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.. Basic Setting

Imagine n points in D-dimensional space, say
xi = (x1,i , . . . , xD,i) for i = 1, . . . , n. They often group
together with some points closer to each other and some
points farther apart.
Our goal is to put the points that ‘belong together’ in the
same set and define different sets for the points that don’t
belong together.
Such a set is called a cluster; a set of clusters is called a
clustering (of the points).
Thus we have P = {P1, . . . ,PK} where the Pk ’s are disjoint
and ∪kPk = S = {xi , . . . , xn}.
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.. Statistical Model

Think in terms of a signal plus noise model

Y = x + ε,

where Y, x, and ε are D × n dimensional matrices.
The D-dimensional data points in the columns of Y come
from n non-random but unknown D-dimensional columns
xi of x plus a column from the random noise matrix ε.
The entries in Y are the only values that are available to
the experimenter.
The xi ’s are non-stochastic, represent ‘centroids’ and
include multiplicity.
Think of high dimensional, low sample size, i.e. large D
and small n.
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.. Cluster over Samples

Two ways: Cluster over samples, i.e., over n vectors of
length D, to find relationships among subjects.
Or: Cluster over variables, i.e., over D vectors of length n
to find relationships among explanatory variables.
We focus on the first since that is often the primary goal.
The problem: Evaluating different clusterings by a squared
error cost function is only possible when the sum of
squared distances between the xi ’s, determined by the
clusterings, has a rate at least

√
D as D increases.

Otherwise, meaningful clustering is not possible: Any
ordering over clusterings is indistinguishable from random.
Implication: Must do variable selection before clustering.
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.. Cost Function

Given n points and a number of clusters K ≤ n, a
partitioning P = {P1,P2, ...,PK} is a set of K non-empty,
disjoint exhaustive subsets of {1,2, ..., n}.
Given a partitioning P = {P1,P2, ...,PK} on a set of data
points Y ∈ RD×n, the squared error cost function is

cost(Y,P) =
∑

k

∑
i∈Pk

∥Y:i − Yk∥2
2

where Y:i = (Y1i ,Y2i , ...,YDi), Yk= mean{Y:i i ∈ Pk} is the
k -th cluster mean.
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.. Differences of Cost Functions

Let Yd = (Yd1, . . . ,Ydn), xd = (xd1, . . . , xdn), and
εd = (εd1, . . . , εdn) for each d = 1, . . . ,D.
Rewrite cost into dimensional components to see there is
an n × n matrix A = A(P) so that

cost(Y,P) =
D∑

d=1

YT
d AYd = trace[YT AY].

Given two partitions P and Q, each has it’s matrix A so
there exists a matrix B = B(P,Q)

cost(Y,P)− cost(Y,Q) = trace[YT BY].
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.. Properties of B = B(P ,Q)

Write Zd = YT
d BYd where Yd = xd + εd . Not hard to show:

EεT
d Bεd = 0
EZd = xT

d Bxd

Zd = cost(Yd ,P)− cost(Yd ,Q)

= (xd + εd)
T B(xd + εd)

As events,
{∑D

d=1 Zd ≥ 0
}
= {cost(Y,P) ≥ cost(Y,Q)}.

So, if P(
∑D

d=1 Zd ≥ 0) → 1/2 means P is as good as Q.
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.. Impossibility as D → ∞

Let Yd , xd , and εd as before and suppose P and Q are any
two distinct partitions of the n data points into K clusters,
with cost difference matrix B. If Condition F holds and if

1√
D

D∑
d=1

xT
d Bxd → 0

then
P (cost(Y,P) ≤ cost(Y,Q)) → 1

2
as D → ∞.
This rests on a CLT for the Zd ’s.
Condition F holds whenever the ε’s are continuous with IID
components.
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.. Standard Cases

Note that
∑

d xT
d Bxd = oP(

√
D) is trivially satisfied if∑

d ∥xd∥2
2 = oP(

√
D).

The condition on the xd ’s is tight. If

D∑
d=1

xT
d Bxd = O(

√
D)

then
∑

d Zd/
√

D may converge to a normal distribution
shifted by a non-zero constant having a non-zero mean.
More, a higher rate of growth would mean that the
informative components eventually win out over the noise.
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.. Corollary for Finite Dimensional Subspaces

It is often assumed that the true data is ‘sparse’ in the
sense that a small number of features contain almost all
the information.
However, we do not know which those are.
The Corollary considers this case to emphasize that
considering all the components of the dataset can make
matters worse.
Corollary: Suppose Y = x+ ε, and suppose the columns of
x vary over a fixed finite-dimensional subspace S ⊂ RD as
D increases. If the components of ε are IID then

ξD = P (cost(Y,P) ≤ cost(Y,Q)) → 1
2

as D → ∞.
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.. Berry-Esseen Bounds on ξD

In the sparse case we can bound ξD as a function of D.
Berry-Esseen Theorem: Let V1, . . . ,VD be IID with
EVd = 0, EV 2

d = σ2, and E |Vd |3 = ρ < ∞. Let
VD = 1

D
∑D

d=1 Vd , and let FD be the cumulative distribution
function of

√
DVD/σ.

Then there exists a constant δ such that

|Fn(t)− Φ(t)| ≤ δρ

σ3
√

D

Φ(t) is the DF of N(0,1) and δ ≤ 0.7655.
Assume the εid ’s have finite sixth moment and be IID along
the dimension component d .
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.. Decomposition: Signal vs. Noise:

Suppose the first c dimension components are the only
ones with non-zero signals.
We have

c∑
d=1

Zd =

[
c∑

d=1

xT
d Bxd

]
+

[
c∑

d=1

εT
d Bεd +

c∑
d=1

εT
d Bxd

+
c∑

d=1

xT
d Bεd

]
.

= C + Vc

This defines C as a constant and Vc as a sum of normal
and Chi-square random variables.
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..
√

D bounds on ξD

Suppose the later D − c components are drawn from an
IID noise distribution with finite sixth moment. Then for
α = α(D) satisfying

e−α(D)/8
√

D
→ 0

we have that

ξD ∈ [Φ∗(−aD)− bD,Φ
∗(−aD) + bD]

where and Φ∗ indicates the result of integrating out α′ from
a normal distribution conditioned on α′ where Vc = α′ for
α′ < α and multiplied by 1/P({Vc ≤ α}); −aD is the
argument over which the integration is done.
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.. More notation...

In the theorem,

aD =
C + α′

σ
√

D − c
, bD =

δρ

σ3
√

D − c
σ2 = E(cost(Yd ,P)− cost(Yd ,Q))2 = E(εT

d Bεd)
2,

ρ = E |cost(Yd ,P)− cost(Yd ,Q3) = E |εT
d Bεd |3

The confidence intervals are distorted by the integration,
however, the rate is preserved for each α′ > α giving an
overall

√
D convergence.

We require α = o(ln D) to control a probability conditioned
on Vc ≥ α to apply a Berry-Esseen Theorem pointwise in
α′ < α.
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.. Corollary

In principle α = o(ln D), can swamp the effect of C.
However, in calculating these bounds on the cost curves
we used α = 0 and obtained reasonable results. This may
mean the o(ln D) only takes effect for very large D or that
the bound using α is loose.
Corollary: The asymptotic convergence of ξD − 1/2 to 0
has rate at most O(1/

√
D).

Can generalize: Other cost functions, weaker hypotheses...
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.. Increasing Noise Dimensions

If D for a set of n vectors grows and the difference in costs
of one clustering over another is calculated repeatedly
then a curve ξ = ξD can be given.
We assume that the number of informative dimensions is
much smaller than the apparent D, a sort of sparsity.
Suppose a 2-dimensional data set of size n = 120 is
generated by taking 40 IID data points from
N((−0.5,1),diag(.22, .252)), N((0.5,1),diag(.152, .252))
and N((0,−0.75),diag(.452, .352)).
The next panel shows the correct clustering, Pbest , a bad
clustering Pbad , and a terrible clustering Prandom.
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.. Good, Bad, and Random Clusterings
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.. Adding Noise Dimensions

We extend the data to data of dimension D = 3,4, . . . by
adding D − 2 pure noise coordinates.
Then we computed ξD for 6 scenarios: Two choices of
partitions Pbest vs Pbad and Pbest vs Prand with three
choices of noise, Normal(0,1), χ2

2 − 2, and a Student-t4.
The blue curves are the actual curves of ξD.
The red curves are from the Berry-Esseen bounds. The
vertical distance between the two curves for fixed D is a
sort of ‘confidence interval’ for ξD.
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.. Bad vs Good for Normal, χ2
2, t4
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.. Random vs Good for Normal, χ2
2, t4
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.. Problems even in benign settings

With Pbad and Pgood we see that for n = 120 and 2
informative dimensions, by the time there are 20 to 30
variables the probability of distinguishing a good clustering
from a bad one can fall to .7 or less in squared error.
In all 3 cases with Pbad , by the time around D = 50-ish, it
becomes unreasonable to declare Pbad worse than Pbest .
While it is easier to distinguish between Prandom and Pbest ,
ξD still gets close enough to 1/2 once D is much over 100
to cause problems.
Reliability drops fastest for asymmetric noise (χ2

2 − 2),
slowest for normal. The t4 is in between.
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.. Proposed Stability Assessment

Fix D-dimensional data x1, . . . , xn and assume that for each
K we have a clustering of size K P̂K = {P̂K 1, . . . , P̂KK}.
Assume it’s centroid based with the property that

∀j x ∈ P̂Kj ⇔ d(x , µ̂Kj) ≤ d(x , µ̂Kj ′) j ̸= j ′

where

µ̂Kj =

∑n
i=1 xiχxi∈P̂Kj∑n
i=1 χxi∈P̂Kj

and d is a metric on RD.
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.. Assumptions

Each P̂K has a limit: ∃PK = {PK 1, . . . ,PKK} with

‘µ(PKj△P̂Kj) → 0′.

Assume that in the limit

∀j x ∈ PKj ⇔ d(x , µKj) ≤ d(x , µKj ′) j ̸= j ′

where
µKj = EX1χX1∈PKj .

This means µ̂Kj → µKj .
Let λ1, . . . , λK ≥ 0 IID have continuous prior DF F .
Consider the set

Ŝij(λ1, . . . , λK ) = {∀ℓ ̸= j λjd(xi , µ̂Kj) ≤ λℓd(xi , µ̂K ℓ)}

B Clarke Cluster Impos. + Stab.



. . . . . .

The Problem
Clustering Impossibility

Rate of Impossibility
Simulations

Bayesian Stability
Conclusions

.. Empirical criterion

The further apart the d(xi , µ̂Kj)’s are, the bigger the set of
λj ’s for which the inequality holds.

Integrating over λK = (λ1, . . . , λK ), restricting to P̂Kj ,
summing over j , and averaging over i = 1, . . . , n gives a
Bayesian empirical stability objective function by setting

Qn(K ) =
K∑

j=1

1
n

n∑
i=1

I{xi∈P̂Kj}

∫
IŜij (λK )

(Xi)dF (λK
1 )
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.. Population Version

Consider the set

Sij(λ1, . . . , λK ) = {∀ℓ ̸= j λjd(xi , µKj) ≤ λℓd(xi , µK ℓ)}

Integrating over λK = (λ1, . . . , λK ), restricting to PKj ,
summing over j , and averaging over i = 1, . . . , n gives a
Bayesian empirical stability objective function by setting

Q∞(K ) =
K∑

j=1

EI{X1∈PKj}

∫
IS1j (λK )(X1)dF (λK

1 )

We want Qn(K ) → Q∞(K ).
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.. Does Qn(K ) → Q∞(K )?

Write

ϕ̂j(x) =
∫

I({∀ℓ ̸=j λj d(x ,µ̂Kj )≤λℓd(x ,µ̂Kℓ)})dF (λK
1 )

and

ϕj(x) =
∫

I({∀ℓ ̸=j λj d(x ,µKj )≤λℓd(x ,µKℓ)})dF (λK
1 )

Then, it’s enough to show that for j = 1, . . . ,K ,

1
n

n∑
i=1

ϕ̂j(Xi)I(xi∈P̂Kj) → Eϕj(X )I(X∈PKj).
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.. Convergence result for Qn)K )

When µ̂j → µj for j = 1, . . . ,K it can be shown that

Qn(K ) → Q∞(K ).

For any finite range of K we also have

sup
K∈[K1,K2]

|Qn(K )− Q∞(K )| → 0

as n → ∞.
Now, for each K choose a single clustering, perhaps by
K -means (optimal for that K ) or by different choices of
cutoff on a dendrogram for hierarchical clustering.

B Clarke Cluster Impos. + Stab.



. . . . . .

The Problem
Clustering Impossibility

Rate of Impossibility
Simulations

Bayesian Stability
Conclusions

.. Consistency for K

Let
K̂ = arg max

K∈[K1,K2]
Qn(K )

and let
KT = arg max

K∈[K1,K2]
Q∞(K ).

So, if we have that on [K1,K2] all µ̂Kj → µKj , then we have
that for all K , Qn(K ) → Q∞(K ) uniformly.
Since [K1,K2] is compact and Q∞(K ) is (trivially) cntinuous
on [K1,K2] we can invoke the Newey-McFadden Theorem.
Conclusion: K̂ → KT , i.e., we have consistency for the
choice of K subject to Q∞ being an intuitively reasonable
encapsulation of how many clusters there should be.
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.. Properties of Q∞(K )

For K = 2, let µj = E(X |Cj) and Dj = d(X , µj). Let
Λ1 = λ2/λ1, Λ2 = λ1/λ2 and let GΛu be the survival
function for Λu.
Can show:

Q∞(2) = EID1/D2≤1GΛ1(D1/D2) + EID2/D1≤1GΛ2(D2/D1).

So, if D1/D2 small on P1 then the first term is near P(P21
and P21 is stable. If D2/D1 small on P22 then the second
term is near P(P22) This means Q∞(2) is near 1 and so
should Q̂n(2) be. Generalizes to K clusters.
That is, if the distribution of X concentrates at µ1 and µ2
then Q∞(2) goes to 1.
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.. More properties...

For D1/D2 large on P21, i.e., D1/D2 → 1 we expect many
points in P21 to be close to the boundary between P21 and
P22. Similarly if D2/D1 close to 1.
In these cases,

Q∞(2) → P(P21)GΛ1(1) + P(P22)GΛ2(1) = 1/2.

Since 1/2 ≤ Q∞(2) ≤ 1, it seems reasonable to regard
Q∞(K ) as indicating stability.
In general, 1/K ≤ ϕ∞(K ) ≤ 1.
If there are K modes then Q∞(K ) → 1 as the modes
separate. If the K modes get closer together,
Q∞(K ) → 1/K .
Again, ϕ∞(K ) seems to assess stability.
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.. What next?

Finish giving an interpretation for the sense of stability the
method is evaluating...how proximity to cluster boundaries
affect Q∞(K ).
Must verify more extensively that the optimization gives an
intuitively reasonable number of clusters in standard
cases. Maybe look at mixtures of normals?
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.. Implications

The impossibility theorem and rates applies to clusterings
– doesn’t matter how they were generated.
Result not dependent on loss function or strong
hypotheses; just how separated cluster centers are.
For typical n, say 30-50, and typical clusterings, you really
want 10% or more non-noise variables for reliable
clustering. For n large, say 100-200, must have 5%.
Stability looks like it can be used to get a consistent
selection of the number of clusters – if a reasonable
collection of clusterings PK is used.
Stability criterion seems to respond to boundary regions.
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