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Impact of air pollution on asthmatic patients, Ontario, 1992.
Based on 39 patients, cluster size is 21.

Response: observations of asthmatic status on 21 consecutive
days, i.e. presence (1) or absence (0) of difficulties in
breathing.

Covariates: pollution levels of 7 pollutants, daily mean
temperature and daily mean humidity, total 9 covariates.

GEE method with “unspecified” correlation structure
does not converge
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Improve efficiency of regression parameter estimation.

Reduce the bias of parameter estimation in nonparametric
modeling (Wang, 2003)

Increase statistical power for hypothesis testing.
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Current literature focuses on the estimation of covariance
matrix: Huang et al., 2007, 2008 (Cholesky decomposition)
Bickel and Levina, 2008a; 2008b (tapering and banding,
threshholding); Rothman et al., 2009 (inverse of covariance);
Cai et al., 2010; Yuan, 2010 (multivariate linear regression)

Our approach avoids the estimation of each individual entry of
the correlation matrix, useful when cluster size is large.

Reduce the dimension of the parameter involved in the
estimation.

Does not require the specification of the likelihood.
Can be applied to non-normal response.
Diverging cluster sizes

Enjoys consistency and oracle property
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Consider the marginal model

E(y;))=g(XiB8), i=1,...,n

yi = (¥i1,---,Yim) is the response variable
t=1,...,m are the time points

X;i is a known m x dim(/3) covariate matrix
[ is a parameter vector

g(+) is the link function



In the quadratic inference function approach (Qu, Lindsay and
Li, 2000), Rt ~ Y77 ajM;

(Zhou and Qu, 2012) The basis matrices can be divided into
different groups, i.e.

Z oMo = Z ;G
j=1 b=1
My is the bth basis matrix in the jth group

The jth group G; consisting of B; basis matrices Mj1,..., Mg,
The associated coefficient vector a; = (a1, ..., ajg;)

6
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If R has an AR(1) structure with the parameter p, R~! can be
represented as

R = ay1lm 4+ aziMag + axpMas

Iy is the identity matrix in group Gi

Mo 1 and M, > are two basis matrices in group G»

Mo 1 has 1 on the sub-diagonal, and 0 elsewhere

M > has 1 on the (1,1) and (m, m) components and, 0
elsewhere

an = (14 p%)/(1 — p?) and

az = (az1,a22) = (=p/(1 = p?), —p*/(1 = p?))

~
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If R is exchangeable with the correlation parameter p, we have

R = a11lm + aziMs 1

I, is the identity matrix in group Gi

The second basis matrix M3 1 has 0 on its main diagonal, and
1 elsewhere

a1 = —{(m—2)p + 1}/{(m — 1)p? — (m — 2)p — 1} and
azy = p/{(m—1)p* — (m - 2)p - 1}
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R has a block diagonal matrix structure
Each block is either independent, exchangeable or AR(1)

Group Gj contains the identity matrix /,,, and d — 1 matrices
with block identity matrices I, (i =1,...,d — 1) on the first,
..., and (d — 1)th block

For any jth block with AR(1) structure, the group basis

matrices contain two basis matrices M ; and M> > as
provided in Example 1

For any block with exchangeable structure, the group basis

matrices contain a basis matrix Mz ; for the corresponding
block
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Identifying which groups of basis matrices have non-zero
coefficients
Achived by minimizing an objective function including two

parts
Discrepancy between the two estimating functions

One based on the empirical estimation
The other based on the approximation by basis matrices

A penalty function is added to balance the complexity and
sufficiency of the model
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The objective functions includes two parts, the Euclidean norm of
S and a penalty function, i.e.

n Jm
STSTS 4+ ndim(8) Y palllajlla).
i=1 j=2

where the discrepancy between the two estimating functions for
the ith cluster is

Si= il (AR — 16y — - — ay, G YA 2 (i — pi(B))
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pa(-) is the SCAD penalty function and A is the tuning
parameter.

llaj]|2 is the Lo-norm of a;.

By imposing the Ly-norm, the basis matrices within the same
group are selected simultaneously.

The first group of basis matrices is not penalized.
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Define

(B) 1/2 1/4’.*1/2{_)/’._M’.(B\)}7 i:l,...,n
Vin = il (B)A; 1/2Miji_1/2{yf - mi(A)}
j:]_,...,Jm,b: 17BJ

Let Vjj = (Vij1,..., Vijg;) and V; = (Vit, ooy Vig) T

Then the objective function can be written as

n Jm Jm
=> U = > V[P + ndim(8) > pa(lleyl])
i=1 j=1 j=2
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Transform the correlation model selection problem to be
covariates model selection

Has the same form as a penalized least square problems
Group SCAD penalty, non-convex penalty

Apply the one-step local approximation to SCAD penalty (Zou
and Li 2008)
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Choose the tuning parameter A using a GIC type of criteria

nmax(ﬁy—lfezf?—l)
GICT(A) =nrlo = + log(n)k(X). 1
r() = rlog " ey HloB(MK(). (1)
R is the empirical correlation matrix
R1=&1Gy++ &y, Gy and &g, ..., G are estimated
with A

k(X) is the number of non-zero components among
Qq,...,0y

Nmax(+) is the largest eigenvalue and 7min(-) is the smallest
eigenvalue

Require an additional tuning parameter r
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Analog to generalized information criteria
Additional control over the choice of A

Larger r = Smaller A = More groups of basis matrices
selected

Choose r = m/n, the ratio of cluster size and sample size
Outperforms GCV, AlIC and BIC

16
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Define
an = max {p), (|agl), o # 0}

b = max {pf (|ag). o # 0}

1<)

The following conditions are associated with the penalty functions:
an = 0(n~1/?)
b, —>0asn— o
liminf, o liminfy_o+ py (6)/An >0

There are constants ¢; and ¢, such that when 61,0> > 1\,
[R5, (1) = P, (02))] < 2l — 62|
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Each element of the empirical correlation matrix is consistent
VilR(i,j) = R(i,j)| = 0p(1), 1<i<m1<j<m

For any € > 0, there exist constants /; and /; such that

PO < h < Amin{V" Vi} < dmax{ Vi Vil < h <00) >1—¢

The L1 norm of the basis matrices is bounded, i.e., there is a
constant K such that

[Mplli < K, 1<j<Jm b=1,...B
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Suppose the regularity conditions 1-4 are satisfied, if p2,/n — 0 as
n — oo, then there is a local minimizer & for minimizing the
objective function Q(c), such that

||& — cxo|| = Op{/Pm(n~Y2 + a,)}, where a, is given in
Condition 1 and g = (o1, - - -, @y, ) Is the true coefficient
vector associated with all the basis matrices.

For the SCAD penalty, a, = 0 when n is large, therefore the
SCAD estimator is consistent
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Given all the regularity conditions are satisfied, if A, — 0,
\/n/PmAn — 00 and p2,/n — 0, then with probability tending to
1, for any given constant C, and any a satisfying

|ler — exor]| = Op(\/Pm/n),

Q(&q,0) = min Qla, o).
( ) ||Cta2||[<C(pm/n)/2 ( )

& is the estimate for the non-zero coefficients

Estimates of the zero-coefficients are shrunk to 0
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Suppose all the regularity conditions are satisfied, if A, — 0,

\/Nn/pmAn — o0 and p2,/n — 0 as n — oo, then with probability
tending to 1, we establish the following oracle properties:

(i) (Sparsity) éo =0.

(i) (Asymptotic normality)

VnAm Km {/n 1+ V Py, (c01)}(éo1 — ao1)

+7A K 1/2va (co1) 2 N(0, G),

A, is any given q X pm matrix which satisfies AT An — G

Km,11 is a submatrix of K, associated with o
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R is a block diagonal matrix, and each block with dimension
5 x 5 has a correlation structure either as AR(1),
exchangeable or independent

The number of blocks d diverges
d =5,10,15 and 20 = m = 25,50, 75 and 100

Basis Matrices
G; contains the identity matrix 54, and d — 1 matrices with
block identity matrices /5 on the diagonal
Group G; contains two matrices with M> ; and M, > on the
first block
Group G3 contains one matrix with M3 ; for the first block
Other groups of basis matrices formed similarly, total 2d + 1
groups



For the normal response, we generate the data from the following
longitudinal model,

Yi = Bo + X1iB1 + XoifB2 + X3ifB3 + €

Xii,t =1,2,3 are the covariates generated from N(0, 1)

ei ~ N(0,R)

First two blocks are AR(1), the third block is exchangeable,
the remaining blocks are independent

The covariates 8 = (60,61,62,53)7— =(2,1,1, 1)T
Sample size n = 200
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Percentages of correctly identified signals and non-signals using
GIC criteria with correlation p = 0.7, sample size n = 200, results are

from 100 simulations.

% of fits
Cluster size r Signals Non-signals | Correct Under  Over
m =25 0.125 | 100 100 100 100 1 0 0
m =50 0.250 | 99 100 100 99.9 0.98 0.01 0.01
m=75 0.375 | 96 97 97 99.9 0.92 0.04 0.04
m = 100 0.500 | 97 96 98 98 0.72 0.06 0.22

% of correct-fitting decreases as the number of block increases

% of identifying the AR(1) and exchangeable correlation

structures are high even when m = 100
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For the binary response, the responses are generated from the
logistic regression model

logit{E(Y})} = Bo + X1if1 + Xai B2 + X3i 33,

Xii(t = 1,2,3) are the covariates, generated from a normal
distribution N(0,0.01)

First two blocks are exchangeable, and the third block is
AR(1)

The covariates 8 = (3o, f1, 52, 83) T = (0.2,1,—1,-1)T
Correlation Parameter p = 0.6
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Percentages of Correctly Identified Signals and Non-signals using
GIC criteria with correlation p = 0.6, Binary response, sample size

n = 300
% of fits
Cluster size r Signals Non-signals | Correct Under  Over
m=25 0.833 | 100 100 100 99.9 0.99 0 0.01
m =50 0.167 | 99 100 100 99.9 0.98 0.01 0.01
m=175 0.250 | 94 98 97 99.2 0.82 0.08 0.10
m = 100 0.333 | 89 94 91 98.4 0.66 0.19 0.15

Results similar to normal response with p = 0.7

r = m/nis a reasonable choice

26
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Impact of air pollution on asthmatic patients

Based on 39 patients, cluster size is 21

Response: observations of asthmatic status on 21 consecutive
days, i.e. presence (1) or absence (0) of difficulties in
breathing

Covariates: pollution levels of 7 pollutants, daily mean
temperature and daily mean humidity, total 9 covariates



Group 1: Identity matrix: h

Group 2: M1 and M, to represent the AR(1) structure as
in Example 1

Group 3: M3 to represent the exchangeable working
correlation as in Example 2

Group 4: Four additional matrices needed to represent the
mixture of AR(1) and CS

Group 5-11: Groups of basis matrices to represent the sub
block structures as in Example 3 (3 sub blocks, each week is a
sub block)
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AIC, BIC, and GCV selects all the basis matrices, except
exchangeable for the third block

GIC with r = 21/39 identifies the correlation structure as a
simple exchangeable structure
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Effects Independent GIC GCV
Meantemp -0.2494 -0.1009 0.0660
s.e. 0.2563 0.0908 0.0892
z-value -0.9733 -1.1112 0.7403
NO 0.2860 0.0553 -0.1362
s.e. 0.3419 0.1170 0.1178
z-value 0.8365 0.4724 -1.1555
NO2 -0.0105 -0.0335 0.0133
s.e. 0.0728 0.0235 0.0179
z-value -0.1447 -1.4218 0.7425
NOX -0.2717 -0.0728 0.0700
s.e. 0.1904 0.0676 0.0679
z-value -1.4268 -1.0778 1.0298
TRS -0.1784 -0.0037 -0.0063
s.e. 0.0947 0.0413 0.0340
z-value -1.8836 -0.0892 -0.1856
oz 0.1266 0.1190 0.1082
s.e. 0.1023 0.0341 0.0290
z-value 1.2384 3.4897 3.7244
co -0.0122 0.0200 -0.0504
s.e. 0.1504 0.0547 0.0487
z-value -0.0810 0.3661 -1.0347
COH 0.1191 -0.0223 -0.1092
s.e. 0.0853 0.0289 0.0251
z-value 1.3967 -0.7740 -4.3530

S.E.'s from working structures selected by either GIC or GCV are

than that from Independent structure

GEE with “unspecified” working structure does not converge

much smaller
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A new approach to identify the correlation structure

Approximate the inverse of the correlation matrix with groups
of basis matrices

Objective function measures the adequacy of a approximated
model
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Allow the cluster size to diverge
Does not require likelihood function

The estimates of the coefficients of the basis matrices have
consistency and oracle property

Simulatuion studies show that the proposed procedure works
well for both the normal and the binary responses, even when
the cluster size is large

Handling with the unbalanced data case

Concerns for positive definitiveness of the correlation matrix

32/33



Thank you for your attention!



	Discussion

