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Motivating Example

@ A longitudinal observational study, non-surgical periodontal
treatment effect on tooth loss

There are 722 subjects for 7-year follow up

The main covariate: non-surgical periodontal treatment (1 or
0) for three years before the study

@ Other covariates:

e Gender

o Age

e Variables to measure teeth health condition

There is subject-specific variation among subjects

)
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A Graph of Longitudinal Data
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Longitudinal Data

@ Tooth loss and other covariates are recorded repeatedly over a
T-year period
@ Measurements within the same subject are correlated

@ Major approaches for correlated data:

e Marginal models
o Mixed-effects models
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Marginal Models

@ The inference of the population average is the main focus

e Generalized Estimating Equations (GEE) (Liang & Zeger,
1986); Quadratic Inference Functions (Qu et al., 2000):

Does not require likelihood function

Consistent even if the correlation structure is misspecified
Estimator is efficient with the correct working correlation
Provides robust sandwich variance estimator
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Mixed Models

@ There is heterogeneity among subjects

@ Able to incorporate several sources of variation: random
effects and serial correlation

@ Limitations:
e Requires parametric assumption for random effects, usually
normality assumption
e Involves high dimensional integration for non-normal random
effects

6
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Existing Methods for Generalized Linear Mixed-Effects
Model

Penalized quasilikelihood (PQL) (Breslow and Clayton, 1993)

Hierarchical generalized linear model (HGLM) (Lee and
Nelder, 1996, 2001)

Conditional likelihood (Jiang, 1999)

Conditional second-order generalized estimating equations
(Vonesh et al., 2002)
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Limitations and Assumptions

@ Require normal assumption for random effects (PQL, second
order GEE).

@ Require estimation of variance components (PQL and
conditional second order GEE).

@ Do not incorporate serial correlation (PQL, HGLM and
conditional likelihood).



Advantages of the Proposed Approach

A new approach using the conditional quadratic inference
function

Does not require distribution assumption of random effects

Does not require the likelihood function, only involves the first
two moments

Accommodates variations from both random effects and serial
correlations

Does not require estimation of unknown variance components
or correlation parameters

Challenge: the dimension of random effects parameters
increases as the sample size increases



GEE

Generalized estimating equations (Liang & Zeger,1986) can be
represented as

N 8 N/
> ( “') AR Q)AT (v — i) = 0,

where y; = (yi1, ..., yit) is the response vector for the ith subject,
pi = E(yi) = (pi1, - - -, ir) is the mean vector for the ith subject,
A; is a diagonal matrix of variance components of y;,

and R(«) is the working correlation
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Representation of Correlation Matrix

e Approximate R~ by Z ",aM
e My, ..., My, are known basis matrices
@ ai,...,am are unknown constants
@ The linear representation can accommodate most common
working correlation structures such as AR-1, exchangeable or
block diagonal
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QIF Approach (Qu et al., 2000)

o GEE: S, (94) ATY2R M)A (s — i) =0
o Substitute R™! ~ >ty ajM; into GEE,

g =Y ilA; 1/22 MYA 2y )
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QIF Approach

@ Define the extended score

1 ]

) Z(ﬂi)'ATl/leAfl/z(Yi — 1)
Gn(B) = N Zgi(ﬁ) =N :

S (Y AT M ATy — i)

o The GEE is a linear combination of Gn(3)

@ The QIF estimator B = arg min C,’\,C,glél\,, where
Cn = (1/N) - &i(B)&i ()

@ The QIF estimator @ is more efficient than the GEE estimator
under the misspecified correlation structure

@ It provides an objective and inference function for model
checking and testing
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Mixed-Effects Model

A mixed effects model conditional on random effects b; for
longitudinal data is modeled as

E(y,'t’X,'t, b,') = /L(X,{tﬁ + Z,{tb,'), i=1,..N,t=1,....n;

Vit is the response variable
X;+ are the covariates
zj+ are the covariates for random effects

(3 are the fixed-effect parameters

b = (b, .., by) are the random-effects parameters, have the
same order of dimension as the sample size
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Penalized Conditional Quasilikelihood

@ The conditional quasi-likelihood of y given the random effects
bis /5 = —ﬁ vazl di(vi, 11?), where
di(y,u)=-2 fyu a{v_(llj) du

@ Require a constraint to ensure identifiability: Pab =0

@ Pj is the projection matrix on the null space of (I — Px)Z

Penalized conditional quasilikelihood (Jiang, 1999)
1 & 1
- = § (v Py _ = 2
Iq— 20 2 dl(.yI)lu’l) 2>‘|PAb|

@ The penalty A is fixed, and is chosen as 1 in Jiang (1999)
@ Jiang's approach does not converge
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Conditional Extended Score Corresponding for 3 and b

@ Take the derivatives of the penalized conditional
quasilikelihood /; corresponding to 3 and b

@ The quasi-score equation corresponding to the fixed effect 3 is

N 8,ub
(e W i~ ) =o0.
i=1
@ The quasi-score equation corresponding to the random effects
b is
opst _
o= (FE) (WD) (a — i) — A%GA2PAb =0

°N
hv = (i) (WR) ™y — up') = AGA2Pab = 0
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Extended Score for 3

@ Construct extended scores associated with the fixed effect 3

OuP \, 4 —1/2 —1/2
Z}\Izl( alé VA / MlAi / (yi - :“]io)

=2 \

N
= SN (YA VLAY (35— )
@ Conditional on b,

/3 = argmin(GR)'(C{) 1 (GR)

where Cf, = (1/N) 3" gf (B)g! (B)
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Extended Score Corresponding to b

@ For the ith subject, the quasi-score associated with the
random effect:

OPab

8/1,?" _ .
by = (Y W) o — ) = AT

Pab =
Ob: ab=0

11
@ Substitute W; = A? RA? and assume independent structure
for R
@ The extended score for the random effect b for subject i

9 l' - bi
g.r: 8/2)A1(y_lu’l)
’ AL Pyb
@ In a simple random intercept model, PAbP b= Z, 1 bi/N
e Jiang (1999) only considers the constraint for the random
effect Pab =10

@ This constraint is not sufficient to ensure algorithm
convergence
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Extended Score for b

@ The convergence problem becomes more serious when there
are high-dimensional random effects involved in the model

@ We include an addditional penalty term Ab; which also
controls the variance of the random effects estimators to
ensure that the algorithm converges

@ The new extended scores for b are
g" = {(&l) \bh,.. (gh)' Aby )

e For given fixed effects (3, b = argmin(g")'(g")
@ No replicate for each g/, so there is no weighting matrix in
the estimation

19/37



Regularity Conditions

The parameter space S is compact

There is a unique (g € S which satisfies E[g(8o|bo)] =0

The derivative of the score function &; ,(/|bo) = Op(1)
Expectation of the continuous score E[g(/3|b)] is continuous
and differentiable in both 5 and b

The weighting matrix Cn(5|b) —a.s. Co(5|b) and

An(BIb) —a.s. Ao(B]b), where Cg'(53|b) = Ao(/3|b)Ao(3|b)’
The estimating functions conditional on the estimated random
effects converges to 0 in probability

E[E{g,-(ﬁo][A))}] 20 as N — oo

This condition is much weaker than the consistency for the
random effects estimator

20 /37



Asymptotic Properties

Theorem 1: Under some regularity conditions, the QIF estimator
for the fixed effects §1 has the following properties as N — oo

I. (Consistency) B —p Do

Il. (Asymptotic Normality) v/N(5; — (o) 9, N(0,9Q1)
Difficulties:

@ No normality assumption for the random effects

e bis not required to be a consistent estimator for true b

Hl If bis a consister_1_t estimator of by, then
Q1 =limp oo Q,gﬂl(ﬁﬂb) = Qp, where
Qy5 (Brlb) ~ {Gn (B11b) Cy " (B) G, p(Bu| B)}
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Algorithm

e For a fixed A, the iterative algorithms are
@ Start with an initial estimator ﬂA
@ Given [ as the fixed effects estimator, estimate the random

effects by minimizing (g")'(g"), obtain random effects
estimator b

© Given random effect estimator b obtained in Step 2, update 3
by minimizing (Gf)'(Cf)~1(Gf), iterate between Step 2 and 3
until convergence is reached
@ The tuning parameter A can be chosen by minimizing a
BIC-type of criteria

N(Gy)' (CL) ™1 (Gy) + (log N)(Pab)'E,} (Pab).



Handling Unbalanced Data

@ For unbalanced longitudinal data, treat as missing data case

@ Create the largest cluster with a size T which contains time
points for all possible measurements

@ Let T; be the ith cluster size, define the T x T;
transformation matrix A;

@ By removing the columns of the identity matrix corresponding
to the missing observations
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Handling Unbalanced Data

o Define y7 = Ay, 165(5) = Aipsi(B), and fi£(B) = Nifui(5)

e Components in y*, 7 and ji} are the same as for the
non-missing observations but are 0 for the missing components

o Let A = NAA] and (AF)~! = A;ATIA the marginal
variance A7 is 0 for the missing observations

@ Assume that R is the common working correlation matrix for
the fully observed responses

@ The basis matrices My, ..., M,, could still be used to model
the inverse of the correlation matrix for all clusters

@ The utilization for these basis matrices are different for
different clusters

@ After transformation, the cluster size of the unbalanced data
becomes equal
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Simulation Set-up for Binary Data

@ Sample size: 100 (i = 1,...,100); cluster size: 4 or 5

@ The conditional correlated binary outcomes are generated from
logit(1?) = Bo + boi + xi(B1 + bu;), corr(yi|xi, boi, b1i) = R

@ The covariate x; is generated from a uniform (0.5, 1.5),
Bo=—-0.3, /1 =0.3

@ Correlation structures: independent, exchangeable, or AR-1,
correlation parameter p = 0.7

@ Both random intercept bg; and random slope b;; are from a
bimodal distribution of a rescaled Beta(0.5, 0.5)

@ Apply mixed QIF with three types of working correlations,
PQL, the SAS GLIMMIX and the NLMIXED
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Results for Fixed-Effects 3,

Table: MSE for the estimator of the intercept Sy = —0.3 for binary
responses when p = 0.7 from 200 simulations.

N =100
Method True correlation
Independent  Exchangeable AR-1

QIF (ind) 0.1464 0.1373 0.1298
QIF (exch) 0.1494 0.0762 0.1080
QIF (AR-1) 0.1499 0.0842 0.0802
PQL 0.1517 1.8556 0.6628
GLIMMIX (Ind) 0.1604" 1.0159 0.39122
GLIMMIX (AR-1) | 0.17133 1.0616% 0.1226°
NLMIXED 0.1505° 1.1474 0.5126

Number of non-convergence outcomes from GLIMMIX and NLMIXED
procedures are tabulated as follows: 1. 173; 2. 7; 3. 174; 4. 1; 5. 174; 6. 7.

26

37



Results for Fixed-Effects 34

Table: MSE for the estimator of the intercept $; = 0.3 for binary
responses when p = 0.7 from 200 simulations.

N =100
Method True correlation
Independent  Exchangeable AR-1

QIF (ind) 0.1414 0.1072 0.0979
QIF (exch) 0.1425 0.0534 0.0732
QIF (AR-1) 0.1447 0.0578 0.0494
PQL 0.1451 1.1949 0.4354
GLIMMIX (Ind) 0.1445! 1.2468 0.35097
GLIMMIX (AR-1) | 0.1656° 1.2860% 0.0755°
NLMIXED 0.1448° 0.9600 0.3971

Number of non-convergence outcomes from GLIMMIX and NLMIXED
procedures are tabulated as follows: 1. 173; 2. 7; 3. 174; 4. 1; 5. 174; 6. 7.
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Results for Random-Effects of 3,

Table: Mean and the standard errors of the variance component

estimator of Gy for binary responses when p = 0.7 from 200 simulations.

The true variance of the random intercept is 0.015

N =100

Method True correlation

Independent  Exchangeable AR-1
Q|F (ind) 0.00510.0000 0.01530.0000 0.01330.0000
QIF (exch) 0.00510.0000 0.01540.0000 0.01330.0000
QIF (AR-1) 0.00510.0000 0.0154¢.0000 0.01349.0000
PQL 0.4602[)‘0706 52~6074548626 12-44551.0486
GLIMMIX (Ind) 0.08123 0a3  11.269502750  4.85323 go79
GLIMMIX (AR-1) | 0.16223 0054  11.4377§ 3305  0.56403 4315
NLMIXED 0-05158.0067 25.43580.6391 8.50880.2236

Number of non-convergence outcomes from GLIMMIX procedures are
tabulated as follows: 1. 173; 2. 7; 3. 174; 4. 1, 5. 174; 6. 7.

28 /37



Results for Random-Effects of 31

Table: Mean and the standard errors of the variance component

estimator of (31 for binary responses when p = 0.7 from 200 simulations.

The true variance of the random intercept is 0.015

N =100

Method True correlation

Independent  Exchangeable AR-1
QIF (ind) 0.00730.0000 0.02620.0000  0.0212¢. 0000
Q|F (exch) 0.00730,0000 0.0263()‘0000 0.02130,0000
QIF (AR-1) 0.00730.0000 0.02630.0000 0.0213¢.0000
PQL 0.35730.0502 23.64985.0657  3.0542¢.3737
GLIMMIX (Ind) 0.0763% 5040 8.97049.3330 2.607132 1082
GLIMMIX (AR-1) | 0.09323 o063 0.12588 3557 0.21595 5136
NLMIXED 0.03358 4060 3.28560.1609  1.40550.1175

Number of non-convergence outcomes from GLIMMIX procedures are

tabulated as follows: 1. 173: 2. 7; 3. 174; 4. 1; 5. 174; 6. 7.
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Distribution of the Random-Effect Estimators

Figure: Histogram of the random slope estimator from the binary data
sets with NV =100 and p = 0.7. The true correlation structure of the
data set is AR(1), and the estimators are obtained by the mixed-effect
QIF method with AR(1) working correlation. The solid line provides the
random-effects density function generated from the true Beta distribution.
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A Binary Data Example

An observational study, non-surgical periodontal treatment
versus tooth loss

722 subjects, 7-year follow up

Unbalanced data

550 (77%) patients have at least 5 years of follow up
The response variable is tooth loss, a binary variable

Apply a random-intercept model, the heterogeneity of patients
is modeled as random effects

To check whether the random-intercept model assumption is
satisfied, the Chi-squared goodness-of-fit test (Qu et al.,
2000) can be applied
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Covariates

@ Non-surgical periodontal treatment:

e 1 if the patient continuously receives the treatment for all
three years; and 0 otherwise

@ Other covariates:

o Gender

o Age

e Variables measuring the health condition of the teeth

@ Number of teeth (Teeth)

Number of diseased sites (Sites)
Mean pocket depth of diseased sites (Pddis)
Mean pocket depth of all sites (Pdall)
Number of non-periodontal treatments (Dent)
Number of non-periodontal preventive procedures (Prev)
Number of surgical treatments over the 3-year baseline period
(Surg)

@ The logistic model is

logit(,uf?j) = fo+ bj + SiGender; + BoAge; + B3Teethj; + [F4Sites + PsPddis);
+BsPdallj; + B7SurgU + BgDentj; + BoPrev;; + BloNonsurgij
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Comparison of PQL, QIF and GLIMMIX

Table: Comparison of the Mixed-Effect QIF and Other Approaches for
the Periodontal Data

X QFq QFFcs QIFag  PQL _GLMM 4 GLMMag _ NLM

Int 71549 -7.4769 -8.1300 -8.0824  -9.3476  -9.5602  -6.8281
se. 1.3630 13476 13637 1.6265 17433 1.7804 15600
z-value -5.2492 -5.5482 -5.9615 -4.9691  -5.3620  -5.3697  -4.3770
Gender  0.2257 02138  0.2400  0.2383  0.2317 02387  0.2526
s.e. 0.1522 0.1530 0.1589 0.1720 0.1766 0.1802 0.1588
zvalue 14828 13974 15155  1.3865  1.3120 1.3246  1.5907
Age 0.0168  0.0175 0.0152 0.0202  0.0279 0.0291  0.0173
s.e. 0.0105 0.0104 0.0108 0.0123 0.0128 0.0131 0.0114
zvalue 15048  1.6781 14072  1.6427  2.1772 22305 1.5109
Teeth  -0.0334 -0.0325 -0.0177 -0.0353  -0.0388  -0.0406  -0.0440
s.e. 0.0246 0.0241 0.0242 0.0271 0.2767 0.0282 0.0254
z-value -1.3501 -1.3518 -0.7295 -1.3010  -1.4051  -1.4385  -1.7323
Sites  0.0024  0.0025 -0.0042 -0.0005  -0.0042  -0.0048  0.0032
se. 0.0097  0.0099  0.0090 0.0102  0.0105 0.0107  0.0098
zvalue  0.2468  0.2555 -0.4684 -0.0524  -0.4029  -0.4440  0.3301
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Cont'd

X QFFy  QFcs  QlIFag PQL_ GLMM; 4y GLMMag NLM
Pddis 02689  0.3469  0.1048 02719  0.2944  0.2899  0.2587
se. 0.1864  0.1790  0.1904  0.2203  0.2370  0.2418  0.2124
z-value 14428 19377 10232 11866 12422 11989  1.2180
Pdall 0.4644  0.3960  0.7792  0.6425  0.8465  0.8885  0.4832
s.e. 03880  0.3946 03626 04200  0.4329  0.4423  0.4020
zvalue 11068  1.0035  2.1489  1.5202  1.9554  2.0088  1.2020
Surg 01377  0.0039 -0.1636 -0.0932  -0.1020  0.1304  -0.1087
s.e. 02741 02336 02863 0.2901  0.2019  0.2034  0.2790
zvalue  -0.5024  0.0168 -0.5716 -0.3213  -0.5052  0.6411  -0.3896
Dent 01074  0.1132  0.1158  0.1205  0.1353  0.1365  0.1172
se. 0.0083  0.0082  0.0086  0.0080  0.0061  0.0061  0.0084
z-value  12.0164 13.8498 13.4063 15.0844 223636  22.4433  13.9126
Prev 0.0404 00271 00169 0.0353  0.0381  0.0395  0.0363
se. 0.1349  0.1353  0.1398  0.1500  0.0988  0.0990  0.1378
zvalue  0.2092  0.2004  0.1207  0.2420  0.3856  0.3988  0.2636
Nonsurg -0.2360 -0.2037 -0.2149 0.2207  -0.1995  -0.2041  -0.2266
se. 0.1500  0.1504  0.1577  0.1767  0.1839  0.1876  0.1632
zvalue  -1.5732 -1.3548 -1.3624 -1.2500  -1.0848  -1.0880  -1.3885

@ In general, the standard errors of the conditional QIF are
smaller than the PQL
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Discussion

The advantages of the new approach:

@ Incorporates both serial correlation from repeated
measurements and heterogeneous variation from individuals

@ Does not require the distribution assumption for random
effects

@ Does not require specifying the likelihood

@ Does not need to estimate the unknown variance components
or nuisance parameters associated with correlations
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Discussion (Cont'd)

@ Provides consistent and asymptotic normality for the
fixed-effects estimator

@ Outperforms the PQL, GLIMMIX, NLMIXED approaches
when serial correlation is introduced, especially for binary
response data

@ Computationally fast even if the dimension of the
random-effects parameters increases as the sample size
increases

@ GLIMMIX procedure tends to have a convergence problem
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