Clustering Stability: Impossibility and possibility

B. Clarke¹

¹Dept of Medicine, CCS, DEPH University of Miami Joint with H. Koepke, Stat. Dept., U Washington

15 December 2011 Cur. Chal. Stat. Learn. BIRS

ъ

- Clustering Impossibility
- 3 Rate of Impossibility
- 4 Simulations
- 5 Bayesian Stability
- 6 Conclusions

イロト イポト イヨト イヨト

ъ

Basic Setting

- Imagine *n* points in *D*-dimensional space, say
 x_i = (x_{1,i},..., x_{D,i}) for i = 1,..., n. They often group together with some points closer to each other and some points farther apart.
- Our goal is to put the points that 'belong together' in the same set and define different sets for the points that don't belong together.
- Such a set is called a cluster; a set of clusters is called a clustering (of the points).
- Thus we have $\mathcal{P} = \{P_1, \dots, P_K\}$ where the P_k 's are disjoint and $\cup_k P_k = S = \{x_i, \dots, x_n\}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Statistical Model

• Think in terms of a signal plus noise model

 $\mathbf{Y} = \mathbf{x} + \boldsymbol{\varepsilon},$

where **Y**, **x**, and ε are $D \times n$ dimensional matrices.

- The *D*-dimensional data points in the columns of **Y** come from *n* non-random but unknown *D*-dimensional columns **x**_i of **x** plus a column from the random noise matrix ε.
- The entries in **Y** are the only values that are available to the experimenter.
- The **x**_i's are non-stochastic, represent 'centroids' and include multiplicity.
- Think of high dimensional, low sample size, i.e. large *D* and small *n*.

Cluster over Samples

- Two ways: Cluster over samples, i.e., over *n* vectors of length *D*, to find relationships among subjects.
- Or: Cluster over variables, i.e., over *D* vectors of length *n* to find relationships among explanatory variables.
- We focus on the first since that is often the primary goal.
- The problem: Evaluating different clusterings by a squared error cost function is only possible when the sum of squared distances between the x_i's, determined by the clusterings, has a rate at least √D as D increases.
- Otherwise, meaningful clustering is not possible: Any ordering over clusterings is indistinguishable from random.
- Implication: Must do variable selection before clustering.

Cost Function

- Given *n* points and a number of clusters *K* ≤ *n*, a partitioning *P* = {*P*₁, *P*₂, ..., *P*_K} is a set of *K* non-empty, disjoint exhaustive subsets of {1, 2, ..., *n*}.
- Given a partitioning *P* = {*P*₁, *P*₂, ..., *P_K*} on a set of data points **Y** ∈ ℝ^{D×n}, the squared error cost function is

$$\mathsf{cost}(\mathbf{Y}, \mathcal{P}) = \sum_{k} \sum_{i \in P_k} \|\mathbf{Y}_{:i} - \overline{\mathbf{Y}}_k\|_2^2$$

where $\mathbf{Y}_{:i} = (Y_{1i}, Y_{2i}, ..., Y_{Di}), \overline{\mathbf{Y}}_{\mathbf{k}} = \text{mean}\{\mathbf{Y}_{:i} i \in P_k\}$ is the *k*-th cluster mean.

ヘロト 人間 とくほとくほとう

Differences of Cost Functions

• Let
$$\mathbf{Y}_d = (Y_{d1}, \dots, Y_{dn})$$
, $\mathbf{x}_d = (x_{d1}, \dots, x_{dn})$, and $\varepsilon_d = (\varepsilon_{d1}, \dots, \varepsilon_{dn})$ for each $d = 1, \dots, D$.

 Rewrite cost into dimensional components to see there is an n × n matrix A = A(P) so that

$$\operatorname{cost}(\mathbf{Y}, \mathcal{P}) = \sum_{d=1}^{D} \mathbf{Y}_{d}^{T} \mathbf{A} \mathbf{Y}_{d} = \operatorname{trace}[\mathbf{Y}^{T} \mathbf{A} \mathbf{Y}].$$

Given two partitions *P* and *Q*, each has it's matrix A so there exists a matrix B = B(*P*, *Q*)

$$cost(\mathbf{Y}, \mathcal{P}) - cost(\mathbf{Y}, \mathcal{Q}) = trace[\mathbf{Y}^T \mathbf{B} \mathbf{Y}]$$

Properties of $\mathbf{B} = \mathbf{B}(\mathcal{P}, \mathcal{Q})$

• Write $Z_d = \mathbf{Y}_d^T \mathbf{B} Y_d$ where $Y_d = x_d + \varepsilon_d$. Not hard to show:

$$E\varepsilon_{d}^{\mathsf{T}} \mathbf{B}\varepsilon_{d} = 0$$

$$EZ_{d} = \mathbf{x}_{d}^{\mathsf{T}} \mathbf{B} \mathbf{x}_{d}$$

$$Z_{d} = \operatorname{cost}(\mathbf{Y}_{d}, \mathcal{P}) - \operatorname{cost}(\mathbf{Y}_{d}, \mathcal{Q})$$

$$= (\mathbf{x}_{d} + \varepsilon_{d})^{\mathsf{T}} \mathbf{B} (\mathbf{x}_{d} + \varepsilon_{d})$$

• As events, $\left\{\sum_{d=1}^{D} Z_d \ge 0\right\} = \{\operatorname{cost}(\mathbf{Y}, \mathcal{P}) \ge \operatorname{cost}(\mathbf{Y}, \mathcal{Q})\}.$ • So, if $P(\sum_{d=1}^{D} Z_d \ge 0) \to 1/2$ means \mathcal{P} is as good as \mathcal{Q} .

イロト 不得 とくほ とくほとう

Impossibility as $D \to \infty$

Let Y_d, x_d, and ε_d as before and suppose P and Q are any two distinct partitions of the *n* data points into K clusters, with cost difference matrix B. If Condition F holds and if

$$\frac{1}{\sqrt{D}}\sum_{d=1}^{D}\mathbf{x}_{d}^{T}\mathbf{B}\mathbf{x}_{d} \rightarrow 0$$

then

$$P(\operatorname{cost}(\mathbf{Y},\mathcal{P}) \leq \operatorname{cost}(\mathbf{Y},\mathcal{Q})) \rightarrow \frac{1}{2}$$

as $D \to \infty$.

- This rests on a CLT for the Z_d 's.
- Condition F holds whenever the ε's are continuous with IID components.

Standard Cases

- Note that $\sum_{d} \mathbf{x}_{d}^{\mathsf{T}} \mathbf{B} \mathbf{x}_{d} = o_{\mathsf{P}}(\sqrt{D})$ is trivially satisfied if $\sum_{d} \|\mathbf{x}_{d}\|_{2}^{2} = o_{\mathsf{P}}(\sqrt{D}).$
- The condition on the **x**_d's is tight. If

$$\sum_{d=1}^{D} \mathbf{x}_{d}^{\mathsf{T}} \mathbf{B} \mathbf{x}_{d} = \mathcal{O}(\sqrt{D})$$

then $\sum_{d} Z_{d} / \sqrt{D}$ may converge to a normal distribution shifted by a non-zero constant having a non-zero mean.

• More, a higher rate of growth would mean that the informative components eventually win out over the noise.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Corollary for Finite Dimensional Subspaces

- It is often assumed that the true data is 'sparse' in the sense that a small number of features contain almost all the information.
- However, we do not know which those are.
- The Corollary considers this case to emphasize that considering all the components of the dataset can make matters worse.
- Corollary: Suppose Y = x + ε, and suppose the columns of x vary over a fixed finite-dimensional subspace S ⊂ ℝ^D as D increases. If the components of ε are IID then

$$\xi_D = P\left(\operatorname{cost}(\mathbf{Y}, \mathcal{P}) \le \operatorname{cost}(\mathbf{Y}, \mathcal{Q})\right) o rac{1}{2} \quad ext{as} \quad D o \infty.$$

Berry-Esseen Bounds on ξ_D

- In the sparse case we can bound ξ_D as a function of *D*.
- Berry-Esseen Theorem: Let V_1, \ldots, V_D be IID with $EV_d = 0, EV_d^2 = \sigma^2$, and $E|V_d|^3 = \rho < \infty$. Let $\overline{V_D} = \frac{1}{D} \sum_{d=1}^{D} V_d$, and let F_D be the cumulative distribution function of $\sqrt{DV_D}/\sigma$.
- Then there exists a constant δ such that

$$|F_n(t) - \Phi(t)| \le \frac{\delta\rho}{\sigma^3\sqrt{D}}$$

 $\Phi(t)$ is the DF of N(0, 1) and $\delta \leq 0.7655$.

• Assume the ε_{id} 's have finite sixth moment and be IID along the dimension component *d*.

Decomposition: Signal vs. Noise:

- Suppose the first c dimension components are the only ones with non-zero signals.
- We have

$$\sum_{d=1}^{c} Z_{d} = \left[\sum_{d=1}^{c} \mathbf{x}_{d}^{T} \mathbf{B} \mathbf{x}_{d}\right] + \left[\sum_{d=1}^{c} \varepsilon_{d}^{T} \mathbf{B} \varepsilon_{d} + \sum_{d=1}^{c} \varepsilon_{d}^{T} \mathbf{B} \mathbf{x}_{d} + \sum_{d=1}^{c} \mathbf{x}_{d}^{T} \mathbf{B} \varepsilon_{d}\right].$$
$$= C + V_{c}$$

• This defines *C* as a constant and *V_c* as a sum of normal and Chi-square random variables.

\sqrt{D} bounds on ξ_D

• Suppose the later D - c components are drawn from an IID noise distribution with finite sixth moment. Then for $\alpha = \alpha(D)$ satisfying

$$rac{e^{-lpha(D)/8}}{\sqrt{D}}
ightarrow 0$$

we have that

$$\xi_{\mathcal{D}} \in [\Phi^*(-a_{\mathcal{D}}) - b_{\mathcal{D}}, \Phi^*(-a_{\mathcal{D}}) + b_{\mathcal{D}}]$$

where and Φ^* indicates the result of integrating out α' from a normal distribution conditioned on α' where $V_c = \alpha'$ for $\alpha' < \alpha$ and multiplied by $1/P(\{V_c \le \alpha\}); -a_D$ is the argument over which the integration is done.

More notation...

In the theorem,

$$\begin{aligned} \mathbf{a}_{D} = & \frac{C + \alpha'}{\sigma\sqrt{D - c}}, \quad \mathbf{b}_{D} = \frac{\delta\rho}{\sigma^{3}\sqrt{D - c}} \\ \sigma^{2} = & E(\operatorname{cost}(\mathbf{Y}_{d}, \mathcal{P}) - \operatorname{cost}(\mathbf{Y}_{d}, \mathcal{Q}))^{2} = & E(\varepsilon_{d}^{T}\mathbf{B}\varepsilon_{d})^{2}, \\ \rho = & E|\operatorname{cost}(\mathbf{Y}_{d}, \mathcal{P}) - \operatorname{cost}(\mathbf{Y}_{d}, \mathcal{Q}^{3}) = & E|\varepsilon_{d}^{T}\mathbf{B}\varepsilon_{d}|^{3} \end{aligned}$$

- The confidence intervals are distorted by the integration, however, the rate is preserved for each $\alpha' > \alpha$ giving an overall \sqrt{D} convergence.
- We require α = o(ln D) to control a probability conditioned on V_c ≥ α to apply a Berry-Esseen Theorem pointwise in α' < α.

Corollary

- In principle α = o(ln D), can swamp the effect of C. However, in calculating these bounds on the cost curves we used α = 0 and obtained reasonable results. This may mean the o(ln D) only takes effect for very large D or that the bound using α is loose.
- Corollary: The asymptotic convergence of $\xi_D 1/2$ to 0 has rate at most $\mathcal{O}(1/\sqrt{D})$.
- Can generalize: Other cost functions, weaker hypotheses...

• • • • • • • • • • • •

Increasing Noise Dimensions

- If *D* for a set of *n* vectors grows and the difference in costs of one clustering over another is calculated repeatedly then a curve ξ = ξ_D can be given.
- We assume that the number of informative dimensions is much smaller than the apparent *D*, a sort of sparsity.
- Suppose a 2-dimensional data set of size n = 120 is generated by taking 40 IID data points from N((-0.5, 1), diag(.2², .25²)), N((0.5, 1), diag(.15², .25²)) and N((0, -0.75), diag(.45², .35²)).
- The next panel shows the correct clustering, \mathcal{P}_{best} , a bad clustering \mathcal{P}_{bad} , and a terrible clustering \mathcal{P}_{random} .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Good, Bad, and Random Clusterings

B Clarke Cluster Impos. + Stab.

Adding Noise Dimensions

- We extend the data to data of dimension D = 3, 4, ... by adding D - 2 pure noise coordinates.
- Then we computed ξ_D for 6 scenarios: Two choices of partitions P_{best} vs P_{bad} and P_{best} vs P_{rand} with three choices of noise, Normal(0, 1), χ²₂ − 2, and a Student-t₄.
- The blue curves are the actual curves of ξ_D .
- The red curves are from the Berry-Esseen bounds. The vertical distance between the two curves for fixed *D* is a sort of 'confidence interval' for ξ_D.

ヘロト 人間 とくほとく ほとう

Bad vs Good for Normal, χ^2_2 , t_4

イロン イロン イヨン イヨン

æ

Random vs Good for Normal, χ^2_2 , t_4

イロン イロン イヨン イヨン

æ

Problems even in benign settings

- With \mathcal{P}_{bad} and \mathcal{P}_{good} we see that for n = 120 and 2 informative dimensions, by the time there are 20 to 30 variables the probability of distinguishing a good clustering from a bad one can fall to .7 or less in squared error.
- In all 3 cases with P_{bad}, by the time around D = 50-ish, it becomes unreasonable to declare P_{bad} worse than P_{best}.
- While it is easier to distinguish between *P_{random}* and *P_{best}*, ξ_D still gets close enough to 1/2 once D is much over 100 to cause problems.
- Reliability drops fastest for asymmetric noise (χ²₂ 2), slowest for normal. The t₄ is in between.

イロト イポト イヨト イヨト

Proposed Stability Assessment

- Fix *D*-dimensional data x₁,..., x_n and assume that for each K we have a clustering of size K P̂_K = {P̂_{K1},..., P̂_{KK}}.
- Assume it's centroid based with the property that

$$orall j \ {m x} \in \hat{{m {\cal P}}}_{{m {\cal K}} j} \Leftrightarrow {m d}({m x}, \hat{\mu}_{{m {\cal K}} j}) \leq {m d}({m x}, \hat{\mu}_{{m {\cal K}} j'}) \quad j
eq j'$$

where

$$\hat{\mu}_{Kj} = \frac{\sum_{i=1}^{n} x_i \chi_{x_i \in \hat{P}_{Kj}}}{\sum_{i=1}^{n} \chi_{x_i \in \hat{P}_{Kj}}}$$

and *d* is a metric on \mathbb{R}^{D} .

ヘロト ヘ戸ト ヘヨト ・ヨト

Assumptions

• Each
$$\hat{\mathcal{P}}_{K}$$
 has a limit: $\exists \mathcal{P}_{K} = \{P_{K1}, \dots, P_{KK}\}$ with
 ${}^{\iota}\mu(P_{Kj} \triangle \hat{P}_{Kj}) \rightarrow 0'.$

Assume that in the limit

$$orall j \ {m x} \in {m P}_{{m K} j} \Leftrightarrow {m d}({m x}, \mu_{{m K} j}) \leq {m d}({m x}, \mu_{{m K} j'}) \quad j
eq j'$$

where

$$\mu_{\mathit{K}\!j} = \mathit{E}\!\mathit{X}_1 \chi_{\mathit{X}_1 \in \mathit{P}_{\mathit{K}\!j}}.$$

- This means $\hat{\mu}_{Kj} \rightarrow \mu_{Kj}$.
- Let $\lambda_1, \ldots, \lambda_K \ge 0$ IID have continuous prior DF *F*.
- Consider the set

$$\hat{S}_{ij}(\lambda_1,\ldots,\lambda_{\mathcal{K}}) = \{ \forall \ell \neq j \; \lambda_j d(x_i,\hat{\mu}_{\mathcal{K}j}) \leq \lambda_\ell d(x_i,\hat{\mu}_{\mathcal{K}\ell}) \}$$

ъ

Empirical criterion

- The further apart the d(x_i, μ̂_{Kj})'s are, the bigger the set of λ_i's for which the inequality holds.
- Integrating over λ^K = (λ₁,..., λ_K), restricting to P̂_{Kj}, summing over *j*, and averaging over *i* = 1,..., *n* gives a Bayesian empirical stability objective function by setting

$$Q_n(K) = \sum_{j=1}^K \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{x_i \in \hat{P}_{Kj}\}} \int \mathbb{I}_{\hat{S}_{ij}(\lambda^K)}(X_i) dF(\lambda_1^K)$$

ヘロン 人間 とくほど くほとう

Population Version

Consider the set

$$S_{ij}(\lambda_1,\ldots,\lambda_{\mathcal{K}}) = \{ \forall \ell \neq j \ \lambda_j d(x_i,\mu_{\mathcal{K}j}) \leq \lambda_\ell d(x_i,\mu_{\mathcal{K}\ell}) \}$$

Integrating over λ^K = (λ₁,..., λ_K), restricting to P_{Kj}, summing over *j*, and averaging over *i* = 1,..., *n* gives a Bayesian empirical stability objective function by setting

$$Q_{\infty}(K) = \sum_{j=1}^{K} E\mathbb{I}_{\{X_1 \in P_{K_j}\}} \int \mathbb{I}_{S_{1j}(\lambda^K)}(X_1) dF(\lambda_1^K)$$

• We want $Q_n(K) \to Q_\infty(K)$.

・ロン ・雪 と ・ ヨ と

Does $Q_n(K) \rightarrow Q_\infty(K)$?

Write

$$\hat{\phi}_{j}(\boldsymbol{x}) = \int \mathbb{I}_{\left(\{\forall \ell \neq j \ \lambda_{j} \boldsymbol{d}(\boldsymbol{x}, \hat{\mu}_{\mathcal{K}j}) \leq \lambda_{\ell} \boldsymbol{d}(\boldsymbol{x}, \hat{\mu}_{\mathcal{K}\ell})\}\right)} \boldsymbol{d} \boldsymbol{F}(\lambda_{1}^{\mathcal{K}})$$

and

$$\phi_j(\mathbf{x}) = \int \mathbb{I}_{\left(\{\forall \ell \neq j \; \lambda_j d(\mathbf{x}, \mu_{Kj}) \leq \lambda_\ell d(\mathbf{x}, \mu_{K\ell})\}\right)} dF(\lambda_1^K)$$

• Then, it's enough to show that for $j = 1, \ldots, K$,

$$\frac{1}{n}\sum_{i=1}^{n}\hat{\phi}_{j}(X_{i})\mathbb{I}_{\left(x_{i}\in\hat{P}_{\mathcal{K}_{j}}\right)}\rightarrow E\phi_{j}(X)\mathbb{I}_{\left(X\in \mathcal{P}_{\mathcal{K}_{j}}\right)}.$$

・ロト ・聞ト ・ヨト ・ヨト

E 900

Convergence result for Q_n)K)

• When $\hat{\mu}_j \rightarrow \mu_j$ for $j = 1, \dots, K$ it can be shown that

 $Q_n(K) o Q_\infty(K).$

• For any finite range of K we also have

$$\sup_{K\in [K_1,K_2]} |Q_n(K) - Q_\infty(K)| o 0$$

as $n \to \infty$.

 Now, for each K choose a single clustering, perhaps by K-means (optimal for that K) or by different choices of cutoff on a dendrogram for hierarchical clustering.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Consistency for K

Let

$$\hat{K} = \arg \max_{K \in [K_1, K_2]} Q_n(K)$$

and let

$$K_T = \arg \max_{K \in [K_1, K_2]} Q_\infty(K).$$

- So, if we have that on [K₁, K₂] all µ̂_{Kj} → µ_{Kj}, then we have that for all K, Q_n(K) → Q_∞(K) uniformly.
- Since [K₁, K₂] is compact and Q_∞(K) is (trivially) cntinuous on [K₁, K₂] we can invoke the Newey-McFadden Theorem.
- Conclusion: K̂ → K_T, i.e., we have consistency for the choice of K subject to Q_∞ being an intuitively reasonable encapsulation of how many clusters there should be.

Properties of $Q_{\infty}(K)$

- For K = 2, let $\mu_j = E(X|C_j)$ and $D_j = d(X, \mu_j)$. Let $\Lambda_1 = \lambda_2/\lambda_1$, $\Lambda_2 = \lambda_1/\lambda_2$ and let G_{Λ_u} be the survival function for Λ_u .
- Can show:

$$Q_{\infty}(2) = E \mathbb{I}_{D_1/D_2 \le 1} G_{\Lambda_1}(D_1/D_2) + E \mathbb{I}_{D_2/D_1 \le 1} G_{\Lambda_2}(D_2/D_1).$$

- So, if D₁/D₂ small on P₁ then the first term is near P(P₂₁ and P₂₁ is stable. If D₂/D₁ small on P₂₂ then the second term is near P(P₂₂) This means Q_∞(2) is near 1 and so should Q̂_n(2) be. Generalizes to K clusters.
- That is, if the distribution of X concentrates at μ_1 and μ_2 then $Q_{\infty}(2)$ goes to 1.

More properties...

- For D_1/D_2 large on P_{21} , i.e., $D_1/D_2 \rightarrow 1$ we expect many points in P_{21} to be close to the boundary between P_{21} and P_{22} . Similarly if D_2/D_1 close to 1.
- In these cases,

 $Q_{\infty}(2) \rightarrow P(P_{21})G_{\Lambda_1}(1) + P(P_{22})G_{\Lambda_2}(1) = 1/2.$

- Since 1/2 ≤ Q_∞(2) ≤ 1, it seems reasonable to regard Q_∞(K) as indicating stability.
- In general, $1/K \le \phi_{\infty}(K) \le 1$.
- If there are K modes then Q_∞(K) → 1 as the modes separate. If the K modes get closer together, Q_∞(K) → 1/K.
- Again, $\phi_{\infty}(K)$ seems to assess stability.

- Finish giving an interpretation for the sense of stability the method is evaluating...how proximity to cluster boundaries affect Q_∞(K).
- Must verify more extensively that the optimization gives an intuitively reasonable number of clusters in standard cases. Maybe look at mixtures of normals?

(日)

Implications

- The impossibility theorem and rates applies to clusterings

 doesn't matter how they were generated.
- Result not dependent on loss function or strong hypotheses; just how separated cluster centers are.
- For typical *n*, say 30-50, and typical clusterings, you really want 10% or more non-noise variables for reliable clustering. For *n* large, say 100-200, must have 5%.
- Stability looks like it can be used to get a consistent selection of the number of clusters – if a reasonable collection of clusterings P_K is used.
- Stability criterion seems to respond to boundary regions.

くロト (過) (目) (日)