < t̃n go to 1
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GFMM on Unstructured Mesh

Main Cycle

5 Initialize the new accepted points
NAn

± = {i ∈ NBn−1
± uni = t̃n},

6 Update θn

θni =

{
−θn−1

i for i ∈ NAn

θn−1
i elsewhere

7 Update Fn
± and NBn

±

8 If i ∈ Un then
• if i 6∈ Un−1 or i ∈ NAn, then un

i
= tn.

• if i ∈ Un−1\NAn, then un
i
= un−1

i
.

9 Remove isolated points
If i ∈ INn and i ∈ INn−1 then θni = −θn−1

i

10 n := n+ 1 and go to 1
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Non constant time step!

The time step ∆tn = tn+1 − tn is not constant and we can
actually have:

1. ∆tn >> 1 too large time step

2. ∆tn < 0 not increasing time

To avoid case 1. we choose

t̂n ≡ tn +∆t

and to avoid case 2.
tn = tn−1.

Then one always gets
0 ≤ ∆tn < ∆t

If case 1) occurs: do not advance the front!
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GFMM on UNSTRUCTURED MESH: Definition of θǫ(x, t)

{tkn , n ∈ N} is a strictly increasing subsequence of (tn)n such that

tkn−1 < tkn < tkn+1 .

Extension of (θni )n,i on the continuous time interval [0, T ]

θ(xi, t) = θ
kn+1−1
i if (xi, t) ∈ {xi} × [tkn , tkn+1 [

(Same extension on structured grids.)
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GFMM on UNSTRUCTURED MESH: Definition of θǫ(x, t)

Let ǫ = (hmax,∆t) and θ
ǫ(x, t) be an extension of (θ(xi, tn))i on a

continuous domain Ω of R2

• θ = 1, • θ = −1

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

(Different than structured grids!)
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GFMM on UNSTRUCTURED MESH: Definition of θǫ(x, t)

Let ǫ = (hmax,∆t) and θ
ǫ(x, t) be an extension of (θ(xi, tn))i on a

continuous domain Ω of R2

• θ = 1, • θ = −1
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GFMM on UNSTRUCTURED MESH: Definition of θǫ(x, t)

Let ǫ = (hmax,∆t) and θ
ǫ(x, t) be an extension of (θ(xi, tn)i) on a

continuous domain Ω of R2

• θ = 1, • θ = −1
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Convergence result

Theorem (C., Falcone, Hoch )
Let c(x, t) be globally Lipschitz continuous in space and time, the
initial set Ω0 be with piece wise smooth boundary then

θ
0
(x, t) = lim sup

ǫ→0,z→x,s→t
θǫ(z, s)

(resp. θ0(x, t) = lim infǫ→0,z→x,s→t θ
ǫ(z, s))

is a viscosity sub-solution (resp. super-solution) of the problem

{
θt = c(x, y, t)|Dθ| R

2 × (0, T )

θ = 1Ω0 − 1Ωc
0

R
2.

Skip Proof
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Idea of the proof

By contradiction, assume that there are (x0, t0) and ϕ ∈ C2 such

that (θ
0
)− ϕ reaches a strict maximum (x0, t0) with

(θ
0
)(x0, t0) = ϕ(x0, t0) = 1 and

ϕt(x0, t0) > c(x0, t0)|Dϕ(x0, t0)|,



Outline The model problem A Generalized Fast Marching Method (GFMM) GFMM on Unstructured grids

Idea of the proof

By contradiction, assume that there are (x0, t0) and ϕ ∈ C2 such

that (θ
0
)− ϕ reaches a strict maximum (x0, t0) with

(θ
0
)(x0, t0) = ϕ(x0, t0) = 1 and

ϕt(x0, t0) > c(x0, t0)|Dϕ(x0, t0)|,

If |Dϕ(x0, t0)| 6= 0, there exists α > 0 s.t.

ϕt(x0, t0) = α+ c(x0, t0)|Dϕ(x0, t0)| = c̄|Dϕ(x0, t0)|

with c̄ > c(x0, t0)
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Idea of the proof

By contradiction, assume that there are (x0, t0) and ϕ ∈ C2 such

that (θ
0
)− ϕ reaches a strict maximum (x0, t0) with

(θ
0
)(x0, t0) = ϕ(x0, t0) = 1 and

ϕt(x0, t0) > c(x0, t0)|Dϕ(x0, t0)|,

By classical argument, ∃ (xǫ, tǫ) → (x0, t0) as ǫ→ 0 s.t.

max((θǫ)∗ − ϕ)) = ((θǫ)∗ − ϕ))(xǫ, tǫ) = 0,

where
(θǫ)∗(x, t) = lim sup

z→x,s→t
θǫ(z, s)
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Idea of the proof

• c(x0, t0) > 0
Since ϕt(x0, t0) > 0 (by the property of ϕ and the (θǫ)∗)⇒

θn−1
i = −1, θni = 1

where (xi, tn) ∈ Br(x0, t0)
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Idea of the proof

• c(x0, t0) > 0
Since ϕt(x0, t0) > 0 (by the property of ϕ and the (θǫ)∗)⇒

θn−1
i = −1, θni = 1

where (xi, tn) ∈ Br(x0, t0)
and (by the Implicit Function theorem) there exists a function Ψ s.t.

{ϕ(x, t) ≥ 1} = {t ≥ Ψ(x)}

then, since (θǫ)∗(x, t) ≤ ϕ(x, t)

{(θǫ)∗(x, t) = 1} ⊂ {t ≥ Ψ(x)}

for any (x, t) ∈ Br(x0, , t0)
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Idea of the proof

xI x

θ = −1

θ = 1

ν

t = Ψε(x)

t

tkn

Then applying the local solver on the test function Ψ and
numerical solution u, we obtain an absurd

c̄(x0, t0) ≤ c(x0, t0)

.
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Idea of the proof: difficulty with unstructured grids

Let us suppose ϕ is a test function s.t. ϕ ≥ (θǫ)∗ and
ϕt(xǫ, tǫ) > 0. Then

θn−1
i = −1, θni = 1

Back to proof
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Idea of the proof: difficulty with unstructured grids

Let us suppose ϕ is a test function s.t. ϕ ≥ (θǫ)∗ and
ϕt(xǫ, tǫ) > 0. Then

θn−1
i = −1, θni = 1
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Idea of the proof: difficulty with unstructured grids

{ϕ(x, t) ≥ 1}

Then {(θǫ)∗(x, t) = 1} ⊂ {ϕ(x, t) ≥ 1}
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Idea of the proof: difficulty with unstructured grids

{ϕ(x, t) ≥ 1}

We would like to define a ϕǫ such that ϕǫ(xi) = ϕ(xǫ).
But translations of ϕ on unstructured grids do not generally
maintain the same definition of (θǫ)∗ !
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Numerical tests: rotating line

Speed c(x, y, t) = x

−1 0 1
−1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

−1 0 1
−1

0

1

Hausdorff Error

hmax H(Cex, Cap)

.04 0.0350906

.02 0.0169257

.01 0.00886822

.005 0.00436559



Outline The model problem A Generalized Fast Marching Method (GFMM) GFMM on Unstructured grids

Numerical tests: evolution of one circles

Speed c(x, y, t) = 0.1t− x
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Numerical tests: evolution of two circles

Speed c(x, y, t) = 1− t

Increasing (left) and decreasing (right) evolution of two circles
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Numerical tests: general domain

Speed c(x, y, t) = x
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