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Motivating Example

A longitudinal observational study, non-surgical periodontal
treatment effect on tooth loss

There are 722 subjects for 7-year follow up

The main covariate: non-surgical periodontal treatment (1 or
0) for three years before the study

Other covariates:

Gender
Age
Variables to measure teeth health condition

There is subject-specific variation among subjects
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A Graph of Longitudinal Data

3 / 37



Longitudinal Data

Tooth loss and other covariates are recorded repeatedly over a
7-year period

Measurements within the same subject are correlated

Major approaches for correlated data:

Marginal models
Mixed-effects models
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Marginal Models

The inference of the population average is the main focus

Generalized Estimating Equations (GEE) (Liang & Zeger,
1986); Quadratic Inference Functions (Qu et al., 2000):

Does not require likelihood function
Consistent even if the correlation structure is misspecified
Estimator is efficient with the correct working correlation
Provides robust sandwich variance estimator
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Mixed Models

There is heterogeneity among subjects

Able to incorporate several sources of variation: random
effects and serial correlation

Limitations:

Requires parametric assumption for random effects, usually
normality assumption
Involves high dimensional integration for non-normal random
effects
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Existing Methods for Generalized Linear Mixed-Effects
Model

Penalized quasilikelihood (PQL) (Breslow and Clayton, 1993)

Hierarchical generalized linear model (HGLM) (Lee and
Nelder, 1996, 2001)

Conditional likelihood (Jiang, 1999)

Conditional second-order generalized estimating equations
(Vonesh et al., 2002)
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Limitations and Assumptions

Require normal assumption for random effects (PQL, second
order GEE).

Require estimation of variance components (PQL and
conditional second order GEE).

Do not incorporate serial correlation (PQL, HGLM and
conditional likelihood).
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Advantages of the Proposed Approach

A new approach using the conditional quadratic inference
function

Does not require distribution assumption of random effects

Does not require the likelihood function, only involves the first
two moments

Accommodates variations from both random effects and serial
correlations

Does not require estimation of unknown variance components
or correlation parameters

Challenge: the dimension of random effects parameters
increases as the sample size increases

9 / 37



GEE

Generalized estimating equations (Liang & Zeger,1986) can be
represented as

N∑
i=1

(
∂µi

∂β

)′
A
−1/2
i R−1(α)A

−1/2
i (yi − µi ) = 0,

where yi = (yi1, ..., yit) is the response vector for the ith subject,
µi = E (yi ) = (µi1, . . . , µit) is the mean vector for the ith subject,
Ai is a diagonal matrix of variance components of yi ,
and R(α) is the working correlation
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Representation of Correlation Matrix

Approximate R−1 by
∑m

j=1 ajMj

M1, . . . ,Mm are known basis matrices
a1, . . . , am are unknown constants

The linear representation can accommodate most common
working correlation structures such as AR-1, exchangeable or
block diagonal
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QIF Approach (Qu et al., 2000)

GEE:
∑N

i=1

(
∂µi
∂β

)′
A
−1/2
i R−1(α)A

−1/2
i (yi − µi ) = 0

Substitute R−1 ≈
∑m

j=1 ajMj into GEE,

g =
∑

µ̇i
′A
−1/2
i (

m∑
j=1

ajMj)A
−1/2
i (yi − µi )
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QIF Approach

Define the extended score

ḠN(β) =
1

N

∑
gi (β) =

1

N


∑

(µ̇i )
′A
−1/2
i M1A

−1/2
i (yi − µi )

...∑
(µ̇i )

′A
−1/2
i MmA

−1/2
i (yi − µi )


The GEE is a linear combination of ḠN(β)

The QIF estimator β̂ = arg min Ḡ ′NC−1
N ḠN , where

CN = (1/N)
∑

gi (β)g ′i (β)

The QIF estimator β̂ is more efficient than the GEE estimator
under the misspecified correlation structure

It provides an objective and inference function for model
checking and testing
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Mixed-Effects Model

A mixed effects model conditional on random effects bi for
longitudinal data is modeled as

E (yit |xit , bi ) = µ(x ′itβ + z ′itbi ), i = 1, ...N, t = 1, ..., ni

yit is the response variable

xit are the covariates

zit are the covariates for random effects

β are the fixed-effect parameters

b = (b1, .., bN) are the random-effects parameters, have the
same order of dimension as the sample size
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Penalized Conditional Quasilikelihood

The conditional quasi-likelihood of y given the random effects
b is lbq = − 1

2φ

∑N
i=1 di (yi , µ

b
i ), where

di (y , u) = −2
∫ u
y

y−u
aiv(u)du

Require a constraint to ensure identifiability: PAb = 0

PA is the projection matrix on the null space of (I − PX )Z

Penalized conditional quasilikelihood (Jiang, 1999)

lq = − 1

2φ

N∑
i=1

di (yi , µ
b
i )− 1

2
λ|PAb|2

The penalty λ is fixed, and is chosen as 1 in Jiang (1999)

Jiang’s approach does not converge
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Conditional Extended Score Corresponding for β and b

Take the derivatives of the penalized conditional
quasilikelihood lq corresponding to β and b

The quasi-score equation corresponding to the fixed effect β is

N∑
i=1

(
∂µb

i

∂β
)′(Wb

i )−1(yi − µb
i ) = 0.

The quasi-score equation corresponding to the random effects
b is

h1 = (
∂µ

b1
1

∂b1
)′(Wb

1)−1(y1 − µb1
1 )− λ∂PAb

∂b1
PAb = 0

...

hN = (
∂µ

bN
i

∂bN
)′(Wb

N)−1(yN − µbN
N )− λ∂PAb

∂bN
PAb = 0


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Extended Score for β

Construct extended scores associated with the fixed effect β

G f
N =

1

N

N∑
i=1

g f
i (β) =

1

N


∑N

i=1(
∂µb

i
∂β )′A−1/2

i M1A
−1/2
i

(
yi − µb

i

)
...∑N

i=1(
∂µb

i
∂β )′A−1/2

i MmA−1/2
i

(
yi − µb

i

)
 .

Conditional on b,

β̂ = arg min(Ḡ f
N)′(C̄ f

N)−1(Ḡ f
N)

where C̄ f
N = (1/N)

∑
g f
i (β)g f

i (β)′
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Extended Score Corresponding to b

For the ith subject, the quasi-score associated with the
random effect:

hi = (
∂µbi

i

∂bi
)′(Wb

1)−1(y1 − µbi
1 )− λ∂PAb

∂bi
PAb = 0

Substitute Wi = A
1
2
i RA

1
2
i and assume independent structure

for R

The extended score for the random effect b for subject i

g r
i =

(
(
∂µ

bi
i

∂bi
)′A−1

i (yi − µbi
i )

λ∂PAb
∂bi

PAb

)

In a simple random intercept model, ∂PAb
∂bi

PAb =
∑N

i=1 bi/N

Jiang (1999) only considers the constraint for the random
effect PAb = 0

This constraint is not sufficient to ensure algorithm
convergence
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Extended Score for b

The convergence problem becomes more serious when there
are high-dimensional random effects involved in the model

We include an addditional penalty term λbi which also
controls the variance of the random effects estimators to
ensure that the algorithm converges

The new extended scores for b are

g r =
{

(g r
1)′, λb′1, . . . , (g

r
N)′, λb′N

}′
For given fixed effects β, b̂ = arg min(g r )′(g r )

No replicate for each g r
i , so there is no weighting matrix in

the estimation
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Regularity Conditions

The parameter space S is compact

There is a unique β0 ∈ S which satisfies E [g(β0|b0)] = 0

The derivative of the score function ġi ,b(β̂|b0) = Op(1)

Expectation of the continuous score E [g(β|b)] is continuous
and differentiable in both β and b

The weighting matrix CN(β|b)→a.s. C0(β|b) and
AN(β|b)→a.s. A0(β|b), where C−1

0 (β|b) = A0(β|b)A0(β|b)′

The estimating functions conditional on the estimated random
effects converges to 0 in probability

E [E{gi (β0|b̂)}] p→ 0 as N →∞

This condition is much weaker than the consistency for the
random effects estimator
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Asymptotic Properties

Theorem 1: Under some regularity conditions, the QIF estimator
for the fixed effects β̂1 has the following properties as N →∞

I. (Consistency) β̂1 →p β0.

II. (Asymptotic Normality)
√

N(β̂1 − β0)
d→ N(0,Ω1)

Difficulties:

No normality assumption for the random effects

b̂ is not required to be a consistent estimator for true b

III If b̂ is a consistent estimator of b0, then
Ω1 = limn,N→∞ Q̈−1

ββ (β̂1|b̂) = Ω0, where

Q̈−1
ββ (β̂1|b̂) ≈ {ĠN,β(β̂1|b̂)C−1

N (b̂)ĠN,β(β̂1|b̂)}−1
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Algorithm

For a fixed λ, the iterative algorithms are
1 Start with an initial estimator β̂
2 Given β̂ as the fixed effects estimator, estimate the random

effects by minimizing (g r )′(g r ), obtain random effects
estimator b̂

3 Given random effect estimator b̂ obtained in Step 2, update β̂
by minimizing (Ḡ f

N)′(C̄ f
N)−1(Ḡ f

N), iterate between Step 2 and 3
until convergence is reached

The tuning parameter λ can be chosen by minimizing a
BIC-type of criteria

N(Ḡ f
N)′(C̄ f

N)−1(Ḡ f
N) + (log N)(PAb)′Σ−1

b (PAb).
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Handling Unbalanced Data

For unbalanced longitudinal data, treat as missing data case

Create the largest cluster with a size T which contains time
points for all possible measurements

Let Ti be the ith cluster size, define the T × Ti

transformation matrix Λi

By removing the columns of the identity matrix corresponding
to the missing observations
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Handling Unbalanced Data

Define y∗i = Λiyi , µ
∗
i (β̃) = Λiµi (β̃), and µ̇∗i (β̃) = Λi µ̇i (β̃)

Components in y∗i , µ∗i and µ̇∗i are the same as for the
non-missing observations but are 0 for the missing components

Let A∗i = ΛiAiΛ
T
i and (A∗i )−1 = ΛiA

−1
i ΛT

i , the marginal
variance A∗i is 0 for the missing observations

Assume that R is the common working correlation matrix for
the fully observed responses

The basis matrices M1, . . . ,Mm could still be used to model
the inverse of the correlation matrix for all clusters

The utilization for these basis matrices are different for
different clusters

After transformation, the cluster size of the unbalanced data
becomes equal

24 / 37



Simulation Set-up for Binary Data

Sample size: 100 (i = 1, . . . , 100); cluster size: 4 or 5

The conditional correlated binary outcomes are generated from

logit(µb
i ) = β0 + b0i + xi (β1 + b1i ), corr(yi |xi , b0i , b1i ) = R

The covariate xi is generated from a uniform (0.5, 1.5),
β0 = −0.3, β1 = 0.3

Correlation structures: independent, exchangeable, or AR-1,
correlation parameter ρ = 0.7

Both random intercept b0i and random slope b1i are from a
bimodal distribution of a rescaled Beta(0.5, 0.5)

Apply mixed QIF with three types of working correlations,
PQL, the SAS GLIMMIX and the NLMIXED
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Results for Fixed-Effects β0

Table: MSE for the estimator of the intercept β0 = −0.3 for binary
responses when ρ = 0.7 from 200 simulations.

N = 100
Method True correlation

Independent Exchangeable AR-1
QIF (ind) 0.1464 0.1373 0.1298
QIF (exch) 0.1494 0.0762 0.1080
QIF (AR-1) 0.1499 0.0842 0.0802

PQL 0.1517 1.8556 0.6628

GLIMMIX (Ind) 0.16041 1.0159 0.39122

GLIMMIX (AR-1) 0.17133 1.06164 0.12265

NLMIXED 0.15056 1.1474 0.5126

Number of non-convergence outcomes from GLIMMIX and NLMIXED
procedures are tabulated as follows: 1. 173; 2. 7; 3. 174; 4. 1; 5. 174; 6. 7.
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Results for Fixed-Effects β1

Table: MSE for the estimator of the intercept β1 = 0.3 for binary
responses when ρ = 0.7 from 200 simulations.

N = 100
Method True correlation

Independent Exchangeable AR-1
QIF (ind) 0.1414 0.1072 0.0979
QIF (exch) 0.1425 0.0534 0.0732
QIF (AR-1) 0.1447 0.0578 0.0494

PQL 0.1451 1.1949 0.4354

GLIMMIX (Ind) 0.14451 1.2468 0.35092

GLIMMIX (AR-1) 0.16563 1.28604 0.07555

NLMIXED 0.14486 0.9600 0.3971

Number of non-convergence outcomes from GLIMMIX and NLMIXED
procedures are tabulated as follows: 1. 173; 2. 7; 3. 174; 4. 1; 5. 174; 6. 7.
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Results for Random-Effects of β0

Table: Mean and the standard errors of the variance component
estimator of β0 for binary responses when ρ = 0.7 from 200 simulations.
The true variance of the random intercept is 0.015

N = 100
Method True correlation

Independent Exchangeable AR-1
QIF (ind) 0.00510.0000 0.01530.0000 0.01330.0000

QIF (exch) 0.00510.0000 0.01540.0000 0.01330.0000

QIF (AR-1) 0.00510.0000 0.01540.0000 0.01340.0000

PQL 0.46020.0706 52.60745.8626 12.44551.0486

GLIMMIX (Ind) 0.08121
0.0043 11.26950.2750 4.85322

0.0979

GLIMMIX (AR-1) 0.16223
0.0084 11.43774

0.3306 0.56405
0.0313

NLMIXED 0.05156
0.0067 25.43580.6391 8.50880.2236

Number of non-convergence outcomes from GLIMMIX procedures are
tabulated as follows: 1. 173; 2. 7; 3. 174; 4. 1; 5. 174; 6. 7.
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Results for Random-Effects of β1

Table: Mean and the standard errors of the variance component
estimator of β1 for binary responses when ρ = 0.7 from 200 simulations.
The true variance of the random intercept is 0.015

N = 100
Method True correlation

Independent Exchangeable AR-1
QIF (ind) 0.00730.0000 0.02620.0000 0.02120.0000

QIF (exch) 0.00730.0000 0.02630.0000 0.02130.0000

QIF (AR-1) 0.00730.0000 0.02630.0000 0.02130.0000

PQL 0.35730.0592 23.64982.0657 3.05420.3737

GLIMMIX (Ind) 0.07631
0.0049 8.97040.3339 2.60712

0.1082

GLIMMIX (AR-1) 0.09323
0.0063 9.12584

0.3857 0.21595
0.0136

NLMIXED 0.03356
0.0060 3.28560.1699 1.40550.1175

Number of non-convergence outcomes from GLIMMIX procedures are
tabulated as follows: 1. 173; 2. 7; 3. 174; 4. 1; 5. 174; 6. 7.
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Distribution of the Random-Effect Estimators

Figure: Histogram of the random slope estimator from the binary data
sets with N = 100 and ρ = 0.7. The true correlation structure of the
data set is AR(1), and the estimators are obtained by the mixed-effect
QIF method with AR(1) working correlation. The solid line provides the
random-effects density function generated from the true Beta distribution.
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A Binary Data Example

An observational study, non-surgical periodontal treatment
versus tooth loss

722 subjects, 7-year follow up

Unbalanced data

550 (77%) patients have at least 5 years of follow up

The response variable is tooth loss, a binary variable

Apply a random-intercept model, the heterogeneity of patients
is modeled as random effects

To check whether the random-intercept model assumption is
satisfied, the Chi-squared goodness-of-fit test (Qu et al.,
2000) can be applied
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Covariates
Non-surgical periodontal treatment:

1 if the patient continuously receives the treatment for all
three years; and 0 otherwise

Other covariates:
Gender
Age
Variables measuring the health condition of the teeth

Number of teeth (Teeth)
Number of diseased sites (Sites)
Mean pocket depth of diseased sites (Pddis)
Mean pocket depth of all sites (Pdall)
Number of non-periodontal treatments (Dent)
Number of non-periodontal preventive procedures (Prev)
Number of surgical treatments over the 3-year baseline period
(Surg)

The logistic model is

logit(µb
ij ) = β0 + bi + β1Genderij + β2Ageij + β3Teethij + β4Sitesij + β5Pddisij

+β6Pdallij + β7Surgij + β8Dentij + β9Previj + β10Nonsurgij
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Comparison of PQL, QIF and GLIMMIX

Table: Comparison of the Mixed-Effect QIF and Other Approaches for
the Periodontal Data

X QIFind QIFCS QIFAR PQL GLMMind GLMMAR NLM
Int -7.1549 -7.4769 -8.1300 -8.0824 -9.3476 -9.5602 -6.8281
s.e. 1.3630 1.3476 1.3637 1.6265 1.7433 1.7804 1.5600
z-value -5.2492 -5.5482 -5.9615 -4.9691 -5.3620 -5.3697 -4.3770
Gender 0.2257 0.2138 0.2409 0.2383 0.2317 0.2387 0.2526
s.e. 0.1522 0.1530 0.1589 0.1720 0.1766 0.1802 0.1588
z-value 1.4828 1.3974 1.5155 1.3865 1.3120 1.3246 1.5907
Age 0.0168 0.0175 0.0152 0.0202 0.0279 0.0291 0.0173
s.e. 0.0105 0.0104 0.0108 0.0123 0.0128 0.0131 0.0114
z-value 1.5948 1.6781 1.4072 1.6427 2.1772 2.2305 1.5109
Teeth -0.0334 -0.0325 -0.0177 -0.0353 -0.0388 -0.0406 -0.0440
s.e. 0.0246 0.0241 0.0242 0.0271 0.2767 0.0282 0.0254
z-value -1.3591 -1.3518 -0.7295 -1.3010 -1.4051 -1.4385 -1.7323
Sites 0.0024 0.0025 -0.0042 -0.0005 -0.0042 -0.0048 0.0032
s.e. 0.0097 0.0099 0.0090 0.0102 0.0105 0.0107 0.0098
z-value 0.2468 0.2555 -0.4684 -0.0524 -0.4029 -0.4440 0.3301
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Cont’d

X QIFind QIFCS QIFAR PQL GLMMind GLMMAR NLM
Pddis 0.2689 0.3469 0.1948 0.2719 0.2944 0.2899 0.2587
s.e. 0.1864 0.1790 0.1904 0.2293 0.2370 0.2418 0.2124
z-value 1.4428 1.9377 1.0232 1.1866 1.2422 1.1989 1.2180
Pdall 0.4644 0.3960 0.7792 0.6425 0.8465 0.8885 0.4832
s.e. 0.3880 0.3946 0.3626 0.4200 0.4329 0.4423 0.4020
z-value 1.1968 1.0035 2.1489 1.5292 1.9554 2.0088 1.2020
Surg -0.1377 0.0039 -0.1636 -0.0932 -0.1020 0.1304 -0.1087
s.e. 0.2741 0.2336 0.2863 0.2901 0.2019 0.2034 0.2790
z-value -0.5024 0.0168 -0.5716 -0.3213 -0.5052 0.6411 -0.3896
Dent 0.1074 0.1132 0.1158 0.1205 0.1353 0.1365 0.1172
s.e. 0.0083 0.0082 0.0086 0.0080 0.0061 0.0061 0.0084
z-value 12.9164 13.8498 13.4963 15.0844 22.3636 22.4433 13.9126
Prev 0.0404 0.0271 0.0169 0.0353 0.0381 0.0395 0.0363
s.e. 0.1349 0.1353 0.1398 0.1500 0.0988 0.0990 0.1378
z-value 0.2992 0.2004 0.1207 0.2420 0.3856 0.3988 0.2636
Nonsurg -0.2360 -0.2037 -0.2149 -0.2207 -0.1995 -0.2041 -0.2266
s.e. 0.1500 0.1504 0.1577 0.1767 0.1839 0.1876 0.1632
z-value -1.5732 -1.3548 -1.3624 -1.2500 -1.0848 -1.0880 -1.3885

In general, the standard errors of the conditional QIF are
smaller than the PQL
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Discussion

The advantages of the new approach:

Incorporates both serial correlation from repeated
measurements and heterogeneous variation from individuals

Does not require the distribution assumption for random
effects

Does not require specifying the likelihood

Does not need to estimate the unknown variance components
or nuisance parameters associated with correlations
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Discussion (Cont’d)

Provides consistent and asymptotic normality for the
fixed-effects estimator

Outperforms the PQL, GLIMMIX, NLMIXED approaches
when serial correlation is introduced, especially for binary
response data

Computationally fast even if the dimension of the
random-effects parameters increases as the sample size
increases

GLIMMIX procedure tends to have a convergence problem
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Thank you for the attention.
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