
Robust Identification of Sparse Segments in
Ultra-High Dimensional Data Analysis

Hongzhe Li
hongzhe@upenn.edu, http://statgene.med.upenn.edu

University of Pennsylvania Perelman School of Medicine

Joint work with Jessie Jeng and Tony Cai

Robust Segment Identification - 1 of 27-1
– p. 1



Genetic variations and complex diseases

Commonly observed genetic variations:

Single
nucleotide polymorphisms (SNPs).

Small insertions/deletions (InDels).

Structure variations, including
the copy number variations (CNVs).

All are
associated with risk of complex diseases.
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Copy number variants (CNVs)
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Copy Number Variation

NEJM 2007, 356:1169-1171

Many CNVs have functional 

consequences: alter gene 

dosage, disrupt genes, or 

uncover deleterious alleles.
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CNV Associations

4

CNVs and Human Diseases

Science 315:848-53 (2007)

Science 316:445-49 (2007)

Am J Med Genet 144:259-65 (2007)

Science: in press (2008)

Circulation 115:3130-38 (2007)
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Data available for CNV Analysis, literature

Two types of data can be used for CNV analysis for germline DNA.

SNP chip data for GWAS - high dimensional continuous data.
Sebat et al. 2004; McCarrol and Altshuler 2007; Wellcome trust
(Nature 2010).

Next generation sequencing data (NGS) - ultra high dimensional
discrete data; Medvedev et al., 2009 (Nat. Meth).

Methods available:

GWAS SNP data: circular binary segmentation (CBS) (Olshen et
al, 2004); HMM based method (PennCNV, Wang et al 2007);
scanning-based methods (Zhang and Siegmund 2010); Likelihood
ratio selection (Jeng, Cai and Li, 2010).

NGS data: Most methods are computational.

Robust Segment Identification - 5 of 27-1
– p. 5



CNV analysis based on SNP Chip data
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Visualization of CNVs
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CNV Analysis and Next Generation Sequence Data

Sequence Read Depth Analysis 

Individual sequence 

Zero level 

28 

Read depth signal 

Reads 

Mapping 

Reference genome 

Counting mapped reads 
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Statistical challenges

Yi: # of read counts covering location i, i = 1, · · · , n; or
Yi: # of read counts in 100bp intervals.

n is ultra-high, computational challenge.

Yi usually does not follow a normal distribution, outliers Existing
methods do not work well when noise distribution is non-Gaussian
and hard to be estimated.

Cauchy distribution: data, LRS, RSI.
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Statistical model for read depth data - one sample

For a given individual, observe read counts {Yi, i = 1, ..., n} with

Yi = µ11{i∈I1} + . . .+ µq1{i∈Iq} + ξi, 1 ≤ i ≤ n. (1)

n: length of genome (billions);
q = qn: unknown number of the signal segments;
I = {I1, . . . Iq}: disjoint intervals representing signal segments with
unknown locations;
µ1, . . . µq are unknown means
ξi is symmetric at 0 and density function h s.t.

h(0) > 0, |h(y)− h(0)| ≤ Cy2 in an open nbhd of 0.

We want to
(a) (detection) test H0 : I = ∅ against H1 : I 6= ∅,
(b) (identification) if the alternative is true, identify each Ij ∈ I.
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Methods Assuming Gaussian Noise

Methods for detecting the presence of segments assuming Gaussian
noise: Arias-Castro, Donoho and Huo (2005)

Identification methods assuming Gaussian noise:
likelihood ratio selector (LRS) (Jeng, Cai and Li 2010 JASA).

Key of the LRS:
(1) For any given interval Ĩ ⊆ {1, 2, ..., n}, define its likelihood ratio statistic
as

Y (Ĩ) =
∑

i∈Ĩ

Yi/

√

|Ĩ|.

(2) Scan the genome with intervals of length ≤ L, threshold
√

2 log(nL).
(3) Identify local maximums.

Detection boundaries and optimality results are established.

Robust Segment Identification - 10 of 27-1
– p. 10



Data Transformation - local median

Equally divide the n observations (e.g., counts at each bp) into
T = Tn groups with m = mn observations in each group.

Define jth interval Jk = {i : (k − 1)m+ 1 ≤ i ≤ km} and take median:
Xk = median(Yi : i ∈ Jk), ηk = median{ξi : i ∈ Jk}, 1 ≤ k ≤ T .

We have

Xk = θk + ηk, 1 ≤ k ≤ T,

θk















= µj , Jk ⊆ Ij for some Ij ,

∈ [0, µj ], Jk ∩ Ij 6= ∅ for some Ij and Jk * Ij ,

= 0, otherwise.

Key point:
√
mηk = 1

2h(0)Zk + ζk, Zk ∼ N(0, 1), ζk →D 0 fast

⇒ ηk ∼ N(0, 1/(4h2(0)m)).
(Brown, Cai and Zhou: AoS 08).
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Robust Segment Detection (RSD)

Segment detection: test H0 : I = ∅ vs H1 : I 6= ∅.

For any interval Ĩ, define

X(Ĩ) =
∑

k∈Ĩ

Xk/

√

|Ĩ|,

and threshold

λn =
√

2 logn/(2h(0)
√
m).

The RSD rejects H0 when maxĨ∈JT
X(Ĩ) > λn, where JT is the collection

of all possible intervals in {1, . . . , T}.
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Robust Segment Detection - Type 1 error and power

Under the assumed model and median transformation with m = log1+b n

for some b > 0.

Type 1 error: For the collection JT of all the possible intervals in {1, . . . , T},

PH0
(max
Ĩ∈JT

X(Ĩ) > λn) ≤
C√
log T

→ 0, T → ∞.

Power: If there exists some segment Ij ∈ I that satisfies

|Ij |/m → ∞

and

µj

√

|Ij | ≥
√

2(1 + ǫ) logn/(2h(0))

for some ǫ > 0, then RSD has the sum of the probabilities of type I and
type II errors going to 0.
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Robust Segment Identifier (RSI)

Perform local median transformation with bin size m, get
Xk = θk + ηk, 1 ≤ k ≤ T .

Set data-driven threshold at

λ∗
n = σ̂

√

2 logn, σ̂2 : estimate of V ar(ηk)(e.g.,MAD)

Apply LRS on Xk:

select intervals with their likelihood ratio statistics > λ∗
n and

achieve local maximums.

only consider short intervals with length ≤ L/m, L: max CNV size.
(Jeng, Cai and Li, JASA 2010.)

Conditions on m and L: m = log1+b n, s̄ ≤ L < d,

b > 0, s̄ =length of the longest segment, d =shortest distance
between two adjacent segments.
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Theory - consistency and optimality

Result 1: Assume the general condition on the background noise ξi

and some sparsity conditions on the signal segments. If all Ij ∈ I

satisfies |Ij |/m → ∞ and

µj

√

|Ij | ≥
√

2(1 + ǫ) logn/(2h(0))

for some ǫ > 0, then the RSI with m = log1+b n for b > 0 and
s̄ ≤ L < d, is consistent for I, i.e., for some δn = o(1),

PH0
(|̂I| > 0) + PH1

(max
Ij∈I

min
Îj∈Î

D(Îj , Ij) > δn) → 0

D(Î, I) = 1− |Î ∩ I|/
√

|Î||I|

Result 2: If for all Ij ∈ I,

µj

√

|Ij | ≤
√

2(1− ǫ) logn/(2h(0)),

then no method constructed on Xk with m → ∞ is consistent.
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Comparison with Gaussian noises

Compare to the case with Gaussian noise:

Assume ξi ∼ N(0, 1), then the original GLRT based on Yi is
optimal.

Further, if ∃Ij ∈ I s.t.

µj

√

|Ij | ≥
√

2(1 + ǫn) logn,

then the original GLRT is consistent.

Possible price for robustness:
√

2(1 + ǫn) logn/(2h(0)) ≈ 1.25×
√

2(1 + ǫn) logn
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Simulation results - robustness

n = 5× 104, |I| = 3. Noise is generated from t(1), t(3), t(30).

Estimation error for Ij : Dj = minÎk∈Î

{

1− |Ij ∩ Îk|/
√

|Ij ||Îk|
}

∈ [0, 1].
Number of over-selections: #O.

Medians of Dj and #O for RSI with m = 20 and L = 6.

D1(|I1|=100) D2(|I2|=40) D3(|I3|=20) #O

t(1) µ = 1.0 0.080(0.015) 1.000(0.026) 1.000(0.000) 2(0.33)

µ = 1.5 0.087(0.003) 0.184(0.017) 1.000(0.000) 2(0.26)

µ = 2.0 0.087(0.009) 0.150(0.020) 0.423(0.220) 2(0.14)

t(3) µ = 1.0 0.087(0.005) 1.000(0.270) 1.000(0.000) 0(0.00)

µ = 1.5 0.060(0.009) 0.175(0.029) 1.000(0.000) 0(0.00)

µ = 2.0 0.050(0.008) 0.150(0.016) 0.293(0.019) 0(0.00)

t(30) µ = 1.0 0.070(0.014) 1.000(0.320) 1.000(0.000) 0(0.00)

µ = 1.5 0.065(0.012) 0.175(0.021) 1.000(0.245) 0(0.00)

µ = 2.0 0.050(0.010) 0.175 (0.019) 0.250(0.028) 0(0.00)
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Simulation results - comparison with LRS and CBS

Table 1: Both homogeneous and heterogeneous noises are considered.
Homogenous noise is generated from the t-distribution with degrees of
freedom 1, 3, and 30. Heterogeneous noise is generated from a mixture of
N(0, 1) and N(0, σ2), where σ ∼ Gamma(2, τ). µ is fixed at 2.0.

RSI LRS CBS

D2(|I2|=40) #O D2(|I2|=40) #O D2(|I2|=40) #O

t(1) 0.163(0.024) 2(0.2) 0.340(0.054) 3882(7) 1.000(0.000) 0(0.0)

t(3) 0.125(0.028) 0(0.0) 0.025(0.006) 467(4) 1.000(0.000) 0(0.0)

t(30) 0.125(0.018) 0(0.0) 0.000(0.001) 2(0) 0.006(0.006) 0(0.0)

τ = 0.5 0.125(0.015) 2(0.4) 0.013(0.005) 37(3) 0.180(0.006) 4(0.6)

τ = 1.0 0.113(0.022) 12(0.6) 0.000(0.006) 227(6) 1.000(0.010) 10(1.1)

τ = 1.5 0.125(0.016) 26(0.8) 0.000(0.006) 461(11) 1.000(0.000) 8(1.1)
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Simulation results - effect of m

Table 2: Effect of bin size m on the performance of RSI. µ is fixed at 2.

D1(|I1|=100) D2(|I2|=40) D3(|I3|=20) #O

t(1) m = 10 0.035(0.009) 0.10(0.018) 0.184(0.033) 19(0.85)

m = 20 0.087(0.009) 0.15(0.020) 0.423(0.220) 2(0.14)

m = 40 0.101(0.006) 0.25(0.056) 1.000(0.024) 0(0.00)

t(3) m = 10 0.030(0.004) 0.088(0.015) 0.150(0.033) 1(0.22)

m = 20 0.050(0.008) 0.150(0.016) 0.293(0.019) 0(0.00)

m = 40 0.087(0.006) 0.293(0.041) 1.000(0.250) 0(0.00)

t(30) m = 10 0.020(0.007) 0.075(0.008) 0.150(0.018) 0(0.00)

m = 20 0.050(0.010) 0.175(0.019) 0.250(0.028) 0(0.00)

m = 40 0.105(0.008) 0.293(0.035) 1.000(0.094) 0(0.00)
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1000 Genomes Project - NA19240, Chr 19

NA19240: an International HapMap project Yoruban female sample and
parents.
42x, SOLiD, map to the human reference genome.

n = 54, 361, 060 read counts for Chr 19.
Apply RSI with m = 400, L = 60, 000. Identify 101 CNVs.
Take less than 3 mins.

Compare with the CNV map from 1000 Genomes Project based on 185

samples (Mills et al. 2011), 76 overlap with the reported CNVs based on
185 low-coverage samples and three methods ( 438, 332 and 615 CNVs).

Robust Segment Identification - 20 of 27-1
– p. 20



Chr 19 sequence data - NA19240
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Chr 19 sequence data - NA19240
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Chr 19 sequence data - NA19240
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Alternative Approach -Negative Binomial Counts

NB model:

Xi ∼ Negative Binomial(r, pi), pi = p0 +

q
∑

j=1

dj1(i∈Ij).

Data transformation: divide the n obs into T = Tn groups of m = mn obs.

Yk = 2
√
r̂ ln





√

∑

i∈Jk
Xi + 1/4

mr̂ − 1/2
+

√

1 +

∑

i∈Jk
Xi + 1/4

mr̂ − 1/2



 , 1 ≤ k ≤ T,

Yk = 2 ln(
√

θk +
√

r + θk) + ǫk +m−1/2Zk + ξk,

θk















= r(p0 + dj)/(1− p0 − dj), Jk ⊆ Ij for some Ij ,

∈ [rp0/(1− p0), r(p0 + dj)/(1− p0 − dj)], Jk ∩ Ij 6= ∅ for some Ij and Jk * Ij ,

= rp0/(1− p0), otherwise,

ǫk and ξk are stochastically small, Zk ∼ N(0, 1). Robust Segment Identification - 24 of 27-1
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Concordant of the Yoruba trio

CNVs are inheritable - concordant rates, ranked by µ

√

|Î|.
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Comments and extensions

Cai, Jeng and Li (2011): JRSS(B), in press.

Many other complicated factors: repeated regions, complex
rearrangments, highly repetitive elements.

Read depths data: difficulty in finding high repetitive CNVs (LINE, SINE),
uncertain in CNV location, but can ba applied to paired-end, single-end
and mixed data;

Paired-end whole genome sequencing data: statistical modeling of
anomalous read pairs, can detect highly repetitive CNVs (LINE and SINE),
precise location of CNVs; but span distances have effects on resolution.

Detection of other structure variants and precise breakpoints estimation.
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