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A Data Example

I Impact of air pollution on asthmatic patients, Ontario, 1992.

I Based on 39 patients, cluster size is 21.

I Response: observations of asthmatic status on 21 consecutive
days, i.e. presence (1) or absence (0) of difficulties in
breathing.

I Covariates: pollution levels of 7 pollutants, daily mean
temperature and daily mean humidity, total 9 covariates.

I GEE method with “unspecified” correlation structure
does not converge

2 / 33



Importance of Selecting the Correct Correlation Structure

I Improve efficiency of regression parameter estimation.

I Reduce the bias of parameter estimation in nonparametric
modeling (Wang, 2003)

I Increase statistical power for hypothesis testing.
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Our Approach

I Current literature focuses on the estimation of covariance
matrix: Huang et al., 2007, 2008 (Cholesky decomposition)
Bickel and Levina, 2008a; 2008b (tapering and banding,
threshholding); Rothman et al., 2009 (inverse of covariance);
Cai et al., 2010; Yuan, 2010 (multivariate linear regression)

I Our approach avoids the estimation of each individual entry of
the correlation matrix, useful when cluster size is large.

I Reduce the dimension of the parameter involved in the
estimation.

I Does not require the specification of the likelihood.

I Can be applied to non-normal response.

I Diverging cluster sizes

I Enjoys consistency and oracle property
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Notations

Consider the marginal model

E (yi ) = g(Xiβ), i = 1, . . . , n

I yi = (yi1, . . . , yim)′ is the response variable

I t = 1, . . . ,m are the time points

I Xi is a known m × dim(β) covariate matrix

I β is a parameter vector

I g(·) is the link function
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Groups of Basis Matrices

I In the quadratic inference function approach (Qu, Lindsay and
Li, 2000), R−1 ≈

∑t
j=1 ajMj

I (Zhou and Qu, 2012) The basis matrices can be divided into
different groups, i.e.

R−1 ≈
Jm∑
j=1

Bj∑
b=1

αjbMjb =
Jm∑
j=1

αjGj

I Mjb is the bth basis matrix in the jth group
I The jth group Gj consisting of Bj basis matrices Mj1, . . . ,MjBj

I The associated coefficient vector αj = (αj1, . . . , αjBj )
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Example 1: AR(1) Correlation Structure

If R has an AR(1) structure with the parameter ρ, R−1 can be
represented as

R−1 = α11Im + α21M2,1 + α22M2,2

I Im is the identity matrix in group G1

I M2,1 and M2,2 are two basis matrices in group G2

I M2,1 has 1 on the sub-diagonal, and 0 elsewhere

I M2,2 has 1 on the (1, 1) and (m,m) components and, 0
elsewhere

I α11 = (1 + ρ2)/(1− ρ2) and
α2 = (α21, α22) = (−ρ/(1− ρ2),−ρ2/(1− ρ2))
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Example 2: Exchangeable Correlation Structure

If R is exchangeable with the correlation parameter ρ, we have

R−1 = α11Im + α31M3,1

I Im is the identity matrix in group G1

I The second basis matrix M3,1 has 0 on its main diagonal, and
1 elsewhere

I α11 = −{(m − 2)ρ+ 1}/{(m − 1)ρ2 − (m − 2)ρ− 1} and
α31 = ρ/{(m − 1)ρ2 − (m − 2)ρ− 1}
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Example 3: Sub Block Structures

I R has a block diagonal matrix structure

I Each block is either independent, exchangeable or AR(1)

I Group G1 contains the identity matrix Im, and d − 1 matrices
with block identity matrices Imi (i = 1, . . . , d − 1) on the first,
. . ., and (d − 1)th block

I For any jth block with AR(1) structure, the group basis
matrices contain two basis matrices M2,1 and M2,2 as
provided in Example 1

I For any block with exchangeable structure, the group basis
matrices contain a basis matrix M3,1 for the corresponding
block

9 / 33



Selection Strategy

I Identifying which groups of basis matrices have non-zero
coefficients

I Achived by minimizing an objective function including two
parts

1 Discrepancy between the two estimating functions
I One based on the empirical estimation
I The other based on the approximation by basis matrices

2 A penalty function is added to balance the complexity and
sufficiency of the model
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Objective Function

The objective functions includes two parts, the Euclidean norm of
S and a penalty function, i.e.

n∑
i=1

ST
i Si + n dim(β)

Jm∑
j=2

pλ(||αj ||2),

where the discrepancy between the two estimating functions for
the ith cluster is

Si = µ̇Ti (β̂)A
−1/2
i {R̃−1 − α1G1 − · · · − αJmGJm}A

−1/2
i (yi − µi (β̂))
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Objective Function (Con’t)

I pλ(·) is the SCAD penalty function and λ is the tuning
parameter.

I ||αj ||2 is the L2-norm of αj .

I By imposing the L2-norm, the basis matrices within the same
group are selected simultaneously.

I The first group of basis matrices is not penalized.
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Minimizing the Objective Function

I Define

Ui = µ̇Ti (β̂)A
−1/2
i R̃−1A

−1/2
i {yi − µi (β̂)}, i = 1, . . . , n

Vi ,jb = µ̇Ti (β̂)A
−1/2
i MjbA

−1/2
i {yi − µi (β̂)}

j = 1, . . . , Jm, b = 1, . . .Bj

I Let Vij = (Vi ,j1, . . . ,Vi ,jBj
) and Vi = (Vi1, . . . ,ViJm)T

I Then the objective function can be written as

Q(α) =
n∑

i=1

||Ui −
Jm∑
j=1

Vijαj ||2 + n dim(β)
Jm∑
j=2

pλ(||αj ||)
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Minimizing the objective function

I Transform the correlation model selection problem to be
covariates model selection

I Has the same form as a penalized least square problems

I Group SCAD penalty, non-convex penalty

I Apply the one-step local approximation to SCAD penalty (Zou
and Li 2008)
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A New Criteria

I Choose the tuning parameter λ using a GIC type of criteria

GICT (λ) = nr log
ηmax(R̂−1R̃2R̂−1)

ηmin(R̂−1R̃2R̂−1)
+ log(n)k(λ). (1)

I R̃ is the empirical correlation matrix

I R̂−1 = α̂1G1 + · · ·+ α̂JmGJm and α̂1, . . . , α̂J are estimated
with λ

I k(λ) is the number of non-zero components among
α̂1, . . . , α̂J

I ηmax(·) is the largest eigenvalue and ηmin(·) is the smallest
eigenvalue

I Require an additional tuning parameter r
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Choice of r

I Analog to generalized information criteria

I Additional control over the choice of λ

I Larger r ⇒ Smaller λ ⇒ More groups of basis matrices
selected

I Choose r = m/n, the ratio of cluster size and sample size

I Outperforms GCV, AIC and BIC
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Conditions on the Penalty Function

Define

an = max
1≤j≤pm

{p′λn(|αj
0|), α

j
0 6= 0}

bn = max
1≤j≤pm

{p′′λn(|αj
0|), α

j
0 6= 0}

The following conditions are associated with the penalty functions:

a. an = O(n−1/2)

b. bn → 0 as n→∞
c. lim infn→∞ lim infθ→0+ p′λn(θ)/λn > 0

d. There are constants c1 and c2, such that when θ1, θ2 > c1λn,
|p′′λn(θ1)− p′′λn(θ2))| ≤ c2|θ1 − θ2|
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Other Regularity Conditions

I Each element of the empirical correlation matrix is consistent

√
n|R̃(i , j)− R(i , j)| = Op(1), 1 ≤ i ≤ m, 1 ≤ j ≤ m

I For any ε > 0, there exist constants l1 and l2 such that

P(0 < l1 < λmin{V T
i Vi} ≤ λmax{V T

i Vi} < l2 <∞) > 1− ε

I The L1 norm of the basis matrices is bounded, i.e., there is a
constant K such that

||Mjb||1 < K , 1 ≤ j ≤ Jm, b = 1, . . .Bj
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Theorem 1

Theorem 1
Suppose the regularity conditions 1-4 are satisfied, if p2

m/n→ 0 as
n→∞, then there is a local minimizer α̂ for minimizing the
objective function Q(α), such that
||α̂−α0|| = Op{

√
pm(n−1/2 + an)}, where an is given in

Condition 1 and α0 = (α01, . . . ,α0Jm) is the true coefficient
vector associated with all the basis matrices.

I For the SCAD penalty, an = 0 when n is large, therefore the
SCAD estimator is consistent
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Theorem 2

Theorem 2
Given all the regularity conditions are satisfied, if λn → 0,√

n/pmλn →∞ and p2
m/n→ 0, then with probability tending to

1, for any given constant C , and any α1 satisfying
||α1 −α01|| = Op(

√
pm/n),

Q(α̂1, 0) = min
||α2||≤C(pm/n)1/2

Q(α1,α2).

I α̂1 is the estimate for the non-zero coefficients

I Estimates of the zero-coefficients are shrunk to 0
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Theorem 3: Oracle Property

Theorem 3
Suppose all the regularity conditions are satisfied, if λn → 0,√

n/pmλn →∞ and p2
m/n→ 0 as n→∞, then with probability

tending to 1, we establish the following oracle properties:
(i) (Sparsity) α̂2 = 0.
(ii) (Asymptotic normality)

√
nAmK

−1/2
m,11 {In,11 +

1

n
∇2Pλn(α01)}(α̂01 −α01)

+
1√
n

AmK
−1/2
m,11 ∇Pλn(α01)

d→ N(0,G ),

I Am is any given q × pm matrix which satisfies AT
mAm → G

I Km,11 is a submatrix of Km associated with α1
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Simulation Setup

I R is a block diagonal matrix, and each block with dimension
5× 5 has a correlation structure either as AR(1),
exchangeable or independent

I The number of blocks d diverges

I d = 5, 10, 15 and 20 ⇒ m = 25, 50, 75 and 100
I Basis Matrices

I G1 contains the identity matrix I5d , and d − 1 matrices with
block identity matrices I5 on the diagonal

I Group G2 contains two matrices with M2,1 and M2,2 on the
first block

I Group G3 contains one matrix with M3,1 for the first block
I Other groups of basis matrices formed similarly, total 2d + 1

groups
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Normal Response

For the normal response, we generate the data from the following
longitudinal model,

Yi = β0 + X1iβ1 + X2iβ2 + X3iβ3 + εi

I Xti , t = 1, 2, 3 are the covariates generated from N(0, 1)

I εi ∼ N(0,R)

I First two blocks are AR(1), the third block is exchangeable,
the remaining blocks are independent

I The covariates β = (β0, β1, β2, β3)T = (2, 1, 1, 1)T

I Sample size n = 200
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Results for Normal Response: ρ = 0.7

Table: Percentages of correctly identified signals and non-signals using
GIC criteria with correlation ρ = 0.7, sample size n = 200, results are
from 100 simulations.

% of fits

Cluster size r Signals Non-signals Correct Under Over

m = 25 0.125 100 100 100 100 1 0 0

m = 50 0.250 99 100 100 99.9 0.98 0.01 0.01

m = 75 0.375 96 97 97 99.9 0.92 0.04 0.04

m = 100 0.500 97 96 98 98 0.72 0.06 0.22

I % of correct-fitting decreases as the number of block increases

I % of identifying the AR(1) and exchangeable correlation
structures are high even when m = 100
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Binary Response

For the binary response, the responses are generated from the
logistic regression model

logit{E (Yi )} = β0 + X1iβ1 + X2iβ2 + X3iβ3,

I Xti (t = 1, 2, 3) are the covariates, generated from a normal
distribution N(0, 0.01)

I First two blocks are exchangeable, and the third block is
AR(1)

I The covariates β = (β0, β1, β2, β3)T = (0.2, 1,−1,−1)T

I Correlation Parameter ρ = 0.6
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Results for Binary Response: n = 300

Table: Percentages of Correctly Identified Signals and Non-signals using
GIC criteria with correlation ρ = 0.6, Binary response, sample size
n = 300

% of fits

Cluster size r Signals Non-signals Correct Under Over

m = 25 0.833 100 100 100 99.9 0.99 0 0.01

m = 50 0.167 99 100 100 99.9 0.98 0.01 0.01

m = 75 0.250 94 98 97 99.2 0.82 0.08 0.10

m = 100 0.333 89 94 91 98.4 0.66 0.19 0.15

I Results similar to normal response with ρ = 0.7

I r = m/n is a reasonable choice
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Air Pollution Data Set

I Impact of air pollution on asthmatic patients

I Based on 39 patients, cluster size is 21

I Response: observations of asthmatic status on 21 consecutive
days, i.e. presence (1) or absence (0) of difficulties in
breathing

I Covariates: pollution levels of 7 pollutants, daily mean
temperature and daily mean humidity, total 9 covariates
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Basis Matrices

I Group 1: Identity matrix: I21

I Group 2: M2,1 and M2,2 to represent the AR(1) structure as
in Example 1

I Group 3: M3,1 to represent the exchangeable working
correlation as in Example 2

I Group 4: Four additional matrices needed to represent the
mixture of AR(1) and CS

I Group 5-11: Groups of basis matrices to represent the sub
block structures as in Example 3 (3 sub blocks, each week is a
sub block)
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Results of Correlation Structure Selection

I AIC, BIC, and GCV selects all the basis matrices, except
exchangeable for the third block

I GIC with r = 21/39 identifies the correlation structure as a
simple exchangeable structure
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Comparison of GEE Estimators with Different Working
Structures

Effects Independent GIC GCV
Meantemp -0.2494 -0.1009 0.0660
s.e. 0.2563 0.0908 0.0892
z-value -0.9733 -1.1112 0.7403
NO 0.2860 0.0553 -0.1362
s.e. 0.3419 0.1170 0.1178
z-value 0.8365 0.4724 -1.1555
NO2 -0.0105 -0.0335 0.0133
s.e. 0.0728 0.0235 0.0179
z-value -0.1447 -1.4218 0.7425
NOX -0.2717 -0.0728 0.0700
s.e. 0.1904 0.0676 0.0679
z-value -1.4268 -1.0778 1.0298
TRS -0.1784 -0.0037 -0.0063
s.e. 0.0947 0.0413 0.0340
z-value -1.8836 -0.0892 -0.1856
OZ 0.1266 0.1190 0.1082
s.e. 0.1023 0.0341 0.0290
z-value 1.2384 3.4897 3.7244
CO -0.0122 0.0200 -0.0504
s.e. 0.1504 0.0547 0.0487
z-value -0.0810 0.3661 -1.0347
COH 0.1191 -0.0223 -0.1092
s.e. 0.0853 0.0289 0.0251
z-value 1.3967 -0.7740 -4.3530

I S.E.’s from working structures selected by either GIC or GCV are much smaller
than that from Independent structure

I GEE with “unspecified” working structure does not converge
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Discussion

I A new approach to identify the correlation structure

I Approximate the inverse of the correlation matrix with groups
of basis matrices

I Objective function measures the adequacy of a approximated
model
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Discussion (Cont’d)

I Allow the cluster size to diverge

I Does not require likelihood function

I The estimates of the coefficients of the basis matrices have
consistency and oracle property

I Simulatuion studies show that the proposed procedure works
well for both the normal and the binary responses, even when
the cluster size is large

I Handling with the unbalanced data case

I Concerns for positive definitiveness of the correlation matrix
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The End

Thank you for your attention!
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	Discussion

