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Inverse covariance matrix

Assume X = (X1, . . . , Xp)T ∼ Np(0,Σ0), the goal is to
estimate the precision matrix Ω0 = Σ−1

0 .

Connection with Gaussian graphical models (Edwards, 2000):
the dependence structure among Xj ’s can be fully determined
by Ω0, since

(Ω0)jk = 0⇐⇒ Xj ⊥⊥ Xk | other variables.

Can improve learning performance (Rothman et al., 2008).
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Existing estimation methods

Assume X(1), . . . , X(n) are i.i.d. from Np(0,Σ0).

The negative log-likelihood is, after dropping some constants,

l(Ω) = tr(ΩS)− log |Ω|,

where S = n−1
∑n

i=1 ‖X(i) − X̄‖2.

l(Ω) is strictly convex in Ω and its first derivative is

l′(Ω) = S − Ω−1.

If S is p.d., the mle of Ω is S−1.
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Existing estimation methods

S may be semi p.d.; or S−1 can be dense and suboptimal
when Ω0 is assumed to be sparse.

Regularized log-likelihood function,

min
Ω p.d.

lλ(Ω) = tr(ΩS)− log |Ω|+ λ‖Ω−‖1,

where Ω− = Ω− Ω+ with Ω+ = diag(Ω), and ‖ · ‖1 is
componentwise L1-norm.

Some existing estimation methods:

Graphical Lasso (glasso; Friedman et al., 2007)
Cholesky decomposition (SPICE; Rothman et al., 2008)
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A generic coordinate descent (CD) algorithm

Let s(Ω) be any strictly convex function of Ω,

min
Ω p.d.

s(Ω).

The key of the CD algorithm is to update the current Ω̂t by one
diagonal entry or two symmetric off-diagonal entries,

Ω̂t+1 = Ω̂t − vtWt,

where Wt is the CD direction and vt is the step size.

Wang, Junhui Inverse Covariance Estimation



A generic coordinate descent (CD) algorithm

Let s(Ω) be any strictly convex function of Ω,

min
Ω p.d.

s(Ω).

The key of the CD algorithm is to update the current Ω̂t by one
diagonal entry or two symmetric off-diagonal entries,

Ω̂t+1 = Ω̂t − vtWt,

where Wt is the CD direction and vt is the step size.

Wang, Junhui Inverse Covariance Estimation



The CD algorithm assuring p.d.

Let Dt = s′(Ω̂t), (a, b) = argmaxj,k |(Dt)jk|, and then set

(Wt)ab = (Wt)ba = (Dt)ab, and (Wt)jk = 0 otherwise.

Set vt as follows.

Theorem
Given that Ω̂t is p.d., Ω̂t+1 = Ω̂t − vtWt is p.d. if and only if
det(Ω̂t+1) > 0. In addition, det(Ω̂t+1) > 0 when

vt < v∗t =


−(Dt)ab(bΩ−1

t )ab+|(Dt)ab|
q

(bΩ−1
t )aa(bΩ−1

t )bb

(Dt)2ab∆t
, if a 6= b;

1

|(Dt)ab|(bΩ−1
t )aa

, if a = b,

where ∆t = (Ω̂−1
t )aa(Ω̂−1

t )bb − (Ω̂−1
t )2

ab.
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Precision matrix estimation using lλ(Ω)

Set s(Ω) = lλ(Ω).

Initialize Ω̂0 = (diag(S))−1.

Dt = l′(Ω̂t) = S − Ω̂−1
t + λ sign(Ω̂−t ) and Wt is defined as in

the last slide.

vt = α · argminv≤v∗t lλ(Ω̂t − vWt) with 0 < α < 1.

Some remarks:

Requires line search for finding vt;

Needs to re-run the iteration for different λ’s;
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Precision matrix estimation using l(Ω)

Set s(Ω) = l(Ω).

Initialize Ω̂0 = (diag(S))−1.

Dt = l′(Ω̂t) = S − Ω̂−1
t and Wt is defined as in the last slide.

vt = α · argminv l(Ω̂t − vWt) with 0 < α ≤ 1,

which has
analytic solution,

if a = b, vt = (Saa(Ω̂−1
t )aa)−1;

if a 6= b and Sab = 0, vt = ∆−1
t ;

if a 6= b and Sab 6= 0,

vt =
−(∆t + 2(Ω̂−1

t )abSab) +
√

∆2
t + 4S2

ab∆t + 4S2
ab((Ω̂

−1
t )ab)2

2∆t(Dt)abSab
.
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Some remarks

vt < v∗t , and thus Ω̂t+1 is always p.d..

The algorithm generates a p.d. solution path of Ω̂, that starts
from the diagonal matrix and gradually converges to a dense
matrix.

The sparse Ω̂ can be obtained by early stopping the iteration.

Any model selection criterion can be used as the stopping
rule, such as

AIC(Ω) = l(Ω) +
2
n
· df(Ω),

BIC(Ω) = l(Ω) +
log(n)
n
· df(Ω),

where df(Ω) = #{(j, k) : j < k,Ωjk 6= 0}.
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Simulation setup

Four covariance structures are considered:

Model 1 (AR(1)): (Σ0)jk = ρ|j−k| with ρ = 0.5, and
Ω0 = (Σ0)−1;

Model 2 (AR(3)): (Ω0)jk = I(|j − k| = 0) + 0.5I(|j − k| =
1) + 0.2I(|j − k| = 2) + 0.1I(|j − k| = 3);

Models 3 & 4 (Randomly generated matrix):
(Ω0)jk ∼ 0.5 · Bern(γ) when j 6= k, with γ = 0.1 for Model 3
and γ = 0.5 for Model 4, and (Ω0)jj ’s are set so that the
smallest eigenvalue of Ω0 is 0.1.

Sample size n = 80, and dimension p = 25, 50, or 100.
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Various performance measures

Kullback-Leibler loss:

KL(Ω0, Ω̂M ) = tr(Σ0Ω̂M )− log |Σ0Ω̂M | − p;

Frobenius norm:

F (Ω0, Ω̂M ) = ‖Ω0 − Ω̂M‖F ;

Variable selection loss (Ravikumar et al., 2011):

V S(Ω0, Ω̂M ) = (p(p−1))−1
∑
j 6=k

I(sign((Ω0)jk) 6= sign((Ω̂M )jk)).
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Simulation: Kullback-Leibler loss
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Simulation: Frobenius norm
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Simulation: Variable selection loss
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Colon tumor classification

62 colon adenocarcinoma tissue samples are gathered, where
40 are tumor tissues and 22 are non-tumor tissues.

2,000 gene expression profiles are available for each tissue.

42 tissues are randomly selected for training and the
remaining 20 tissues are for testing.

p = 25, 50 or 100 most significant genes are selected for
illustration.

LDA is employed for classification, with estimated precision
matrices.
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Colon tumor classification: misclassification error
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Extension to graph clustering

Graph clustering aims to group the vertices (variables) into
clusters so that the vertices in the same cluster are well
connected (similar) and the vertices between clusters are not.

Assume the variables follow a p-variate Gaussian distribution,
then the graph clustering problem becomes solving

min
Ω

l(Ω)

subject to Ω is p.d. and block diagonal.

Each block corresponds to a cluster.
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Graph clustering via CD algorithm

At step t, suppose Ω̂t = diag{K1, . . . ,Km}.
(i) Let Dt = S − Ω̂−1

t , then

(a, b) = argmax
j,k

‖(Dt)jk‖1
dim(Kj)dim(Kk)

,

where (Dt)jk is the (j, k)-th block of Dt.

(ii) Set (Wt)ab = (Wt)ba = (Dt)ab, and (Wt)jk = 0 otherwise.

(iii) Set vt = α ·
(
φmax(K−1

a DtK
−1
b DT

t )
)−1/2

and φmax(·) being

the largest eigenvalue, and Ω̂t+1 = Ω̂t − vtWt.

(iv) Reorganize Ωt+1 by combining the Ka and Kb.
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Some remarks:

The algorithm always converges and all Ω̂t’s are p.d. and
block diagonal.

Similar to agglomerative hierarchical clustering, with a
number of differences.

The formulation of finding (a, b) is analogous to the group
average, and the single linkage and the complete linkage can
be defined accordingly.

The number of blocks (clusters) can be pre-specified or
selected via the model selection criteria.
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Illustrative examples: heatmaps
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Illustrative examples: clustering error

Clustering error (Wang, 2010) is defined as

err(ψ̂) =
#
{
{ψ0(xj) = ψ0(xk)}∆{ψ̂(xj) = ψ̂(xk)}

}
p(p− 1)

,

where ψ0 and ψ̂ are the true and the estimated clustering
mappings, and ∆ is the symmetric set difference.

Averaged clustering errors over 50 replications:

α = .2 α = .5 hclust
Model 1 5.10(.093) 5.59(.109) 19.98(2.695)
Model 2 7.00(.181) 6.24(.141) 26.47(6.477)
Model 3 7.84(.223) 6.34(.127) 22.53(4.896)
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Some take-home message

A generic coordinate descent algorithm is introduced to
optimize any strictly convex function with respect to positive
definite matrices.

The algorithm is successfully applied to precision matrix
estimation and graph clustering.

The algorithm can be extended to other problems such as
covariance matrix estimation and metric learning.

Thank you!
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