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CRITICAL ERDOS-RENYI RANDOM GRAPH

G(N,p) is obtained via bond percolation with parameter p on
the complete graph with N vertices. We concentrate on critical
window: p= N"14+AN—4/3. eg. N =100, p= 0.01:

All components have:
- size ©(N2/3) and surplus ©(1) [Erdés-Rényi], [Aldous],
- diameter ©(N1/3) [Nachmias, Peres].

Moreover, asymptotic structure of components is known [Addario-
Berry, Broutin, Goldschmidt].



COMPONENT MIXING TIMES

For a component C, let (Xfc}%g be the corresponding discrete-
time simple random walk.

T he invariant probability measure for XC is given by

¢ ({z}) x deg(z).

The mixing time of XC is given by

tmix(C) :=inf {t >0 :sup HPE(X? =.) — ?rc(-)HTV < 1{8}.
reC

T he mixing times of critical random graph components are ©(N)
in probability [Nachmias, Peres].



CONVERGENCE OF MIXING TIMES
Suppose tmix(C1) is the mixing time of the largest component
of G(N,p) in the critical window, can we prove that
N_lfmix(cl}

converges in distribution?

Plan:
Recall metric space scaling limit M.

Construction of diffusion on Mj.

Random walk scaling limit result.

Convergence of mixing times.
Other examples of mixing time convergence.



CRITICAL RANDOM GRAPH SCALING LIMIT
[Addario-Berry, Broutin, Goldschmidt]

The random metric space scaling limit My of the largest com-
ponent of the critical random graph is defined by:

1. Choosing a random compact real tree T.

2. Gluing a random, but finite, number of N t
pairs of points together.

Picture produced by Christina Goldschmidt.

We will let ¢ : T — My be the natural quotient map induced by
the gluing of pairs of vertices of T.



BROWNIAN MO TION ON REAL TREES

Let (7,d7) be a compact real tree, and ,u.T be a Borel measure
on T with full support.

XT = (X;T}QD is a Brownian motion on (T, d-]r,,u.T) if it satisfies:
- Strong Markov diffusion.

- Reversible, invariant measure ,uT.

- For a4,z €T, -
dy(b(z,y,2),y)
dr(z,y)

P.(1: <1y)=
b
b in
- Mean occupation density when started at = and killed at y,

2d7(b(z,y,2), Y’ (dz).



RESISTANCE FORM CONSTRUCTION
"Resistance, dy + Electrical energy, &1

[Kigami] 3 a symmetric, bilinear form (&7, F7) satisfying
dr(z,y)~t =inf{Er(f, /) : f(2) =1, f(y) =0},
for @ & y. Moreover,
(Er, FrnL2(T,u"))

is a conservative, irreducible, local, regular Dirichlet form, for
any Borel measure ,u.T on T with full support.

We can subsequently define a corresponding Markov process
XT, and it is possible to check that this is Brownian motion on



FUSING RESISTANCE FORMS

Suppose M is obtained by gluing together a finite number of

pairs of vertices of 7, and ¢ : T — M Iis the natural quotient
map.

We define a quadratic form on the glued space by setting

Em(S, f) =E7(fod, fod),
for any f € Faq, where

Fam ::{f:JM—:“R: quI}EFT}.

(Ep, Faq) is a local, regular Dirichlet form on L2(M, up™M), where

;LM = p.Tr::qf:_l. Thus, there is a corresponding Markov diffusion
X*M, which we call Brownian motion on M.



BROWNIAN MOTION ON M;

Using the above construction, for almost-every realisation of
M, the metric space limit of N‘UECL we can define a Brownian
motion X"’Hl, and it is possible to check that

ar—1/3 ~C1 - My
(ﬁ kl‘-‘“"ﬂfgn_}(lf -

in distribution in both a quenched (for almost-every environ-
ment) and annealed (averaged over environments) sense. Here,
both X¢1 and XM1 are started from a distinguished vertex.

The precise topology under which this result is obtained is a
generalised Gromov-Hausdorff topology for processes on com-
pact length spaces.

Proof uses restriction to finite line-segment subgraphs.



FROM RANDOM WALK
TO MIXING TIME CONVERGENCE

First we check convergence of transition densities:

Cq par =N1/3 M
ISICEIES > (XUNJ S Blanel }) P(X;™ € B(z,2))
[EN |\ EN 7C1(B(zy,=N1/3)) mM1(B(z,¢))

where N~ 1325 — 2z as N — oo [C, Hambly]. Then

tmix(C1,0) = inf{m>0:|lgm(p,-) — 1|1 < 1/4]
< 1/4)

~ Ninf{t>0:|q(p-)— 1|1

~ qt(p, x).

In particular, we can rigourously establish

N_ltmix(cl-. p) — tmix(M1, p).



SPECTRAL GROMOV-HAUSDORFF DISTANCE

For compact metric spaces F, F' equipped with Borel probability
measures m, 7’ and jointly continuous heat kernels g, ¢/, define for
a compact time interval I C (0, o0),

Ap ((F,m,q), (F',',q))

= inf {d;%}(@m &(F)) + dp(mod ' n' 0 ¢/ )
o, G

£ = (dmm),ﬂ(m’))+dz-=:¢(-y>.¢’(y’n..

(z.2') (v.y')eC
+sup |g:(z,y) — gi(, y")l) } -
tel '

T his defines a separable metric on (equivalence classes of) triples
of the form (F.w,q). cf. work on Riemannian manifolds of
[Bérard, Besson, Gallot], [Kasue, Kumura].



GENERAL MIXING TIME CONVERGENCE THEOREM

Suppose that, for any compact interval I C (0,0c),

((Ifr(ghr}.. dGrN) ; W_N ; (q’i.r'EN}f'(I" y})l‘-,yEV(G'N ) ,tEf)

converges to

((F* dF) ) 70 (Qf('T'. y}}x,yEF._tEI)
in a spectral Gromov-Hausdorff sense, then tmix(F') € (0,00) and
'}'(N}_ltmix(aw} — tmix(F).

It is also possible to prove the same result when the mixing times
are defined in terms of the LP distance, for any p € [1, o¢].



EXAMPLE: CRITICAL GALTON-WATSON TREES
For the simple random walk XN on TN, a Galton-Watson tree
with a critical (mean 1), aperiodic, finite variance offspring dis-
tribution, conditioned to have N vertices, started from root pN,

N-12xN ) (X1
( !_f_ln'l'a"EJ E'.EG ( t )

where X7 is the Brownian motion on the continuum random
tree, started from its root p [C].

£>0°

(Scaling of graphs in [Aldous]. See also [Duquesne, Le Gall].)

For mixing times: N=3/2¢ . (pN) — P . (p), in distribution.



EXAMPLE: RANDOM WALK TRACE

For the simple random walk XN on gV = S[D_N], the trace of
the random walk up to time N, in dimensions > 5,

r—1yN R
(ﬂ“ XUN?J)&D_}(XH)#:_}D*

where X7 is the Brownian motion on the range of the Brownian
motion up to time 1, R :={B; : t € [0, 1]}.

&

Result originally proved for entire trace S[Dm}, see [C].

For mixing times: CN_Et?nix(S[D.N]} — th . ([0,1]), almost-surely.



EXAMPLE: SELF-SIMILAR FRACTAL GRAPHS
For simple random walk XN on the pre-nested fractal graph GN,

—NyvN F
(£ XLf[ﬂ-ﬂ)*""J)fEﬂ =% ) o0

where L is a length scaling factor, M is a mass scaling factor,
and A is a resistance scaling factor [Lindstrom]. e.g. L = 2,
M =3, A=5{3 for the 5.G.

Similarly for p.c.f.s.s. fractal graphs [Kigami] and Sierpinski
carpet-type graphs [Barlow, Bass, Kumagai, Teplyaev]. Also
random weights in finitely ramified examples [Kumagai, Kusuoka].

For mixing times: (M)~ N2 (GN) — 7. (F), in probability.



EXAMPLE: LATTICE MODELS IN A BOX

For the simple random walk X on - — ,N}“T,

(N—l_x::“*' Tg.) = (ximld) .
1tV ) >0 : £>0

For mixing times: N=2tF . ({1,...,N}¥) — & ([0,1]9).



OPEN PROBLEMS

Lattice homogenisation
Place i.i.d. weights on edges of box {13...,;'*}‘{, i.e. random

conductor model. Does random walk converge to Brownian
motion? Do mixing times converge?

Convergence of spectrum
Do eigenvalues of graphs aN converge to those of F,
—v(N) In AN — A7

In particular, does the spectral gap Ay 1 converge?



