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Motivation

The single target shortest path problem

Problem
In a weighted graph, finding the distance of the vertices from a
prescribed target vertex and detect the shortest path (Dijkstra’s
algorithm)
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Motivation

The multiple targets shortest path problem

Problem
In a weighted graph, finding the distance of the vertices from a
prescribed target set and detect the shortest path.
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Motivation

The multiples targets shortest path problem with
continuous running cost

Problem
Finding the distance of any point in the graph from a prescribed
target set when the cost varies in a continuous way along the edges
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Motivation

Target problem in RN

In RN , finding the weighted distance from a given target set is
equivalent to solve the Eikonal equation |Du(x)| = f (x) with u = 0 on
the target.

To solve the target problem with continuous running cost, introduce
Eikonal equations of the form H(x ,Du) = 0 on a graph.
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Motivation Literature

Literature about differential equations on networks

• Lumer, Nicaise, von Below: linear and semilinear problem
on networks (maximum principle, spectral theory, etc.)

• Lagnese-Leugering: applications to wave equations
(networks of vibrating strings)

• Garavello-Piccoli: hyperbolic problems, traffic flow on a
network

• Engel-Nagel and coauthors: semigroup theory and
asymptotic behavior of linear system on networks

• Achdou-C.-Cutrì-Tchou: control problem on a network (a
controlled dynamic in R2 constrained to a network)
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Viscosity solution

Aim
Introduce a concept of viscosity solution which preserves the main
features of viscosity theory: uniqueness, existence, and stability;
sufficiently “weak” to yield existence, while sufficiently “selective” to
ensure uniqueness and stability with respect to uniform convergence.

Difficulties
1 How to modelize the differential structure of the network (which is

not a regular manifold).
2 Which condition to impose at the vertices (transition

condition).For second order linear equation, transition conditions
are the key point to obtain the Maximum Principle.
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Viscosity solution Network

The definition of Network

A network Γ is couple (V ,E) where
• V := {vi , i ∈ I} is a finite collection of pairwise different points in RN ;
• E := {ej : j ∈ J} is a finite collection of differentiable curves in RN

given by ej := πj((0, lj)) with πj : [0, lj ] ⊂ R→ RN , j ∈ J. Furthermore
i) πj(0), πj(lj) ∈ V for all j ∈ J and #(ēj ∩ V ) = 2 for all j ∈ J
ii) ēj ∩ ēk ⊂ V , and #(ēj ∩ ēk ) ≤ 1 for all j , k ∈ J, j 6= k .
iii) For all v ,w ∈ V there is a path with end points v and w (i.e. a

sequence of edges {ej}Nj=1 such that #(ēj ∩ ēj+1) = 1 and v ∈ ē1,
w ∈ ēN ) (the graph is connected).
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Viscosity solution Network

Some definitions

• Inci := {j ∈ J : ej incident vi} is the set of arcs incident the vertex vi .

• The parametrization of the arcs ej induces an orientation on the
edges, expressed by the signed incidence matrix A = {aij}i,j∈J

aij :=


1 if vi ∈ ēj and πj(0) = vi ,
−1 if vi ∈ ēj and πj(lj) = vi ,

0 vi 6∈ ēj .

• Given a nonempty set IB ⊂ I, we define ∂Γ := {vi , i ∈ IB} to be the

set of boundaries vertices, while for IT := I \ IB is the set of transition
vertices.
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Viscosity solution Network

Continuity

Given u : Γ̄→ R, uj the restriction of u to ēj , i.e.

uj := u ◦ πj : [0, lj ]→ R.

u is continuous in Γ̄ if uj ∈ C([0, lj ] for any j ∈ J and

uj(π−1
j (vi)) = uk (π−1

k (vi)) for any i ∈ I, j , k ∈ Inci .

Differentiation
We define differentiation along an edge ej by

∂ju(x) := ∂juj(π−1
j (x)) =

∂

∂x
uj(π−1

j (x)), for all x ∈ ej ,

and at a vertex vi by

∂ju(vi) := ∂juj(π−1
j (vi)) =

∂

∂x
uj(π−1

j (vi)) for j ∈ Inci .
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Viscosity solution Network

Figure: Differentiation along the edge
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Viscosity solution Network

Hamiltonian

A Hamiltonian H : Γ̄× R→ R of eikonal type is given by
H(x ,p) = H j(π−1

j (x),p) for x ∈ ej where (H j)j∈J with
H j : [0, lj ]× R→ R

H j ∈ C0([0, lj ]× R), j ∈ J, (1)

H j(x ,p) is convex in p ∈ R for any x ∈ [0, lj ], j ∈ J, (2)

H j(x ,p)→ +∞ as |p| → ∞ for any x ∈ [0, lj ], j ∈ J, (3)

H j(π−1
j (vi),p) = Hk (π−1

k (vi),p) for any p ∈ R, i ∈ I, j , k ∈ Inci , (4)

H j(π−1
j (vi),p) = H j(π−1

j (vi),−p) for any p ∈ R, i ∈ I, j ∈ Inci . (5)

(1)–(3) are standard conditions. Assumptions (4)–(5) are compatibility
conditions of H at the vertices of Γ̄, i.e. continuity at the vertices and
independence of the orientation of the incident arc (the network is not
oriented).For example, H j(x ,p) := |p|2 − f j(x), j ∈ J, where
f j ∈ C0([0, lj ]), f j(x) ≥ 0, f j(π−1

j (vi)) = f k (π−1
k (vi)) for any i ∈ I,

j , k ∈ Inci .
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Viscosity solution Network

Test Functions

Definition

i) ϕ is differentiable at x ∈ ej , if ϕj := ϕ ◦ πj : [0, lj ]→ R is
differentiable at t = π−1

j (x).
ii) Let x = vi , i ∈ IT , j , k ∈ Inci , j 6= k . ϕ is (j , k)-differentiable at x if

aij∂jϕj(π
−1
j (x)) + aik∂kϕk (π−1

k (x)) = 0, (6)

where (aij) as is the incidence matrix.

Remark
Condition (6) demands that the derivatives in the direction of the
incident edges j and k at the vertex vi coincide, taking into account the
orientation of the edges.
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Viscosity solution Network

A function u is called a viscosity subsolution if
i) If x ∈ ej , j ∈ J, and for any ϕ ∈ C(Γ) which is differentiable at x

and for which u − ϕ attains a local maximum at x

H j(π−1
j (x), ∂jϕj(π

−1
j (x)) ≤ 0.

ii) If x = vi , i ∈ IT , for any j , k ∈ Inci , ϕ which is (j , k)-differentiable at
x and for which u − ϕ attains a local maximum at x

H j(π−1
j (x), ∂jϕj(π

−1
j (x)) ≤ 0.

A function u is called a viscosity supersolution if:
i) If x ∈ ej , j ∈ J, and for any ϕ ∈ C(Γ) which is differentiable at x

and for which u − ϕ attains a local minimum at x

H j(π−1
j (x), ∂jϕj(π

−1
j (x)) ≥ 0.

ii) If x = vi , i ∈ IT , j ∈ Inci , there exists k ∈ Inci , k 6= j , such that for
any ϕ ∈ C(Γ) which is (j , k)-differentiable at x and for which u − ϕ
attains a local maximum at x

H j(π−1
j (x), ∂jϕj(π

−1
j (x)) ≥ 0.
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Viscosity solution Network

i)For x = vi , since H j(π−1
j (vi),p) = Hk (π−1

k (vi),p) it is indifferent to
require the sub and supersolution conditions for j or for k .

ii) If supersolutions would be defined similarly to subsolutions, the
distance function from the boundary would not be a supersolution (but
there is always a shortest path from a transition vertex to the
boundary).

Figure: The distance is not a solution
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A representation formula for the solution

The distance function

S(y , x) = inf
{∫ t

0
L(γ(s), γ̇(s))ds : γ ∈ Bt

y ,x

}
, x , y ∈ Γ

where
• Bt

y ,x is the set of paths γ : [0, t ]→ Γ connecting y to x and piecewise
differentiable (i.e. t0 := 0 < t1 < · · · < tn+1 := t s.t. for any
m = 0, . . . ,n, we have γ([tm, tm+1]) ⊂ ējm for some jm ∈ J,
π−1

jm ◦ γ ∈ C1(tm, tm+1), and γ̇(s) = d
ds (π−1

jm ◦ γ)(s)).

• The Lagrangian L(x ,q) is defined by

L(x ,q) = sup
p∈R
{p q − H j(π−1

j (x),p)} x ∈ ēj

The path distance d(y , x) on the network coincides with S(y , x) for
H(x ,p) = |p|2 − 1.
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π−1

jm ◦ γ ∈ C1(tm, tm+1), and γ̇(s) = d
ds (π−1

jm ◦ γ)(s)).

• The Lagrangian L(x ,q) is defined by

L(x ,q) = sup
p∈R
{p q − H j(π−1

j (x),p)} x ∈ ēj
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A representation formula for the solution

Existence and uniqueness

Theorem
Assume that there exists a differentiable function ψ such that
H(x ,Dψ) < 0 in Γ. Let g : ∂Γ→ R be a continuous function satisfying

g(x)− g(y) ≤ S(y , x) for any x , y ∈ ∂Γ = IB,

Then
u(x) := min{g(y) + S(y , x) : y ∈ ∂Γ}

is the unique viscosity solution of{
H(x ,Du) = 0, x ∈ Γ;

u(x) = g(x), x ∈ ∂Γ.
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A representation formula for the solution

Sketch of the proof

Uniqueness:
Classical doubling argument

Φε(x , y) := u(x)− v(y)− ε−1d(x , y)2

for Maximum Principle (d2 is an admissible test function) + Ishii’s trick.

Existence:
The function S(y , ·) is a subsolution in Γ and a supersolution in Γ \ {y}.
Moreover

S(y , x) = max{u(x) : u is a subsolution s.t. u(y) = 0}.
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A representation formula for the solution

Stability

Theorem
Assume Hn(x ,p)→ H(x ,p) uniformly for n→∞ (i.e.
H j

n(π−1
j (x),p)→ H j(π−1

j (x),p) uniformly for (x ,p) ∈ ēj × R for any
j ∈ J). For any n ∈ N let un be a solution of

Hn(x ,Du) = 0, x ∈ Γ,

and assume un → u uniformly in Γ for n→∞. Then u is a solution of

H(x ,Du) = 0.
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Classification of singularities

Classification of singularities

We consider the equation{
|Du|2 − f (x) = 0, x ∈ Γ;

u(x) = 0, x ∈ IB.

with f > 0 in Γ. It is possible to prove that an edge contains at most one
non-differentiability (singular) point. We define kedge : E → {0,1} by

kedge(ej) :=

{
1, if ej contains a singular point;
0, if ej does not contain a singular point.

For a vertex vi , we
kvertex (vi) := #(Inc−i )

where Inc−i are the edges entering “downhill” in vi (the more incident
edges lead “downhill”, the more vi assumes the character of a local
maximum and the higher it should be weighted when counting the
singularities).
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We consider the equation{
|Du|2 − f (x) = 0, x ∈ Γ;

u(x) = 0, x ∈ IB.

with f > 0 in Γ. It is possible to prove that an edge contains at most one
non-differentiability (singular) point. We define kedge : E → {0,1} by

kedge(ej) :=

{
1, if ej contains a singular point;
0, if ej does not contain a singular point.

For a vertex vi , we
kvertex (vi) := #(Inc−i )

where Inc−i are the edges entering “downhill” in vi (the more incident
edges lead “downhill”, the more vi assumes the character of a local
maximum and the higher it should be weighted when counting the
singularities).
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Classification of singularities

Figure: Inc−
1 = 2

Theorem ∑
i∈I

kvertex (vi) +
∑
j∈J

kedge(ej) = #(J)

i.e. the dimension of the singular set of the viscosity solution only
depends on the number of edges of Γ.
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A semi-Lagrangian approximation scheme

A semi-Lagrangian approximation scheme
(see Falcone-Ferretti, J. Comput. Phys. 175 (2002))

Discretization in time
For h > 0, we define

i) An admissible trajectory γh = {γh
m}Mm=0 ⊂ Γ is a finite number of

points γh
m = πjm (tm) ∈ Γ such that for any m = 0, . . . ,M, the arc

̂γh
mγ

h
m+1 ⊂ ējm for some jm ∈ J.

ii) Bh
x ,y is the set of all such paths with γh

0 = x , γh
M = y .

We set

uh(x) = inf{
M∑

m=0

hL(γh
m,qm) + g(y) : γh ∈ Bh

x ,y , y ∈ ∂Γ} x ∈ Γ
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A semi-Lagrangian approximation scheme

Set xhq := πj(t − hq) (hence d(x , xhq) = h|q|).Then uh is the unique
Lipschitz-continuous solution of

If x = πj(t) ∈ ej

uj
h(x) = inf

q∈R: xhq∈ēj
{uh(xhq) + hL(x ,q)}

= inf
q∈R: xhq∈ēj

{uj
h(t − hq) + hLj(t ,q)}

If x = vi ∈ IT

uj
h(vi) = inf

k∈Inci

[
inf

q∈R: xhq∈ēk
{uh(xhq) + hL(vi ,q)}

]
= inf

k∈Inci

[
inf

q∈R: xhq∈ēk
{uk

h (t − hq) + hLk (t ,q)}
]

If x ∈ IB, uj
h(x) = g(x).
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A semi-Lagrangian approximation scheme

Discretization in space
For j ∈ J,consider a partition

P j = {t j
0 = 0 < · · · < t j

m < · · · < t j
Mj

= lj}

of [0, lj ] such that |P j | = max1,...,Mj (t
j
m − t j

m−1) ≤ kj . Set x j
m = πj(t

j
m) and

consider

W j
kj

= {w ∈ C(ēj) : ∂jw(x) is constant in (x j
m−1, x

j
m), m = 1, . . . ,Mj}.

Every element w in W j
kj

can be expressed as

w(x) =

Mj∑
m=1

β̄ j
m(x)w j(x j

m), x ∈ ej

for β̄j(x) = βj(π
−1
j (x)) and βj tent functions for the partition PJ .
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A semi-Lagrangian approximation scheme

Set x j,m
hq = πj(t

j
m − hq) and k = maxj∈J kj and consider:

Find uhk : Γ̄→ R such that uj
hk ∈W j

kj
for j ∈ J and

If x j
m = πj(t

j
m) ∈ ej

uj
hk (x j

m) = inf
q∈R: x j,m

hq ∈ēj

{uhk (x j,m
hq ) + hL(x j,m,q)}

= inf
q∈R: x j,m

hq ∈ēj

{uj
hk (t j

m − hq) + hLj(t j
m,q)}

If x j
m = vi

uj
hk (vi) = inf

r∈Inci

[
inf

q∈R: x l,m
hq ∈ēr

{uhk (x r ,m
hq ) + hL(vi ,q)}

]
= inf

r∈Inci

[
inf

q∈R: x r,m
hq ∈ēr

{ur
hk (t r

m − hq) + hLr (t r
m,q)}

]
If x j

m = vi ∈ IB, uj
h(x) = g(x).
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A semi-Lagrangian approximation scheme

For j ∈ J, we set U j = {uj
hk (t j

m)}Mj
m=1, Bj(q) = {βl(t

j
m − hq)}Mj

l,m=1 and

Lj(q) = {Lj(t j
m,q)}Mj

m=1, and we rewrite the previous as the
finite-dimensional system

U j
m = inf

q∈R:πj (t j
m−hq)∈ēj

{Bj(q)U j + hLj
m(q)} x j

m = πj(t
j
m) ∈ ej

U j
m = inf

r∈Inci
inf

q∈R:πr (t j
m−hq)∈ēr

{Br (q)U j + hLr
m(q)} vi = πr (t j

m) ∈ IT

U j
m = g(x j

m) x j
m = πj(t

j
m) ∈ IB
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A semi-Lagrangian approximation scheme

Theorem

Assume that h→ 0 and
k
h
→ 0. Then uhk converges uniformly to u

solution of {
H(x ,Du) = 0, x ∈ Γ;

u(x) = g(x), x ∈ ∂Γ.
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