Robust Identification of Sparse Segments in Ultra-High Dimensional Data Analysis

Hongzhe Li
hongzhe@upenn.edu, http://statgene.med.upenn.edu
University of Pennsylvania Perelman School of Medicine
Joint work with Jessie Jeng and Tony Cai

Genetic variations and complex diseases

Commonly observed genetic variations:

- Single
nucleotide polymorphisms (SNPs).
- Small insertions/deletions (InDels).
- Structure variations, including the copy number variations (CNVs).

All are
associated with risk of complex diseases.

Copy number variants (CNVs)

Copy Number Variation

Individual 1
 woon iferiblowawocor ib ieaw
 2 copies of gene X resulting in a 40 kb duplication

Gene Z with deletion
 0000…
 NOONE ${ }^{[10000}$

Many CNVs have functional consequences: alter gene dosage, disrupt genes, or uncover deleterious alleles.

CNV Associations

CNVs and Human Diseases

```
Relative Impact of Nucleotide and
Copy Number Variation on Gene
Expr Strong Association of De Novo Copy
c
M
Chanesiotis
Scien
Jonathan s
Tom Walsh
Maija Puur
l}\begin{array}{l}{\mathrm{ James S. S Sary-Clain}}\\{\mathrm{ Kenny Ye,1,}}
Kenny re,' Alexand Rare Structural Variants Disrupt Multiple Genes in kova }\mp@subsup{}{}{3
Scie1 }\mp@subsup{}{}{1}\mathrm{ Departm Ra
l}\mp@subsup{}{}{1}\mathrm{ (Departm 
\mp@subsup{}{}{3}\mathrm{ Prague F}
Tom Walsh '* Jon M. McClellan, 2*+ Shane E. McCarthy, '* Anjell
Am ] M. Cooper,5 Alex S. Nord,', Mary Kusenda, }\mp@subsup{}{}{3,6}\mathrm{ Dhecraj Malhotra, }\mp@subsup{}{}{5
Caitlin F. Rippey, ,}\mathrm{ Patricia Roccanova, ' Vlad Makarov, ,}\mp@subsup{}{9}{3}\mathrm{ B. Laksh
Sikich,}\mp@subsup{}{}{8}\mathrm{ Thomas Stromberg }\mp@subsup{}{}{4}\mathrm{ Barrv Merriman }\mp@subsup{}{}{9}\mathrm{ Nitin Gootav }\mp@subsup{}{}{4}\mathrm{ Ph
Mcltzer.0}\mp@subsup{}{S}{N
Mcitzer, S
King,', Jon
    Scienc
                                    Implications for Cardiovascular Disease
                                    Rebecca L. Pollex, MSc; Robert A. Hegele, MD, FRCPC
                    Circulation 115:3130-38 (2007)
```


Data available for CNV Analysis, literature

Two types of data can be used for CNV analysis for germline DNA.

- SNP chip data for GWAS - high dimensional continuous data.

Sebat et al. 2004; McCarrol and Altshuler 2007; Wellcome trust (Nature 2010).

- Next generation sequencing data (NGS) - ultra high dimensional discrete data; Medvedev et al., 2009 (Nat. Meth).
- Methods available:
- GWAS SNP data: circular binary segmentation (CBS) (Olshen et al, 2004); HMM based method (PennCNV, Wang et al 2007); scanning-based methods (Zhang and Siegmund 2010); Likelihood ratio selection (Jeng, Cai and Li, 2010).
- NGS data: Most methods are computational.

CNV analysis based on SNP Chip data

Visualization of CNVs

CNV Analysis and Next Generation Sequence Data

Sequence Read Depth Analysis

Statistical challenges

Y_{i} : \# of read counts covering location $i, i=1, \cdots, n$; or
Y_{i} : \# of read counts in 100bp intervals.

- n is ultra-high, computational challenge.
- Y_{i} usually does not follow a normal distribution, outliers Existing methods do not work well when noise distribution is non-Gaussian and hard to be estimated.

Cauchy distribution: data, LRS, RSI.

Statistical model for read depth data - one sample

For a given individual, observe read counts $\left\{Y_{i}, i=1, \ldots, n\right\}$ with

$$
\begin{equation*}
Y_{i}=\mu_{1} 1_{\left\{i \in I_{1}\right\}}+\ldots+\mu_{q} 1_{\left\{i \in I_{q}\right\}}+\xi_{i}, \quad 1 \leq i \leq n . \tag{1}
\end{equation*}
$$

n : length of genome (billions);
$q=q_{n}$: unknown number of the signal segments;
$\mathbb{I}=\left\{I_{1}, \ldots I_{q}\right\}:$ disjoint intervals representing signal segments with
unknown locations;
$\mu_{1}, \ldots \mu_{q}$ are unknown means
ξ_{i} is symmetric at 0 and density function h s.t.

$$
h(0)>0, \quad|h(y)-h(0)| \leq C y^{2} \text { in an open nbhd of } 0 .
$$

We want to
(a) (detection) test $H_{0}: \quad \mathbb{I}=\emptyset \quad$ against $\quad H_{1}: \quad \mathbb{I} \neq \emptyset$,
(b) (identification) if the alternative is true, identify each $I_{j} \in \mathbb{I}$.

Methods Assuming Gaussian Noise

- Methods for detecting the presence of segments assuming Gaussian noise: Arias-Castro, Donoho and Huo (2005)
- Identification methods assuming Gaussian noise: likelihood ratio selector (LRS) (Jeng, Cai and Li 2010 JASA).

Key of the LRS:
(1) For any given interval $\tilde{I} \subseteq\{1,2, \ldots, n\}$, define its likelihood ratio statistic as

$$
Y(\tilde{I})=\sum_{i \in \tilde{I}} Y_{i} / \sqrt{|\tilde{I}|} .
$$

(2) Scan the genome with intervals of length $\leq L$, threshold $\sqrt{2 \log (n L)}$.
(3) Identify local maximums.

Detection boundaries and optimality results are established.

Data Transformation - local median

- Equally divide the n observations (e.g., counts at each bp) into $T=T_{n}$ groups with $m=m_{n}$ observations in each group.
- Define j th interval $J_{k}=\{i:(k-1) m+1 \leq i \leq k m\}$ and take median: $X_{k}=\operatorname{median}\left(Y_{i}: i \in J_{k}\right), \eta_{k}=\operatorname{median}\left\{\xi_{i}: i \in J_{k}\right\}, \quad 1 \leq k \leq T$.
- We have

$$
\begin{gathered}
X_{k}=\theta_{k}+\eta_{k}, \quad 1 \leq k \leq T \\
\theta_{k} \begin{cases}=\mu_{j}, & J_{k} \subseteq I_{j} \text { for some } I_{j}, \\
\in\left[0, \mu_{j}\right], & J_{k} \cap I_{j} \neq \emptyset \text { for some } I_{j} \text { and } J_{k} \nsubseteq I_{j}, \\
=0, & \text { otherwise }\end{cases}
\end{gathered}
$$

Key point: $\sqrt{m} \eta_{k}=\frac{1}{2 h(0)} Z_{k}+\zeta_{k}, \quad Z_{k} \sim N(0,1), \zeta_{k} \rightarrow_{D} 0$ fast
$\Rightarrow \eta_{k} \sim N\left(0,1 /\left(4 h^{2}(0) m\right)\right)$.
(Brown, Cai and Zhou: AoS 08).

Robust Segment Detection (RSD)

Segment detection: test $H_{0}: \mathbb{I}=\emptyset$ vs $H_{1}: \mathbb{I} \neq \emptyset$.
For any interval \tilde{I}, define

$$
X(\tilde{I})=\sum_{k \in \tilde{I}} X_{k} / \sqrt{|\tilde{I}|},
$$

and threshold

$$
\lambda_{n}=\sqrt{2 \log n} /(2 h(0) \sqrt{m}) .
$$

The RSD rejects H_{0} when $\max _{\tilde{I} \in \mathbb{J}_{T}} X(\tilde{I})>\lambda_{n}$, where \mathbb{J}_{T} is the collection of all possible intervals in $\{1, \ldots, T\}$.

Robust Segment Detection - Type 1 error and power

Under the assumed model and median transformation with $m=\log ^{1+b} n$ for some $b>0$.

Type 1 error: For the collection \mathbb{J}_{T} of all the possible intervals in $\{1, \ldots, T\}$,

$$
P_{H_{0}}\left(\max _{\tilde{I} \in \mathbb{J}_{T}} X(\tilde{I})>\lambda_{n}\right) \leq \frac{C}{\sqrt{\log T}} \rightarrow 0, \quad T \rightarrow \infty
$$

Power: If there exists some segment $I_{j} \in \mathbb{I}$ that satisfies

$$
\left|I_{j}\right| / m \rightarrow \infty
$$

and

$$
\mu_{j} \sqrt{\left|I_{j}\right|} \geq \sqrt{2(1+\epsilon) \log n} /(2 h(0))
$$

for some $\epsilon>0$, then RSD has the sum of the probabilities of type I and type II errors going to 0 .

Robust Segment Identifier (RSI)

- Perform local median transformation with bin size m, get
$X_{k}=\theta_{k}+\eta_{k}, 1 \leq k \leq T$.
- Set data-driven threshold at

$$
\lambda_{n}^{*}=\hat{\sigma} \sqrt{2 \log n}, \quad \hat{\sigma}^{2}: \text { estimate of } \operatorname{Var}\left(\eta_{k}\right)(e . g ., M A D)
$$

- Apply LRS on X_{k} :
- select intervals with their likelihood ratio statistics $>\lambda_{n}^{*}$ and achieve local maximums.

2 only consider short intervals with length $\leq L / m, L$: max CNV size. (Jeng, Cai and Li, JASA 2010.)

- Conditions on m and $L: m=\log ^{1+b} n, \quad \bar{s} \leq L<\underline{d}$,
$b>0, \bar{s}=$ length of the longest segment, $\underline{d}=$ shortest distance between two adjacent segments.

Theory - consistency and optimality

- Result 1: Assume the general condition on the background noise ξ_{i} and some sparsity conditions on the signal segments. If all $I_{j} \in \mathbb{I}$ satisfies $\left|I_{j}\right| / m \rightarrow \infty$ and

$$
\mu_{j} \sqrt{\left|I_{j}\right|} \geq \sqrt{2(1+\epsilon) \log n} /(2 h(0))
$$

for some $\epsilon>0$, then the RSI with $m=\log ^{1+b} n$ for $b>0$ and $\bar{s} \leq L<\underline{d}$, is consistent for \mathbb{I}, i.e., for some $\delta_{n}=o(1)$,

$$
\begin{gathered}
P_{H_{0}}(|\hat{\mathbb{I}}|>0)+P_{H_{1}}\left(\max _{I_{j} \in \mathbb{I}} \min _{\hat{I}_{j} \in \hat{\mathbb{I}}} D\left(\hat{I}_{j}, I_{j}\right)>\delta_{n}\right) \rightarrow 0 \\
D(\hat{I}, I)=1-|\hat{I} \cap I| / \sqrt{|\hat{I}||I|}
\end{gathered}
$$

- Result 2: If for all $I_{j} \in \mathbb{I}$,

$$
\mu_{j} \sqrt{\left|I_{j}\right|} \leq \sqrt{2(1-\epsilon) \log n} /(2 h(0))
$$

Comparison with Gaussian noises

- Compare to the case with Gaussian noise:
- Assume $\xi_{i} \sim N(0,1)$, then the original GLRT based on Y_{i} is optimal.
- Further, if $\exists I_{j} \in \mathbb{I}$ s.t.

$$
\mu_{j} \sqrt{\left|I_{j}\right|} \geq \sqrt{2\left(1+\epsilon_{n}\right) \log n}
$$

then the original GLRT is consistent.
Possible price for robustness:
$\sqrt{2\left(1+\epsilon_{n}\right) \log n} /(2 h(0)) \approx 1.25 \times \sqrt{2\left(1+\epsilon_{n}\right) \log n}$

Simulation results - robustness

$n=5 \times 10^{4},|\mathbb{I}|=3$. Noise is generated from $t(1), t(3), t(30)$.
Estimation error for $I_{j}: D_{j}=\min _{\hat{I}_{k} \in \hat{\mathbb{I}}}\left\{1-\left|I_{j} \cap \hat{I}_{k}\right| / \sqrt{\left|I_{j}\right|\left|\hat{I}_{k}\right|}\right\} \in[0,1]$. Number of over-selections: $\# O$.
Medians of D_{j} and $\# O$ for RSI with $m=20$ and $L=6$.

		$D_{1\left(\left\|I_{1}\right\|=100\right)}$	$D_{2\left(\left\|I_{2}\right\|=40\right)}$	$D_{3\left(\left\|I_{3}\right\|=20\right)}$	$\# O$
$t(1)$	$\mu=1.0$	$0.080(0.015)$	$1.000(0.026)$	$1.000(0.000)$	$2(0.33)$
	$\mu=1.5$	$0.087(0.003)$	$0.184(0.017)$	$1.000(0.000)$	$2(0.26)$
	$\mu=2.0$	$0.087(0.009)$	$0.150(0.020)$	$0.423(0.220)$	$2(0.14)$
$\mathrm{t}(3)$	$\mu=1.0$	$0.087(0.005)$	$1.000(0.270)$	$1.000(0.000)$	$0(0.00)$
	$\mu=1.5$	$0.060(0.009)$	$0.175(0.029)$	$1.000(0.000)$	$0(0.00)$
	$\mu=2.0$	$0.050(0.008)$	$0.150(0.016)$	$0.293(0.019)$	$0(0.00)$
$\mathrm{t}(30)$	$\mu=1.0$	$0.070(0.014)$	$1.000(0.320)$	$1.000(0.000)$	$0(0.00)$
	$\mu=1.5$	$0.065(0.012)$	$0.175(0.021)$	$1.000(0.245)$	$0(0.00)$
	$\mu=2.0$	$0.050(0.010)$	$0.175(0.019)$	$0.250(0.028)$	$0(0.00)$

Simulation results - comparison with LRS and CBS

Table 1: Both homogeneous and heterogeneous noises are considered. Homogenous noise is generated from the t-distribution with degrees of freedom 1,3 , and 30 . Heterogeneous noise is generated from a mixture of $N(0,1)$ and $N\left(0, \sigma^{2}\right)$, where $\sigma \sim \operatorname{Gamma}(2, \tau) . \mu$ is fixed at 2.0.

	RSI		LRS		CBS	
	$D_{2\left(\left\|I_{2}\right\|=40\right)}$	$\# O$	$D_{2\left(\left\|I_{2}\right\|=40\right)}$	$\# O$	$D_{2\left(\left\|I_{2}\right\|=40\right)}$	$\# O$
$t(1)$	$0.163(0.024)$	$2(0.2)$	$0.340(0.054)$	$3882(7)$	$1.000(0.000)$	$0(0.0)$
$t(3)$	$0.125(0.028)$	$0(0.0)$	$0.025(0.006)$	$467(4)$	$1.000(0.000)$	$0(0.0)$
$t(30)$	$0.125(0.018)$	$0(0.0)$	$0.000(0.001)$	$2(0)$	$0.006(0.006)$	$0(0.0)$
$\tau=0.5$	$0.125(0.015)$	$2(0.4)$	$0.013(0.005)$	$37(3)$	$0.180(0.006)$	$4(0.6)$
$\tau=1.0$	$0.113(0.022)$	$12(0.6)$	$0.000(0.006)$	$227(6)$	$1.000(0.010)$	$10(1.1)$
$\tau=1.5$	$0.125(0.016)$	$26(0.8)$	$0.000(0.006)$	$461(11)$	$1.000(0.000)$	$8(1.1)$

Simulation results - effect of m

Table 2: Effect of bin size m on the performance of RSI. μ is fixed at 2 .

		$D_{1\left(\left\|I_{1}\right\|=100\right)}$	$D_{2\left(\left\|I_{2}\right\|=40\right)}$	$D_{3\left(\left\|I_{3}\right\|=20\right)}$	$\# O$
$t(1)$	$m=10$	$0.035(0.009)$	$0.10(0.018)$	$0.184(0.033)$	$19(0.85)$
	$m=20$	$0.087(0.009)$	$0.15(0.020)$	$0.423(0.220)$	$2(0.14)$
	$m=40$	$0.101(0.006)$	$0.25(0.056)$	$1.000(0.024)$	$0(0.00)$
$t(3)$	$m=10$	$0.030(0.004)$	$0.088(0.015)$	$0.150(0.033)$	$1(0.22)$
	$m=20$	$0.050(0.008)$	$0.150(0.016)$	$0.293(0.019)$	$0(0.00)$
	$m=40$	$0.087(0.006)$	$0.293(0.041)$	$1.000(0.250)$	$0(0.00)$
$t(30)$	$m=10$	$0.020(0.007)$	$0.075(0.008)$	$0.150(0.018)$	$0(0.00)$
	$m=20$	$0.050(0.010)$	$0.175(0.019)$	$0.250(0.028)$	$0(0.00)$
	$m=40$	$0.105(0.008)$	$0.293(0.035)$	$1.000(0.094)$	$0(0.00)$

1000 Genomes Project - NA19240, Chr 19

NA19240: an International HapMap project Yoruban female sample and parents.
42x, SOLiD, map to the human reference genome.
$n=54,361,060$ read counts for Chr 19.
Apply RSI with $m=400, L=60,000$. Identify 101 CNVs.
Take less than 3 mins.

Compare with the CNV map from 1000 Genomes Project based on 185 samples (Mills et al. 2011), 76 overlap with the reported CNVs based on 185 low-coverage samples and three methods (438, 332 and 615 CNVs).

Chr 19 sequence data - NA19240

Chr 19 sequence data - NA19240

Chr 19 sequence data - NA19240

Alternative Approach -Negative Binomial Counts

NB model:

$$
X_{i} \sim \operatorname{Negative} \operatorname{Binomial}\left(r, p_{i}\right), \quad p_{i}=p_{0}+\sum_{j=1}^{q} d_{j} 1_{\left(i \in I_{j}\right)}
$$

Data transformation: divide the n obs into $T=T_{n}$ groups of $m=m_{n}$ obs.
$Y_{k}=2 \sqrt{\hat{r}} \ln \left(\sqrt{\frac{\sum_{i \in J_{k}} X_{i}+1 / 4}{m \hat{r}-1 / 2}}+\sqrt{1+\frac{\sum_{i \in J_{k}} X_{i}+1 / 4}{m \hat{r}-1 / 2}}\right), \quad 1 \leq k \leq T$,

$$
Y_{k}=2 \ln \left(\sqrt{\theta_{k}}+\sqrt{r+\theta_{k}}\right)+\epsilon_{k}+m^{-1 / 2} Z_{k}+\xi_{k},
$$

$\theta_{k} \begin{cases}=r\left(p_{0}+d_{j}\right) /\left(1-p_{0}-d_{j}\right), & J_{k} \subseteq I_{j} \text { for some } I_{j}, \\ \in\left[r p_{0} /\left(1-p_{0}\right), r\left(p_{0}+d_{j}\right) /\left(1-p_{0}-d_{j}\right)\right], & J_{k} \cap I_{j} \neq \emptyset \text { for some } I_{j} \text { and } J_{k} \nsubseteq I_{j}, \\ =r p_{0} /\left(1-p_{0}\right), & \text { otherwise, } \quad \text { 四Penn }\end{cases}$
ϵ_{k} and ξ_{k} are stochastically small, $Z_{k} \sim N(0,1)$.

Concordant of the Yoruba trio

CNVs are inheritable - concordant rates, ranked by $\mu \sqrt{|\hat{I}|}$.

Comments and extensions

Cai, Jeng and Li (2011): JRSS(B), in press.

Many other complicated factors: repeated regions, complex rearrangments, highly repetitive elements.

Read depths data: difficulty in finding high repetitive CNVs (LINE, SINE), uncertain in CNV location, but can ba applied to paired-end, single-end and mixed data;

Paired-end whole genome sequencing data: statistical modeling of anomalous read pairs, can detect highly repetitive CNVs (LINE and SINE), precise location of CNVs; but span distances have effects on resolution.

Detection of other structure variants and precise breakpoints estimation.

THANKS!

Collaborators:
Jessie Jeng - Postdoc
Tony Cai - Statistics Dept
John Maris - CHOP.

NIH grants support.

