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The Problem

Basic Setting

@ Imagine n points in D-dimensional space, say
Xi=(X1,,...,xp;) fori=1,...,n. They often group
together with some points closer to each other and some
points farther apart.

@ Our goal is to put the points that ‘belong together’ in the
same set and define different sets for the points that don’t
belong together.

@ Such a set is called a cluster; a set of clusters is called a
clustering (of the points).

@ Thus we have P = {Py,..., Pk} where the Py’s are disjoint
and UxPx = S = {Xj,..., Xn}.
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Clustering Impossibility

Statistical Model

@ Think in terms of a signal plus noise model
Y=X+e¢,

where Y, X, and € are D x n dimensional matrices.

@ The D-dimensional data points in the columns of Y come
from n non-random but unknown D-dimensional columns
x; of x plus a column from the random noise matrix e.

@ The entries in Y are the only values that are available to
the experimenter.

@ The x;’s are non-stochastic, represent ‘centroids’ and
include multiplicity.

@ Think of high dimensional, low sample size, i.e. large D
and small n.

B Clarke Cluster Impos. + Stab.



Clustering Impossibility

Cluster over Samples

@ Two ways: Cluster over samples, i.e., over n vectors of
length D, to find relationships among subjects.

@ Or: Cluster over variables, i.e., over D vectors of length n
to find relationships among explanatory variables.

@ We focus on the first since that is often the primary goal.

@ The problem: Evaluating different clusterings by a squared
error cost function is only possible when the sum of
squared distances between the x;’s, determined by the
clusterings, has a rate at least v/D as D increases.

@ Otherwise, meaningful clustering is not possible: Any
ordering over clusterings is indistinguishable from random.

@ Implication: Must do variable selection before clustering.
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Clustering Impossibility

Cost Function

@ Given n points and a number of clusters K < n, a
partitioning P = { P, Ps, ..., Pk} is a set of K non-empty,
disjoint exhaustive subsets of {1,2, ..., n}.

@ Given a partitioning P = {P4, Ps, ..., Pk} on a set of data
points Y € RP*7, the squared error cost function is

cost(Y,P) =D > |IY.i— Y5

k i€Py

where Y.; = (Y4j, Yai, ..., Ypi), Y= mean{Y.;i € Py} is the
k-th cluster mean.
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Clustering Impossibility

Differences of Cost Functions

@ Let Yd = (Yd1,...7 de), Xg = (Xd1,... ,an), and
eq = (€g1,...,€aqn) foreachd =1,...,D.

@ Rewrite cost into dimensional components to see there is
an n x nmatrix A = A(P) so that

D
cost(Y,P) =~ Y AY4 = trace[YT AY].
d=1
@ Given two partitions P and Q, each has it's matrix A so
there exists a matrix B = B(P, Q)

cost(Y,P) — cost(Y, Q) = trace[Y " BY].
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Clustering Impossibility

Properties of B = B(P, Q)

o Write Zy = Y BYy where Yy = Xq + £4. Not hard to show:

EelBey = 0
EZ, = x)Bxy4
Zy = cost(Yy,P)—cost(Yq, Q)
= (Xg+£4)"B(Xg +£0a)
@ As events, {25:1 Zy > 0} = {cost(Y,P) > cost(Y, Q)}.
@ So, if P(23:1 Zy > 0) — 1/2means P is as good as Q.
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Clustering Impossibility

Impossibility as D — oo

@ Let Yy, X4, and ¢4 as before and suppose P and Q are any
two distinct partitions of the n data points into K clusters,
with cost difference matrix B. If Condition F holds and if

\ﬁZXded - 0

then
P (cost(Y,P) <cost(Y,Q)) —

N —

as D — cc.

@ This rests on a CLT for the Z;'s.

@ Condition F holds whenever the ¢’s are continuous with [ID
components.
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Clustering Impossibility

Standard Cases

@ Note that ", x]Bxy = 0p(v/D) is trivially satisfied if
>4 xqll3 = 0p(vD).

@ The condition on the x4’s is tight. If

D

> x[Bxy = O(VD)
=1

then >~ Z4//D may converge to a normal distribution
shifted by a non-zero constant having a non-zero mean.

@ More, a higher rate of growth would mean that the
informative components eventually win out over the noise.
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Clustering Impossibility

Corollary for Finite Dimensional Subspaces

@ It is often assumed that the true data is ‘sparse’ in the
sense that a small number of features contain almost all
the information.

@ However, we do not know which those are.

@ The Corollary considers this case to emphasize that
considering all the components of the dataset can make
matters worse.

@ Corollary: Suppose Y = x + ¢, and suppose the columns of
x vary over a fixed finite-dimensional subspace S c RP as
D increases. If the components of ¢ are IID then

£p = P (cost(Y,P) < cost(Y, Q)) — % as D — co.

B Clarke Cluster Impos. + Stab.



Rate of Impossibility

Berry-Esseen Bounds on &p

@ In the sparse case we can bound &p as a function of D.

@ Berry-Esseen Theorem: Let V4, ..., Vp be IID with
EVy =0, EV3 =02, and E|V,4[® = p < co. Let
Vo=1} 2321 V4, and let Fp be the cumulative distribution
function of vVDVp/o.

@ Then there exists a constant § such that

0
Falt) = o(0)] < =

®(t) is the DF of N(0,1) and § < 0.7655.

@ Assume the ¢j4’s have finite sixth moment and be 11D along
the dimension component d.

B Clarke Cluster Impos. + Stab.



Rate of Impossibility

Decomposition: Signal vs. Noise:

@ Suppose the first ¢ dimension components are the only
ones with non-zero signals.
@ We have

(o]
> 2=
a=1

+

c
> x[Bxy
d=1

c
+ Z ij—BE,‘d
d=1

:C+VC

(o c
Z EZI-BEd + Z ezj-Bxd
a=1 d=1

@ This defines C as a constant and V. as a sum of normal
and Chi-square random variables.
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Rate of Impossibility

v/D bounds on &p

@ Suppose the later D — ¢ components are drawn from an
IID noise distribution with finite sixth moment. Then for
a = «o(D) satisfying
g—(D)/8
vD

—0

we have that
&p € [®*(—ap) — bp, ®*(—ap) + bp]

where and ¢* indicates the result of integrating out o’ from
a normal distribution conditioned on o/ where V., = o’ for
o < a and multiplied by 1/P({V, < a}); —ap is the
argument over which the integration is done.
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Rate of Impossibility

More notation...

@ In the theorem,

an — C+d b — op
D_a\/D—C’ D_a3 D-c
0% = E(cost(Yg4, P) — cost(Yq, Q))? = E(e/Beqy)?,
p = E|cost(Yq, P) — cost(Yy, Q%) = Ele[Bey[?

@ The confidence intervals are distorted by the integration,
however, the rate is preserved for each o/ > « giving an
overall v/D convergence.

@ We require a = o(In D) to control a probability conditioned
on V; > « to apply a Berry-Esseen Theorem pointwise in
o < a.
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Rate of Impossibility

Corollary

@ In principle a = o(In D), can swamp the effect of C.
However, in calculating these bounds on the cost curves
we used a = 0 and obtained reasonable results. This may
mean the o(In D) only takes effect for very large D or that
the bound using « is loose.

@ Corollary: The asymptotic convergence of &p — 1/21t0 0
has rate at most O(1/+/D).

@ Can generalize: Other cost functions, weaker hypotheses...
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Simulations

Increasing Noise Dimensions

@ If D for a set of n vectors grows and the difference in costs
of one clustering over another is calculated repeatedly
then a curve £ = £p can be given.

@ We assume that the number of informative dimensions is
much smaller than the apparent D, a sort of sparsity.

@ Suppose a 2-dimensional data set of size n =120 is
generated by taking 40 IID data points from
N((—0.5,1),diag(.22,.25%)), N((0.5, 1), diag(.152, .25%))
and N((0, —0.75), diag(.452, .35?)).

@ The next panel shows the correct clustering, Ppest, @ bad
clustering Ppaq, and a terrible clustering Prandom-
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Simulations

Good, Bad, and Random Clusterings
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Simulations

Adding Noise Dimensions

@ We extend the data to data of dimension D = 3,4, ... by
adding D — 2 pure noise coordinates.

@ Then we computed &p for 6 scenarios: Two choices of
partitions Ppest VS Ppag and Ppest VS Prang With three
choices of noise, Normal(0, 1), X% — 2, and a Student-,.

@ The blue curves are the actual curves of &p.

@ The red curves are from the Berry-Esseen bounds. The
vertical distance between the two curves for fixed D is a
sort of ‘confidence interval’ for &p.
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Simulations

Bad vs Good for Normal, 3, ts
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Simulations

Random vs Good for Normal, xg ty
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Simulations

Problems even in benign settings

@ With Ppag and Pyo0q We see that for n = 120 and 2
informative dimensions, by the time there are 20 to 30
variables the probability of distinguishing a good clustering
from a bad one can fall to .7 or less in squared error.

@ In all 3 cases with Pp,q, by the time around D = 50-ish, it
becomes unreasonable to declare Ppyg Worse than Ppeg;.

@ While it is easier to distinguish between P,angom and Ppest,
¢p still gets close enough to 1/2 once D is much over 100
to cause problems.

@ Reliability drops fastest for asymmetric noise (Xg —-2),
slowest for normal. The 1, is in between.
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Bayesian Stability

Proposed Stability Assessment

@ Fix D-dimensional data x4, ..., X, and assume that for each
K we have a clustering of size K Px = {Pk1,- .-, Pk }-

@ Assume it’s centroid based with the property that
Vjx € P& d(x. fug) < d(x. ) J#T

where
S XXt
i=1 ’XX,'EPK]'

fikj = —=n
Zi:1 XX,'E:‘ADK/'

and d is a metric on RP.
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Bayesian Stability

Assumptions

@ Each Pk has a limit: 3Pk = {Pk1, ..., Pk} with
‘M(PKIA/ADKI) — 0/.
@ Assume that in the limit
Vj x € Pxj < d(x, ug) < d(x, ) j# T
where
pkj = EXixx epy-
@ This means jixj — jixj.

@ Let \q,..., Ak > 0 IID have continuous prior DF F.
@ Consider the set

Si(M, -y k) = {V0 # j Nd(Xi, ) < \ed (X, fike) }



Bayesian Stability

Empirical criterion

@ The further apart the d(x;, fix;)’s are, the bigger the set of
Aj’s for which the inequality holds.

o Integrating over A\K = (\y, ..., \g), restricting to Py,
summing over j, and averagingover i = 1,...,ngives a
Bayesian empirical stability objective function by setting

K 1 n
K
]:

=
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Bayesian Stability

Population Version

@ Consider the set

Sl]()\'l Y )‘K) = {\Vlf 7& j )‘jd(Xia ,LLK/) < Ald(xivﬂKf)}

@ Integrating over \K = (\y,..., k), restricting to Pg;,
summing over j, and averaging over i = 1,...,ngives a
Bayesian empirical stability objective function by setting

K

Qw(K) = Y Elpreng [ T, 00 (X)) dFO)
j=1

@ We want Qp(K) — Q- (K).
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Bayesian Stability

Does Qy(K) — Q(K)?

@ Write

A

K
9j(x) = / L pvesi na(x i) <red(xine)y) AF (A1)
and

%) = /H({W# /\/d(vaq)S/\zd(X,uKe)})dF()‘ﬂ

@ Then, it's enough to show that forj =1,... K,
1 n
7 2 1 xeg) = B xery)
1=
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Bayesian Stability

Convergence result for Q,)K)

@ When fi; — p; forj=1,... K it can be shown that
Qn(K) — Qx(K).
@ For any finite range of K we also have

sup |Qn(K) — Qu(K)| — 0
KE[K17K2]
as n — oo.

@ Now, for each K choose a single clustering, perhaps by
K-means (optimal for that K) or by different choices of
cutoff on a dendrogram for hierarchical clustering.
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Bayesian Stability

Consistency for K

o Let

A

K = K
9 ety A

and let
Kr=arg max Q. (K).
T g KE[K1 ,Kg] ( )
@ So, if we have that on [Kj, K] all fi; — pkj, then we have
that for all K, Q,(K) — Qu(K) uniformly.
@ Since [Ki, Kp] is compact and Q. (K) is (trivially) cntinuous
on [Ky, K] we can invoke the Newey-McFadden Theorem.
@ Conclusion: K — K7, i.e., we have consistency for the
choice of K subject to Q. being an intuitively reasonable
encapsulation of how many clusters there should be.
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Bayesian Stability

Properties of Q.. (K)

@ For K =2, let uj = E(X|Cj) and D; = d(X, ). Let
A1 = X2/M, Ao = Ai/A2 and let Gy, be the survival
function for A.

@ Can show:

Qxo(2) = Elp, /p,<1Gn,(D1/D2) + Elp,/p, <1 Gp,(D2/Dy).

@ So, if D1/D> small on P; then the first term is near P(Poq
and P» is stable. If D,/D; small on Py, then the second
term is near P(P»2) This means Q. (2) is near 1 and so
should Q,(2) be. Generalizes to K clusters.

@ Thatis, if the distribution of X concentrates at 14 and po
then Q. (2) goes to 1.

B Clarke Cluster Impos. + Stab.



Bayesian Stability

More properties...

@ For Dy/D, large on Psq, i.e., Di/D> — 1 we expect many
points in P»q to be close to the boundary between P»y and
Po>. Similarly if D>/D; close to 1.

@ In these cases,

Q= (2) = P(P21)Gn, (1) + P(P22)Ga,(1) = 1/2.
@ Since 1/2 < Q- (2) < 1, it seems reasonable to regard
Q~(K) as indicating stability.
@ Ingeneral, 1/K < ¢o(K) < 1.
@ If there are K modes then Q. (K) — 1 as the modes
separate. If the K modes get closer together,
Qx(K) — 1/K.
@ Again, ¢..(K) seems to assess stability.
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Bayesian Stability

What next?

@ Finish giving an interpretation for the sense of stability the
method is evaluating...how proximity to cluster boundaries
affect Q. (K).

@ Must verify more extensively that the optimization gives an
intuitively reasonable number of clusters in standard
cases. Maybe look at mixtures of normals?
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Conclusions

Implications

@ The impossibility theorem and rates applies to clusterings
— doesn’t matter how they were generated.

@ Result not dependent on loss function or strong
hypotheses; just how separated cluster centers are.

@ For typical n, say 30-50, and typical clusterings, you really
want 10% or more non-noise variables for reliable
clustering. For nlarge, say 100-200, must have 5%.

@ Stability looks like it can be used to get a consistent
selection of the number of clusters — if a reasonable
collection of clusterings Pk is used.

@ Stability criterion seems to respond to boundary regions.
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