Model Selection for Correlated Data with Diverging Number of Parameter

Annie Qu University of Illinois at Urbana-Champaign Joint Work with Peng Wang and Jianhui Zhou

Dec. 12-16, 2011

A Data Example

- Impact of air pollution on asthmatic patients, Ontario, 1992.
- Based on 39 patients, cluster size is 21.
- Response: observations of asthmatic status on 21 consecutive days, i.e. presence (1) or absence (0) of difficulties in breathing.
- Covariates: pollution levels of 7 pollutants, daily mean temperature and daily mean humidity, total 9 covariates.
- GEE method with "unspecified" correlation structure does not converge

Importance of Selecting the Correct Correlation Structure

- Improve efficiency of regression parameter estimation.
- Reduce the bias of parameter estimation in nonparametric modeling (Wang, 2003)
- Increase statistical power for hypothesis testing.

Our Approach

- Current literature focuses on the estimation of covariance matrix: Huang et al., 2007, 2008 (Cholesky decomposition) Bickel and Levina, 2008a; 2008b (tapering and banding, threshholding); Rothman et al., 2009 (inverse of covariance); Cai et al., 2010; Yuan, 2010 (multivariate linear regression)
- Our approach avoids the estimation of each individual entry of the correlation matrix, useful when cluster size is large.
- Reduce the dimension of the parameter involved in the estimation.
- Does not require the specification of the likelihood.
- Can be applied to non-normal response.
- Diverging cluster sizes
- Enjoys consistency and oracle property

Notations

Consider the marginal model

$$E(y_i) = g(X_i\beta), \quad i = 1, \dots, n$$

- $y_i = (y_{i1}, \ldots, y_{im})'$ is the response variable
- $t = 1, \ldots, m$ are the time points
- X_i is a known $m \times \dim(\beta)$ covariate matrix
- $\blacktriangleright \beta$ is a parameter vector
- $g(\cdot)$ is the link function

Groups of Basis Matrices

- ▶ In the quadratic inference function approach (Qu, Lindsay and Li, 2000), $R^{-1} \approx \sum_{j=1}^{t} a_j M_j$
- (Zhou and Qu, 2012) The basis matrices can be divided into different groups, i.e.

$$R^{-1} \approx \sum_{j=1}^{J_m} \sum_{b=1}^{B_j} \alpha_{jb} M_{jb} = \sum_{j=1}^{J_m} \alpha_j \mathbf{G}_j$$

- *M_{jb}* is the *b*th basis matrix in the *j*th group
- The *j*th group \mathbf{G}_j consisting of B_j basis matrices M_{j1}, \ldots, M_{jB_i}
- The associated coefficient vector $\alpha_j = (\alpha_{j1}, \dots, \alpha_{jB_j})$

Example 1: AR(1) Correlation Structure

If R has an AR(1) structure with the parameter ρ , R^{-1} can be represented as

$$R^{-1} = \alpha_{11}I_m + \alpha_{21}M_{2,1} + \alpha_{22}M_{2,2}$$

- I_m is the identity matrix in group G₁
- $M_{2,1}$ and $M_{2,2}$ are two basis matrices in group G_2
- ▶ *M*_{2,1} has 1 on the sub-diagonal, and 0 elsewhere
- ► M_{2,2} has 1 on the (1,1) and (m, m) components and, 0 elsewhere

•
$$\alpha_{11} = (1 + \rho^2)/(1 - \rho^2)$$
 and
 $\alpha_2 = (\alpha_{21}, \alpha_{22}) = (-\rho/(1 - \rho^2), -\rho^2/(1 - \rho^2))$

Example 2: Exchangeable Correlation Structure

If R is exchangeable with the correlation parameter ρ , we have

$$R^{-1} = \alpha_{11}I_m + \alpha_{31}M_{3,1}$$

- I_m is the identity matrix in group G₁
- The second basis matrix M_{3,1} has 0 on its main diagonal, and 1 elsewhere

•
$$\alpha_{11} = -\{(m-2)\rho + 1\}/\{(m-1)\rho^2 - (m-2)\rho - 1\}$$
 and $\alpha_{31} = \rho/\{(m-1)\rho^2 - (m-2)\rho - 1\}$

Example 3: Sub Block Structures

- R has a block diagonal matrix structure
- ▶ Each block is either independent, exchangeable or AR(1)
- ▶ Group G₁ contains the identity matrix I_m, and d − 1 matrices with block identity matrices I_m, (i = 1,..., d − 1) on the first, ..., and (d − 1)th block
- ▶ For any *j*th block with AR(1) structure, the group basis matrices contain two basis matrices M_{2,1} and M_{2,2} as provided in Example 1
- For any block with exchangeable structure, the group basis matrices contain a basis matrix M_{3,1} for the corresponding block

Selection Strategy

- Identifying which groups of basis matrices have non-zero coefficients
- Achived by minimizing an objective function including two parts
 - 1 Discrepancy between the two estimating functions
 - One based on the empirical estimation
 - The other based on the approximation by basis matrices
 - 2 A penalty function is added to balance the complexity and sufficiency of the model

Objective Function

The objective functions includes two parts, the Euclidean norm of S and a penalty function, i.e.

$$\sum_{i=1}^n S_i^T S_i + n \dim(\beta) \sum_{j=2}^{J_m} p_{\lambda}(||\alpha_j||_2),$$

where the discrepancy between the two estimating functions for the ith cluster is

$$S_i = \dot{\mu}_i^T(\hat{\beta}) A_i^{-1/2} \{ \tilde{R}^{-1} - \alpha_1 \mathbf{G}_1 - \dots - \alpha_{J_m} \mathbf{G}_{J_m} \} A_i^{-1/2} (y_i - \mu_i(\hat{\beta}))$$

Objective Function (Con't)

- *p*_λ(·) is the SCAD penalty function and λ is the tuning parameter.
- $||\alpha_j||_2$ is the L_2 -norm of α_j .
- By imposing the L₂-norm, the basis matrices within the same group are selected simultaneously.
- The first group of basis matrices is not penalized.

Minimizing the Objective Function

Define

$$U_{i} = \dot{\mu}_{i}^{T}(\hat{\beta})A_{i}^{-1/2}\tilde{R}^{-1}A_{i}^{-1/2}\{y_{i} - \mu_{i}(\hat{\beta})\}, \quad i = 1, ..., n$$
$$V_{i,jb} = \dot{\mu}_{i}^{T}(\hat{\beta})A_{i}^{-1/2}M_{jb}A_{i}^{-1/2}\{y_{i} - \mu_{i}(\hat{\beta})\}$$
$$j = 1, ..., J_{m}, b = 1, ..., B_{j}$$

• Let
$$V_{ij} = (V_{i,j1}, \ldots, V_{i,jB_j})$$
 and $V_i = (V_{i1}, \ldots, V_{iJ_m})^T$

Then the objective function can be written as

$$Q(\boldsymbol{\alpha}) = \sum_{i=1}^{n} ||U_i - \sum_{j=1}^{J_m} V_{ij} \boldsymbol{\alpha}_j||^2 + n \dim(\beta) \sum_{j=2}^{J_m} p_{\lambda}(||\boldsymbol{\alpha}_j||)$$

Minimizing the objective function

- Transform the correlation model selection problem to be covariates model selection
- ▶ Has the same form as a penalized least square problems
- Group SCAD penalty, non-convex penalty
- Apply the one-step local approximation to SCAD penalty (Zou and Li 2008)

A New Criteria

- Choose the tuning parameter λ using a GIC type of criteria

$$GIC_{T}(\lambda) = nr \log \frac{\eta_{\max}(\hat{R}^{-1}\tilde{R}^{2}\hat{R}^{-1})}{\eta_{\min}(\hat{R}^{-1}\tilde{R}^{2}\hat{R}^{-1})} + \log(n)k(\lambda).$$
(1)

- \tilde{R} is the empirical correlation matrix
- $\blacktriangleright \hat{R}^{-1} = \hat{\alpha}_1 \mathbf{G}_1 + \dots + \hat{\alpha}_{J_m} \mathbf{G}_{J_m} \text{ and } \hat{\alpha}_1, \dots, \hat{\alpha}_J \text{ are estimated}$ with λ
- $k(\lambda)$ is the number of non-zero components among $\hat{\alpha}_1, \ldots, \hat{\alpha}_J$
- ▶ $\eta_{\max}(\cdot)$ is the largest eigenvalue and $\eta_{\min}(\cdot)$ is the smallest eigenvalue
- Require an additional tuning parameter r

Choice of r

- Analog to generalized information criteria
- Additional control over the choice of λ
- ► Larger $r \Rightarrow$ Smaller $\lambda \Rightarrow$ More groups of basis matrices selected
- Choose r = m/n, the ratio of cluster size and sample size
- Outperforms GCV, AIC and BIC

Conditions on the Penalty Function

Define

$$a_n = \max_{1 \le j \le p_m} \{ p'_{\lambda_n}(|\alpha_0^j|), \alpha_0^j \ne 0 \}$$
$$b_n = \max_{1 \le j \le p_m} \{ p''_{\lambda_n}(|\alpha_0^j|), \alpha_0^j \ne 0 \}$$

The following conditions are associated with the penalty functions:

a.
$$a_n = O(n^{-1/2})$$

- b. $b_n \rightarrow 0$ as $n \rightarrow \infty$
- c. $\liminf_{n\to\infty} \liminf_{\theta\to 0^+} p'_{\lambda_n}(\theta)/\lambda_n > 0$
- d. There are constants c_1 and c_2 , such that when $\theta_1, \theta_2 > c_1 \lambda_n$, $|p_{\lambda_n}''(\theta_1) - p_{\lambda_n}''(\theta_2))| \le c_2|\theta_1 - \theta_2|$

Other Regularity Conditions

Each element of the empirical correlation matrix is consistent

$$\sqrt{n}|\widetilde{R}(i,j)-R(i,j)|=O_{p}(1),\ 1\leq i\leq m, 1\leq j\leq m$$

For any $\epsilon > 0$, there exist constants l_1 and l_2 such that

$$\mathsf{P}(0 < \mathit{l}_1 < \lambda_{\min}\{\mathit{V}_i^{\mathsf{T}}\mathit{V}_i\} \leq \lambda_{\max}\{\mathit{V}_i^{\mathsf{T}}\mathit{V}_i\} < \mathit{l}_2 < \infty) > 1 - \epsilon$$

The L₁ norm of the basis matrices is bounded, i.e., there is a constant K such that

$$||M_{jb}||_1 < K, \quad 1 \le j \le J_m, \ b = 1, \dots B_j$$

Theorem 1

Theorem 1

Suppose the regularity conditions 1-4 are satisfied, if $p_m^2/n \to 0$ as $n \to \infty$, then there is a local minimizer $\hat{\alpha}$ for minimizing the objective function $Q(\alpha)$, such that $||\hat{\alpha} - \alpha_0|| = O_p\{\sqrt{p_m}(n^{-1/2} + a_n)\}$, where a_n is given in Condition 1 and $\alpha_0 = (\alpha_{01}, \ldots, \alpha_{0J_m})$ is the true coefficient vector associated with all the basis matrices.

▶ For the SCAD penalty, a_n = 0 when n is large, therefore the SCAD estimator is consistent

Theorem 2

Theorem 2

Given all the regularity conditions are satisfied, if $\lambda_n \to 0$, $\sqrt{n/p_m}\lambda_n \to \infty$ and $p_m^2/n \to 0$, then with probability tending to 1, for any given constant C, and any α_1 satisfying $||\alpha_1 - \alpha_{01}|| = O_p(\sqrt{p_m/n})$,

$$Q(\hat{lpha}_1,0)=\min_{||oldsymbol{lpha}_2||\leq C(p_m/n)^{1/2}}Q(oldsymbol{lpha}_1,oldsymbol{lpha}_2).$$

\$\hlowhat{1}\$ is the estimate for the non-zero coefficients
 Estimates of the zero-coefficients are shrunk to 0

Theorem 3: Oracle Property

Theorem 3

Suppose all the regularity conditions are satisfied, if $\lambda_n \to 0$, $\sqrt{n/p_m}\lambda_n \to \infty$ and $p_m^2/n \to 0$ as $n \to \infty$, then with probability tending to 1, we establish the following oracle properties: (i) (Sparsity) $\hat{\alpha}_2 = 0$. (ii) (Asymptotic normality)

$$egin{aligned} &\sqrt{n}A_m K_{m,11}^{-1/2} \{I_{n,11} + rac{1}{n}
abla^2 P_{\lambda_n}(lpha_{01})\}(\hat{lpha}_{01} - lpha_{01}) \ &+ rac{1}{\sqrt{n}}A_m K_{m,11}^{-1/2}
abla P_{\lambda_n}(lpha_{01}) \stackrel{d}{ o} N(0,G), \end{aligned}$$

A_m is any given q × p_m matrix which satisfies A^T_mA_m → G
 K_{m,11} is a submatrix of K_m associated with α₁

Simulation Setup

- R is a block diagonal matrix, and each block with dimension 5 × 5 has a correlation structure either as AR(1), exchangeable or independent
- The number of blocks d diverges
- ▶ d = 5, 10, 15 and $20 \Rightarrow m = 25, 50, 75$ and 100
- Basis Matrices
 - ► G₁ contains the identity matrix I_{5d}, and d 1 matrices with block identity matrices I₅ on the diagonal
 - ▶ Group G₂ contains two matrices with M_{2,1} and M_{2,2} on the first block
 - Group \mathbf{G}_3 contains one matrix with $M_{3,1}$ for the first block
 - Other groups of basis matrices formed similarly, total 2d + 1 groups

Normal Response

For the normal response, we generate the data from the following longitudinal model,

$$Y_i = \beta_0 + X_{1i}\beta_1 + X_{2i}\beta_2 + X_{3i}\beta_3 + \epsilon_i$$

- ▶ X_{ti} , t = 1, 2, 3 are the covariates generated from N(0, 1)
- $\epsilon_i \sim N(0, R)$
- First two blocks are AR(1), the third block is exchangeable, the remaining blocks are independent
- The covariates $\beta = (\beta_0, \beta_1, \beta_2, \beta_3)^T = (2, 1, 1, 1)^T$
- Sample size n = 200

Results for Normal Response: $\rho = 0.7$

Table: Percentages of correctly identified signals and non-signals using GIC criteria with correlation $\rho = 0.7$, sample size n = 200, results are from 100 simulations.

						% of fits		
Cluster size	r	Signals		Non-signals	Correct	Under	Over	
m = 25	0.125	100	100	100	100	1	0	0
m = 50	0.250	99	100	100	99.9	0.98	0.01	0.01
m = 75	0.375	96	97	97	99.9	0.92	0.04	0.04
m = 100	0.500	97	96	98	98	0.72	0.06	0.22

- % of correct-fitting decreases as the number of block increases
- ▶ % of identifying the AR(1) and exchangeable correlation structures are high even when m = 100

Binary Response

For the binary response, the responses are generated from the logistic regression model

$$logit{E(Y_i)} = \beta_0 + X_{1i}\beta_1 + X_{2i}\beta_2 + X_{3i}\beta_3,$$

- ► X_{ti}(t = 1, 2, 3) are the covariates, generated from a normal distribution N(0, 0.01)
- First two blocks are exchangeable, and the third block is AR(1)
- The covariates $\beta = (\beta_0, \beta_1, \beta_2, \beta_3)^T = (0.2, 1, -1, -1)^T$
- Correlation Parameter $\rho = 0.6$

Results for Binary Response: n = 300

Table: Percentages of Correctly Identified Signals and Non-signals using GIC criteria with correlation $\rho = 0.6$, Binary response, sample size n = 300

						% of fits		
Cluster size	r		Signals	;	Non-signals	Correct	Under	Over
m = 25	0.833	100	100	100	99.9	0.99	0	0.01
m = 50	0.167	99	100	100	99.9	0.98	0.01	0.01
<i>m</i> = 75	0.250	94	98	97	99.2	0.82	0.08	0.10
m = 100	0.333	89	94	91	98.4	0.66	0.19	0.15

• Results similar to normal response with $\rho = 0.7$

• r = m/n is a reasonable choice

- Impact of air pollution on asthmatic patients
- Based on 39 patients, cluster size is 21
- Response: observations of asthmatic status on 21 consecutive days, i.e. presence (1) or absence (0) of difficulties in breathing
- Covariates: pollution levels of 7 pollutants, daily mean temperature and daily mean humidity, total 9 covariates

Basis Matrices

- ▶ Group 1: Identity matrix: *I*₂₁
- ▶ Group 2: M_{2,1} and M_{2,2} to represent the AR(1) structure as in Example 1
- ▶ Group 3: M_{3,1} to represent the exchangeable working correlation as in Example 2
- Group 4: Four additional matrices needed to represent the mixture of AR(1) and CS
- Group 5-11: Groups of basis matrices to represent the sub block structures as in Example 3 (3 sub blocks, each week is a sub block)

Results of Correlation Structure Selection

- AIC, BIC, and GCV selects all the basis matrices, except exchangeable for the third block
- ► GIC with r = 21/39 identifies the correlation structure as a simple exchangeable structure

Comparison of GEE Estimators with Different Working Structures

Effects	Independent	GIC	GCV
Meantemp	-0.2494	-0.1009	0.0660
s.e.	0.2563	0.0908	0.0892
z-value	-0.9733	-1.1112	0.7403
NO	0.2860	0.0553	-0.1362
s.e.	0.3419	0.1170	0.1178
z-value	0.8365	0.4724	-1.1555
NO2	-0.0105	-0.0335	0.0133
s.e.	0.0728	0.0235	0.0179
z-value	-0.1447	-1.4218	0.7425
NOX	-0.2717	-0.0728	0.0700
s.e.	0.1904	0.0676	0.0679
z-value	-1.4268	-1.0778	1.0298
TRS	-0.1784	-0.0037	-0.0063
s.e.	0.0947	0.0413	0.0340
z-value	-1.8836	-0.0892	-0.1856
OZ	0.1266	0.1190	0.1082
s.e.	0.1023	0.0341	0.0290
z-value	1.2384	3.4897	3.7244
CO	-0.0122	0.0200	-0.0504
s.e.	0.1504	0.0547	0.0487
z-value	-0.0810	0.3661	-1.0347
COH	0.1191	-0.0223	-0.1092
s.e.	0.0853	0.0289	0.0251
z-value	1.3967	-0.7740	-4.3530

- S.E.'s from working structures selected by either GIC or GCV are much smaller than that from Independent structure
- GEE with "unspecified" working structure does not converge

Discussion

- A new approach to identify the correlation structure
- Approximate the inverse of the correlation matrix with groups of basis matrices
- Objective function measures the adequacy of a approximated model

Discussion (Cont'd)

- Allow the cluster size to diverge
- Does not require likelihood function
- The estimates of the coefficients of the basis matrices have consistency and oracle property
- Simulatuion studies show that the proposed procedure works well for both the normal and the binary responses, even when the cluster size is large
- Handling with the unbalanced data case
- Concerns for positive definitiveness of the correlation matrix

Thank you for your attention!