Model Selection for Correlated Data with Diverging Number of Parameter

Annie Qu
University of Illinois at Urbana-Champaign Joint Work with Peng Wang and Jianhui Zhou
Banff International Research Station
for Mathematical Innovation and Discovery

Dec. 12-16, 2011

A Data Example

- Impact of air pollution on asthmatic patients, Ontario, 1992.
- Based on 39 patients, cluster size is 21.
- Response: observations of asthmatic status on 21 consecutive days, i.e. presence (1) or absence (0) of difficulties in breathing.
- Covariates: pollution levels of 7 pollutants, daily mean temperature and daily mean humidity, total 9 covariates.
- GEE method with "unspecified" correlation structure does not converge

Importance of Selecting the Correct Correlation Structure

- Improve efficiency of regression parameter estimation.
- Reduce the bias of parameter estimation in nonparametric modeling (Wang, 2003)
- Increase statistical power for hypothesis testing.

Our Approach

- Current literature focuses on the estimation of covariance matrix: Huang et al., 2007, 2008 (Cholesky decomposition) Bickel and Levina, 2008a; 2008b (tapering and banding, threshholding); Rothman et al., 2009 (inverse of covariance); Cai et al., 2010; Yuan, 2010 (multivariate linear regression)
- Our approach avoids the estimation of each individual entry of the correlation matrix, useful when cluster size is large.
- Reduce the dimension of the parameter involved in the estimation.
- Does not require the specification of the likelihood.
- Can be applied to non-normal response.
- Diverging cluster sizes
- Enjoys consistency and oracle property

Notations

Consider the marginal model

$$
E\left(y_{i}\right)=g\left(X_{i} \beta\right), \quad i=1, \ldots, n
$$

- $y_{i}=\left(y_{i 1}, \ldots, y_{i m}\right)^{\prime}$ is the response variable
- $t=1, \ldots, m$ are the time points
- X_{i} is a known $m \times \operatorname{dim}(\beta)$ covariate matrix
- β is a parameter vector
- $g(\cdot)$ is the link function

Groups of Basis Matrices

- In the quadratic inference function approach (Qu, Lindsay and $\mathrm{Li}, 2000), R^{-1} \approx \sum_{j=1}^{t} a_{j} M_{j}$
- (Zhou and Qu, 2012) The basis matrices can be divided into different groups, i.e.

$$
R^{-1} \approx \sum_{j=1}^{J_{m}} \sum_{b=1}^{B_{j}} \alpha_{j b} M_{j b}=\sum_{j=1}^{J_{m}} \boldsymbol{\alpha}_{j} \mathbf{G}_{j}
$$

- $M_{j b}$ is the b th basis matrix in the j th group
- The j th group \mathbf{G}_{j} consisting of B_{j} basis matrices $M_{j 1}, \ldots, M_{j B_{j}}$
- The associated coefficient vector $\boldsymbol{\alpha}_{j}=\left(\alpha_{j 1}, \ldots, \alpha_{j B_{j}}\right)$

Example 1: $\operatorname{AR}(1)$ Correlation Structure

If R has an $\operatorname{AR}(1)$ structure with the parameter ρ, R^{-1} can be represented as

$$
R^{-1}=\alpha_{11} I_{m}+\alpha_{21} M_{2,1}+\alpha_{22} M_{2,2}
$$

- I_{m} is the identity matrix in group \mathbf{G}_{1}
- $M_{2,1}$ and $M_{2,2}$ are two basis matrices in group \mathbf{G}_{2}
- $M_{2,1}$ has 1 on the sub-diagonal, and 0 elsewhere
- $M_{2,2}$ has 1 on the $(1,1)$ and (m, m) components and, 0 elsewhere
- $\alpha_{11}=\left(1+\rho^{2}\right) /\left(1-\rho^{2}\right)$ and
$\alpha_{2}=\left(\alpha_{21}, \alpha_{22}\right)=\left(-\rho /\left(1-\rho^{2}\right),-\rho^{2} /\left(1-\rho^{2}\right)\right)$

Example 2: Exchangeable Correlation Structure

If R is exchangeable with the correlation parameter ρ, we have

$$
R^{-1}=\alpha_{11} I_{m}+\alpha_{31} M_{3,1}
$$

- I_{m} is the identity matrix in group \mathbf{G}_{1}
- The second basis matrix $M_{3,1}$ has 0 on its main diagonal, and 1 elsewhere
- $\alpha_{11}=-\{(m-2) \rho+1\} /\left\{(m-1) \rho^{2}-(m-2) \rho-1\right\}$ and $\alpha_{31}=\rho /\left\{(m-1) \rho^{2}-(m-2) \rho-1\right\}$

Example 3: Sub Block Structures

- R has a block diagonal matrix structure
- Each block is either independent, exchangeable or $\operatorname{AR}(1)$
- Group \mathbf{G}_{1} contains the identity matrix I_{m}, and $d-1$ matrices with block identity matrices $I_{m_{i}}(i=1, \ldots, d-1)$ on the first, \ldots. and $(d-1)$ th block
- For any j th block with $\operatorname{AR}(1)$ structure, the group basis matrices contain two basis matrices $M_{2,1}$ and $M_{2,2}$ as provided in Example 1
- For any block with exchangeable structure, the group basis matrices contain a basis matrix $M_{3,1}$ for the corresponding block

Selection Strategy

- Identifying which groups of basis matrices have non-zero coefficients
- Achived by minimizing an objective function including two parts

1 Discrepancy between the two estimating functions

- One based on the empirical estimation
- The other based on the approximation by basis matrices

2 A penalty function is added to balance the complexity and sufficiency of the model

Objective Function

The objective functions includes two parts, the Euclidean norm of S and a penalty function, i.e.

$$
\sum_{i=1}^{n} S_{i}^{T} S_{i}+n \operatorname{dim}(\beta) \sum_{j=2}^{J_{m}} p_{\lambda}\left(\left\|\alpha_{j}\right\|_{2}\right)
$$

where the discrepancy between the two estimating functions for the i th cluster is

$$
S_{i}=\dot{\mu}_{i}^{T}(\hat{\beta}) A_{i}^{-1 / 2}\left\{\tilde{R}^{-1}-\alpha_{1} \mathbf{G}_{1}-\cdots-\alpha_{J_{m}} \mathbf{G}_{J_{m}}\right\} A_{i}^{-1 / 2}\left(y_{i}-\mu_{i}(\hat{\beta})\right)
$$

Objective Function (Con't)

- $p_{\lambda}(\cdot)$ is the SCAD penalty function and λ is the tuning parameter.
- $\left\|\alpha_{j}\right\|_{2}$ is the L_{2}-norm of α_{j}.
- By imposing the L_{2}-norm, the basis matrices within the same group are selected simultaneously.
- The first group of basis matrices is not penalized.

Minimizing the Objective Function

- Define

$$
\begin{gathered}
U_{i}=\dot{\mu}_{i}^{T}(\hat{\beta}) A_{i}^{-1 / 2} \tilde{R}^{-1} A_{i}^{-1 / 2}\left\{y_{i}-\mu_{i}(\hat{\beta})\right\}, \quad i=1, \ldots, n \\
V_{i, j b}=\dot{\mu}_{i}^{T}(\hat{\beta}) A_{i}^{-1 / 2} M_{j b} A_{i}^{-1 / 2}\left\{y_{i}-\mu_{i}(\hat{\beta})\right\} \\
j=1, \ldots, J_{m}, b=1, \ldots B_{j}
\end{gathered}
$$

- Let $V_{i j}=\left(V_{i, j 1}, \ldots, V_{i, j B_{j}}\right)$ and $V_{i}=\left(V_{i 1}, \ldots, V_{i J_{m}}\right)^{T}$
- Then the objective function can be written as

$$
Q(\boldsymbol{\alpha})=\sum_{i=1}^{n}\left\|U_{i}-\sum_{j=1}^{J_{m}} V_{i j} \boldsymbol{\alpha}_{j}\right\|^{2}+n \operatorname{dim}(\beta) \sum_{j=2}^{J_{m}} p_{\lambda}\left(\left\|\boldsymbol{\alpha}_{j}\right\|\right)
$$

Minimizing the objective function

- Transform the correlation model selection problem to be covariates model selection
- Has the same form as a penalized least square problems
- Group SCAD penalty, non-convex penalty
- Apply the one-step local approximation to SCAD penalty (Zou and Li 2008)

A New Criteria

- Choose the tuning parameter λ using a GIC type of criteria

$$
\begin{equation*}
G I C_{T}(\lambda)=n r \log \frac{\eta_{\max }\left(\hat{R}^{-1} \tilde{R}^{2} \hat{R}^{-1}\right)}{\eta_{\min }\left(\hat{R}^{-1} \tilde{R}^{2} \hat{R}^{-1}\right)}+\log (n) k(\lambda) . \tag{1}
\end{equation*}
$$

- \tilde{R} is the empirical correlation matrix
- $\hat{R}^{-1}=\hat{\boldsymbol{\alpha}}_{1} \mathbf{G}_{1}+\cdots+\hat{\boldsymbol{\alpha}}_{J_{m}} \mathbf{G}_{J_{m}}$ and $\hat{\boldsymbol{\alpha}}_{1}, \ldots, \hat{\boldsymbol{\alpha}}_{J}$ are estimated with λ
- $k(\lambda)$ is the number of non-zero components among $\hat{\boldsymbol{\alpha}}_{1}, \ldots, \hat{\boldsymbol{\alpha}}_{J}$
- $\eta_{\text {max }}(\cdot)$ is the largest eigenvalue and $\eta_{\min }(\cdot)$ is the smallest eigenvalue
- Require an additional tuning parameter r

Choice of r

- Analog to generalized information criteria
- Additional control over the choice of λ
- Larger $r \Rightarrow$ Smaller $\lambda \Rightarrow$ More groups of basis matrices selected
- Choose $r=m / n$, the ratio of cluster size and sample size
- Outperforms GCV, AIC and BIC

Conditions on the Penalty Function

Define

$$
\begin{aligned}
a_{n} & =\max _{1 \leq j \leq p_{m}}\left\{p_{\lambda_{n}}^{\prime}\left(\left|\alpha_{0}^{j}\right|\right), \alpha_{0}^{j} \neq 0\right\} \\
b_{n} & =\max _{1 \leq j \leq p_{m}}\left\{p_{\lambda_{n}}^{\prime \prime}\left(\left|\alpha_{0}^{j}\right|\right), \alpha_{0}^{j} \neq 0\right\}
\end{aligned}
$$

The following conditions are associated with the penalty functions:
a. $a_{n}=O\left(n^{-1 / 2}\right)$
b. $b_{n} \rightarrow 0$ as $n \rightarrow \infty$
c. $\lim \inf _{n \rightarrow \infty} \lim \inf _{\theta \rightarrow 0^{+}} p_{\lambda_{n}}^{\prime}(\theta) / \lambda_{n}>0$
d. There are constants c_{1} and c_{2}, such that when $\theta_{1}, \theta_{2}>c_{1} \lambda_{n}$, $\left.\mid p_{\lambda_{n}}^{\prime \prime}\left(\theta_{1}\right)-p_{\lambda_{n}}^{\prime \prime}\left(\theta_{2}\right)\right)\left|\leq c_{2}\right| \theta_{1}-\theta_{2} \mid$

Other Regularity Conditions

- Each element of the empirical correlation matrix is consistent

$$
\sqrt{n}|\tilde{R}(i, j)-R(i, j)|=O_{p}(1), 1 \leq i \leq m, 1 \leq j \leq m
$$

- For any $\epsilon>0$, there exist constants I_{1} and I_{2} such that

$$
P\left(0<I_{1}<\lambda_{\min }\left\{V_{i}^{\top} V_{i}\right\} \leq \lambda_{\max }\left\{V_{i}^{\top} V_{i}\right\}<I_{2}<\infty\right)>1-\epsilon
$$

- The L_{1} norm of the basis matrices is bounded, i.e., there is a constant K such that

$$
\left\|M_{j b}\right\|_{1}<K, \quad 1 \leq j \leq J_{m}, \quad b=1, \ldots B_{j}
$$

Theorem 1

Theorem 1

Suppose the regularity conditions 1-4 are satisfied, if $p_{m}^{2} / n \rightarrow 0$ as $n \rightarrow \infty$, then there is a local minimizer $\hat{\boldsymbol{\alpha}}$ for minimizing the objective function $Q(\boldsymbol{\alpha})$, such that $\left\|\hat{\boldsymbol{\alpha}}-\boldsymbol{\alpha}_{0}\right\|=O_{p}\left\{\sqrt{p_{m}}\left(n^{-1 / 2}+a_{n}\right)\right\}$, where a_{n} is given in
Condition 1 and $\alpha_{0}=\left(\alpha_{01}, \ldots, \alpha_{0 J_{m}}\right)$ is the true coefficient vector associated with all the basis matrices.

- For the SCAD penalty, $a_{n}=0$ when n is large, therefore the SCAD estimator is consistent

Theorem 2

Theorem 2

Given all the regularity conditions are satisfied, if $\lambda_{n} \rightarrow 0$, $\sqrt{n / p_{m}} \lambda_{n} \rightarrow \infty$ and $p_{m}^{2} / n \rightarrow 0$, then with probability tending to 1 , for any given constant C, and any $\boldsymbol{\alpha}_{1}$ satisfying
$\left\|\boldsymbol{\alpha}_{1}-\alpha_{01}\right\|=O_{p}\left(\sqrt{p_{m} / n}\right)$,

$$
Q\left(\hat{\boldsymbol{\alpha}}_{1}, 0\right)=\min _{\left\|\boldsymbol{\alpha}_{2}\right\| \leq C\left(p_{m} / n\right)^{1 / 2}} Q\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}\right)
$$

- $\hat{\boldsymbol{\alpha}}_{1}$ is the estimate for the non-zero coefficients
- Estimates of the zero-coefficients are shrunk to 0

Theorem 3: Oracle Property

Theorem 3

Suppose all the regularity conditions are satisfied, if $\lambda_{n} \rightarrow 0$, $\sqrt{n / p_{m}} \lambda_{n} \rightarrow \infty$ and $p_{m}^{2} / n \rightarrow 0$ as $n \rightarrow \infty$, then with probability tending to 1 , we establish the following oracle properties:
(i) (Sparsity) $\hat{\boldsymbol{\alpha}}_{2}=0$.
(ii) (Asymptotic normality)

$$
\begin{array}{r}
\sqrt{n} A_{m} K_{m, 11}^{-1 / 2}\left\{I_{n, 11}+\frac{1}{n} \nabla^{2} P_{\lambda_{n}}\left(\boldsymbol{\alpha}_{01}\right)\right\}\left(\hat{\boldsymbol{\alpha}}_{01}-\boldsymbol{\alpha}_{01}\right) \\
+\frac{1}{\sqrt{n}} A_{m} K_{m, 11}^{-1 / 2} \nabla P_{\lambda_{n}}\left(\boldsymbol{\alpha}_{01}\right) \xrightarrow{d} N(0, G)
\end{array}
$$

- A_{m} is any given $q \times p_{m}$ matrix which satisfies $A_{m}^{T} A_{m} \rightarrow G$
- $K_{m, 11}$ is a submatrix of K_{m} associated with $\boldsymbol{\alpha}_{1}$

Simulation Setup

- R is a block diagonal matrix, and each block with dimension 5×5 has a correlation structure either as $\operatorname{AR}(1)$, exchangeable or independent
- The number of blocks d diverges
- $d=5,10,15$ and $20 \Rightarrow m=25,50,75$ and 100
- Basis Matrices
- \mathbf{G}_{1} contains the identity matrix $I_{5 d}$, and $d-1$ matrices with block identity matrices I_{5} on the diagonal
- Group \mathbf{G}_{2} contains two matrices with $M_{2,1}$ and $M_{2,2}$ on the first block
- Group \mathbf{G}_{3} contains one matrix with $M_{3,1}$ for the first block
- Other groups of basis matrices formed similarly, total $2 d+1$ groups

Normal Response

For the normal response, we generate the data from the following longitudinal model,

$$
Y_{i}=\beta_{0}+X_{1 i} \beta_{1}+X_{2 i} \beta_{2}+X_{3 i} \beta_{3}+\epsilon_{i}
$$

- $X_{t i}, t=1,2,3$ are the covariates generated from $N(0,1)$
- $\epsilon_{i} \sim N(0, R)$
- First two blocks are $\operatorname{AR}(1)$, the third block is exchangeable, the remaining blocks are independent
- The covariates $\beta=\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)^{T}=(2,1,1,1)^{T}$
- Sample size $n=200$

Results for Normal Response: $\rho=0.7$

Table: Percentages of correctly identified signals and non-signals using GIC criteria with correlation $\rho=0.7$, sample size $n=200$, results are from 100 simulations.

						\% of fits		
Cluster size	r	Signals			Non-signals	Correct	Under	Over
$m=25$	0.125	100	100	100	100	1	0	0
$m=50$	0.250	99	100	100	99.9	0.98	0.01	0.01
$m=75$	0.375	96	97	97	99.9	0.92	0.04	0.04
$m=100$	0.500	97	96	98	98	0.72	0.06	0.22

- \% of correct-fitting decreases as the number of block increases
- \% of identifying the $\operatorname{AR}(1)$ and exchangeable correlation structures are high even when $m=100$

Binary Response

For the binary response, the responses are generated from the logistic regression model

$$
\operatorname{logit}\left\{E\left(Y_{i}\right)\right\}=\beta_{0}+X_{1 i} \beta_{1}+X_{2 i} \beta_{2}+X_{3 i} \beta_{3}
$$

- $X_{t i}(t=1,2,3)$ are the covariates, generated from a normal distribution $N(0,0.01)$
- First two blocks are exchangeable, and the third block is AR(1)
- The covariates $\beta=\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)^{T}=(0.2,1,-1,-1)^{T}$
- Correlation Parameter $\rho=0.6$

Results for Binary Response: $n=300$

Table: Percentages of Correctly Identified Signals and Non-signals using GIC criteria with correlation $\rho=0.6$, Binary response, sample size $n=300$

					\% of fits			
Cluster size	r	Signals			Non-signals	Correct	Under	Over
$m=25$	0.833	100	100	100	99.9	0.99	0	0.01
$m=50$	0.167	99	100	100	99.9	0.98	0.01	0.01
$m=75$	0.250	94	98	97	99.2	0.82	0.08	0.10
$m=100$	0.333	89	94	91	98.4	0.66	0.19	0.15

- Results similar to normal response with $\rho=0.7$
- $r=m / n$ is a reasonable choice

Air Pollution Data Set

- Impact of air pollution on asthmatic patients
- Based on 39 patients, cluster size is 21
- Response: observations of asthmatic status on 21 consecutive days, i.e. presence (1) or absence (0) of difficulties in breathing
- Covariates: pollution levels of 7 pollutants, daily mean temperature and daily mean humidity, total 9 covariates

Basis Matrices

- Group 1: Identity matrix: I_{21}
- Group 2: $M_{2,1}$ and $M_{2,2}$ to represent the $\operatorname{AR}(1)$ structure as in Example 1
- Group 3: $M_{3,1}$ to represent the exchangeable working correlation as in Example 2
- Group 4: Four additional matrices needed to represent the mixture of $A R(1)$ and $C S$
- Group 5-11: Groups of basis matrices to represent the sub block structures as in Example 3 (3 sub blocks, each week is a sub block)

Results of Correlation Structure Selection

- AIC, BIC, and GCV selects all the basis matrices, except exchangeable for the third block
- GIC with $r=21 / 39$ identifies the correlation structure as a simple exchangeable structure

Comparison of GEE Estimators with Different Working Structures

Effects	Independent	GIC	GCV
Meantemp	-0.2494	-0.1009	0.0660
s.e.	0.2563	0.0908	0.0892
z-value	-0.9733	-1.1112	0.7403
NO	0.2860	0.0553	-0.1362
s.e.	0.3419	0.1170	0.1178
z-value	0.8365	0.4724	-1.1555
NO2	-0.0105	-0.0335	0.0133
s.e.	0.0728	0.0235	0.0179
z-value	-0.1447	-1.4218	0.7425
NOX	-0.2717	-0.0728	0.0700
s.e.	0.1904	0.0676	0.0679
z-value	-1.4268	-1.0778	1.0298
TRS	-0.1784	-0.0037	-0.0063
s.e.	0.0947	0.0413	0.0340
z-value	-1.8836	-0.0892	-0.1856
OZ	0.1266	0.1190	0.1082
s.e.	0.1023	0.0341	0.0290
z-value	1.2384	3.4897	3.7244
CO	-0.0122	0.0200	-0.0504
s.e.	0.1504	0.0547	0.0487
z-value	-0.0810	0.3661	-1.0347
COH	0.1191	-0.0223	-0.1092
s.e.	0.0853	0.0289	0.0251
z-value	1.3967	-0.7740	-4.3530

- S.E.'s from working structures selected by either GIC or GCV are much smaller than that from Independent structure
- GEE with "unspecified" working structure does not converge

Discussion

- A new approach to identify the correlation structure
- Approximate the inverse of the correlation matrix with groups of basis matrices
- Objective function measures the adequacy of a approximated model

Discussion (Cont'd)

- Allow the cluster size to diverge
- Does not require likelihood function
- The estimates of the coefficients of the basis matrices have consistency and oracle property
- Simulatuion studies show that the proposed procedure works well for both the normal and the binary responses, even when the cluster size is large
- Handling with the unbalanced data case
- Concerns for positive definitiveness of the correlation matrix

The End

Thank you for your attention!

