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Motivation

Objective: Want to discover regulatory interactions from time-course data.

A suitable framework for infering such mechanisms is that of Granger
causality.
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Granger Causality

A time series X is said to Granger-cause Y if it can be shown, usually
through a series of F-tests on lagged values of X (and with lagged
values of Y also known), that those X values provide statistically
significant information about future values of Y.

Granger-causality does not imply true causality; it is built on correlations.

Recent work extends the framework beyond Gaussian rv’s.
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Network Granger Causality: Illustration
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Network Granger Causality: Illustration
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Network Granger Causality: Definition

• X1, . . . ,Xp stochastic processes and Xt = (Xt
1, . . . ,X

t
p)

T

• Graphical Granger Model:

XT = A1XT−1 + · · ·+AdXT−d + ε
T

• XT−t
j is Granger-causal for XT

i if At
i,j 6= 0.

• Directed Acyclic Graph (DAG) with (d+1)×p variables, corresponding
to a VAR model of order d with p variables.

• Often d� T, but not known, so d = T−1 is used, many variables for
large T.
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Previous work on GC in a high dimensional setting

The concept of Granger causality has been used in discovering
regulatory mechanisms by Fujita et al (2007) and Mukhopadhyay and
Chatterjee (2007)

Penalized model used in Lozano et al. (2009) for grouping effects over
time

Penalized model used in Arnold et al. (2007) in a financial application
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NGC and The Truncating Lasso Penalty

To avoid increasing the number of variables, need to estimate the order of the
time series.

X t: data at time t

argmin
θ t∈Rp

n−1‖X T
i −

d

∑
t=1

X T−t
θ

t‖2
2 +λ

d

∑
t=1

Ψ
t

p

∑
j=1
|θ t

j |wt
j

Ψ
1 = 1, Ψ

t = MI{‖A(t−1)‖0<p2β/(T−t)}, t ≥ 2

where M is a large constant, and β is the allowed false negative rate (FNR).

We propose the following value of λ that controls a version of the false
positive rate (FPR):

λ (α) = 2n−1/2Z∗α

2dp2

where Z∗q is the (1−q)-th quantile of the standard normal distribution.
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Illustrative Example

True

lasso

Alasso

Tlasso

TAlasso
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Properties of the estimator

• Under certain regularity conditions, if the Granger-causal effects decay
over time and vanish, then in high-dimensional sparse settings

(i) the probability of false positives is exponentially small,
(ii) the probability of false negatives converges to the user-defined

value β .
(iii) the order of the time series is correctly estimated with probability

converging to 1−β .
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Asymptotics for the Truncating Lasso Estimator

Theorem
Let s be the total number of true edges in the graphical Granger model and suppose that for some
a > 0, p = p(n) = O(na) and |pai|= O(nb), where sn2b−1 logn = o(1) as n→ ∞. Moreover, suppose
that there exists ν > 0 such that for all n ∈ N and all i ∈ V, Var

(
XT

i |X
T−d:T−1
1:p

)
≥ ν and there exists

δ > 0 and some ξ > b such that for every i ∈ V and for every j ∈ pai, |πij| ≥ δn−(1−ξ )/2, where πij is
the partial correlation between Xi and Xj after removing the effect of the remaining variables.
Assume that λ � dn−(1−ζ )/2 for some b < ζ < ξ and d > 0, and the initial weights are found using
lasso estimates with a penalty parameter λ 0 that satisfies λ 0 = O(

√
logp/n). Also, for some large

positive number g, let Ψt = gexp(nI{‖A(t−1)‖0 < p2β/(T− t)}) (i.e. M = gen). Then if true causal
effects diminish over time,

(i) With probability asymptotically larger than 1−β , true Granger-causal effects and the order
of the VAR model are correctly determined.

(ii) With probability converging to 1, no additional causal effects are included in the model and
the signs of causal effects are correctly estimated.
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Example I: Gene Regulatory Networks of Yeast

5 Transcription Factors, 37 genes (p = 42), 8 time points
d = 2
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P= 0.71, R= 0.22, F1= 0.34
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Example II: Gene Network of HeLa Cells

9 genes, 47 time points
d = 3
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An Adaptive Thresholding Estimation Strategy

The decay assumption for the truncating lasso plays a crucial role.

What if it is violated?

An alternative strategy is based on adaptive thresholding.
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Adaptive Thresholding Algorithm

1 Obtain through the regular lasso, estimates of the adjacency matrices
Ãt(λn).

2 Define Ψt = exp(MI(||Ãt||0 < p2β/(T−1)).

3 Set Ãt
ij = Ãt

ijI(|Ãt
ij| ≥ τΨt).

4 Estimate d̂ = maxt{||Ãt||0 ≥ p2β/(T−1)}.

Guidelines for tuning parameters:

1 λn = c1σλ0

2 τ = c2σλ0

where λ0 =
√

2log(p)/n.
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Asymptotic Properties: Preliminaries

1 Let X̃ be the n×p(T−1) matrix of past observations

2 Λmin(m) = minν 6=0,||ν ||0≤m
||X̃ν ||22
n||ν ||22

> 0

3 s = maxi |pai| maximum number of parents for any node

4 a0 = min1≤t≤d min1≤i,j≤p,Aij 6=0 |At
ij|

5 Restricted Eigenvalue Condition: Define
K(s,k)−1 = minJ⊂V,|J|≤s min||νJc ||1≤k||νJ ||1

||X̃ν ||2√
n||νJ ||2

> 0.
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Asymptotic Properties: Main Result

Theorem
In a VAR(d) with independent Gaussian noise with variance σ2, suppose
RE(X̃) holds with K(s,3) and that λn ≥ 2σ

√
1+θλ0 for some θ > 0. Also,

assume a0 > cλn
√

s for some constant c depending on Λmin(2s) and K(s,3)
and further for 0 < ξ < 1, we have

|E|< ξ p2/(T−1)

then with prob at least 1− (
√

π logppθ )−1 the following hold with thresholding
parameter β ≤ ξ :

(i) False positive rate ≤ (bs)/(p− s) for some constant b (control of Type-I
error)

(ii) For any ε > 0, False negative rate< ε (control of Type-II error)

(iii) Order consistency: d̂→ d.
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Numerical Illustration I
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Numerical Illustration II
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An Application to T-cell Activation
58 genes, 5 time points, n=44, d ≈ 4−5

Adaptively Thresholded Lasso for Gene Regulatory Networks 15

(a) Adaptive Lasso (b) Truncating Lasso (c) Thresholded Lasso

Fig. 5: Estimated Gene Regulatory Networks of B-cell activation. Gray-scale
represents the magnitude of effects.

Fig. 6: Adjacency Matrices of Estimated B-Cells Networks.

The striking difference between the estimated regulatory networks using
the truncating lasso estimate raises the question of whether the decay condition
necessary for the performance of the truncating lasso estimator is satisfied.
Although the true regulatory mechanism in this biological system is unknown,
the gray-scale images of the estimated adjacency matrices in Figure 6 suggest
that in this case the decay condition may be indeed violated. This example
underscores the advantage of our newly proposed estimator in cases where the
conditions required for the truncating lasso estimate of S-M are not met.

Manuscript
Click here to download Manuscript: ThrshLasso4GGC_v6_15.eps
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NGC with Group Sparsity

Incorporate grouping structure into the NGC problem
e.g. pathway information

The node set NG is partitioned into G non-overlapping groups G1, . . . ,GG
with

∣∣Gg
∣∣= kg and k0 = max1≤g≤G kg.

Nodes from same group have either all zero or all non-zero effect on
other nodes (signs of effects may vary)

Last condition can be relaxed with the application of a thresholding step
(allows for small misspecifications at the group level)
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Group NGC estimates

For i = 1, . . . ,p,

Â1:T−1
i: = arg min

θ 1,θ 2,...,θ T−1∈Rp

1
2
‖X T

:i −
T−1

∑
t=1

X T−t
θ

t‖2
2

+λn

T−1

∑
t=1

Ψ
t

G

∑
g=1

√
kgwt

i,g‖At
i:g‖2 (1)

d̂ = max
1≤t≤T−1

{
t : Ât 6= 0p×p

}
(2)

X t : n×p design matrix corresponding to t-th time point

wt
i:g: weigths for adaptive version

Ψt: truncating/thresholding factors
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Variants of NGC estimates

Regular: Ψt = 1, wt
i,g = 1

Truncating: Ψ1 = 1, wt
i,g = 1, for some very large ∆,

Ψt = exp[∆nI{
G

∑
g=1

I{‖At−1
:g ‖0>0} < G2

β/(T− t)}], t ≥ 2

Adaptive: wt
i,g = min{1,‖Ãt

i:g‖
−1
2 } where Ãt are the estimates from

Regular GGC.

Thresholded: For every t = 1, . . . ,T−1, if j ∈ Gg,

Ât
ij = ÃijI

{∣∣∣Ãt
ij

∣∣∣≥ δ1

∥∥∥Ãt
i:g

∥∥∥
2

}
I
{∥∥∥Ãt

i:g

∥∥∥
2
≥ δ2

}
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Group NGC estimation as a convex optimization
problem

For every i = 1, . . . ,p, regular GGC estimate solves a group lasso
problem

Yn
n×1 = Xn

n×pβ
n
p×1 + ε

n, ε
n ∼ n(0,σ2In×n)

{1, . . . ,p}= ∪G
g=1Gg, |Gg|= kg

β̂
n = arg min

β∈Rp

1
2
‖Yn−Xn

β‖2
2 +λn

G

∑
g=1

√
kg‖βg‖2 (3)

with Yn = X T
i , Xn = [X 1 : · · · : X T−1], β n = vec(A1:(T−1)

i: ), p← (T−1)p,
G← (T−1)G.
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Main Results

1 Norm consistency of regression estimates βt

2 Directional consistency of the group lasso estimates
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Restricted Eigenvalue Condition for Group Lasso
Estimates

RE condition for Group Lasso (Lounici et al., 2011)
In the regression framework of (3), RE(q, L) is satisfied if there exists a
postitive number φRE = φRE(q)> 0 which equals

min
J ⊂ NG
|J| ≤ q

∆ ∈ Rp\{0}

{
‖Xn∆‖2√

n‖∆J‖2
: ∑

g∈Jc

√
kg‖∆g‖2 ≤ L ∑

g∈J

√
kg‖∆g‖2

}
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Norm consistency

`2 consistency for Group Lasso
In the regression framework of (3), suppose (β t) is contained in a set of
groups J(β n) with at most q groups and RE(2q,3) holds. Then for any solution
β̂ n of (3) with suitably chosen λ the following holds with high probability:∥∥∥β̂

n−β
n
∥∥∥

2
≤ 4

√
10

φ 2
RE(2q)

λ ∑g∈J(β n) kg
√

q
√

kmin
(4)
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A Sufficient Condition for RE in Group NGC

Raskutti et al. (2010) show that if the sample size is “large enough" and
Λmin(Σ)> 0 then RE holds.

Consider a stationary VAR(d) model with spectral matrix operator
f (θ), θ ∈ [−π,π]. Let Σ = cov(X1:T). If the minimum eigenvalue µ(θ) and a
corresponding eigenvector ν(θ) of f (θ) are continuous functions of θ , then
the minimum eigenvalue of Σ satisfies

Λmin(Σ)>
(
1+ 1

2 vin +
1
2 vout

)−1
> 0

where vin = max
1≤i≤p

d

∑
t=1

p

∑
j=1

∣∣At
ij
∣∣ , vout = max

1≤j≤p

d

∑
t=1

p

∑
i=1

∣∣At
ij
∣∣
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Direction Consistency for Group Lasso Solutions

Consider a generic group lasso estimate as in (3). Let S = {1, . . . ,q} ,
without loss of generality, denote the group indices in support(β n), i.e.,

β
n = [β n

1 , . . . ,β
n
q ,0, . . . ,0], β

n
g 6= 0 ∀ g ∈ S = {1, . . . ,q}

For a vector τ ∈ Rm\{0} define D(τ) = τ

‖τ‖2
and D(0) = 0

D(β n
g ) indicates the direction of influence of β n

g at a group level as it
reflects the relative importance of the influential group members

Generalizes the notion of sign consistency
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Direction Consistency for Group Lasso Solutions

An estimate β̂ n is direction consistent at a rate rn if there exists a
sequence of positive real numbers δn→ 0 such that δn � rn and

P
(
‖D(β̂ n

g )−D(β n
g )‖2 < δn, ∀g ∈ S

)
→ 1 as n,p→ ∞

Define S̃n
g = {j ∈ Gg :

|β̂ n
j |

‖β̂ n
g ‖2

> δn} - collection of influential group members

within a group Gg which are detectable with a sample size of n

If β̂ n is direction consistent then

P(D(β̂ n
j ) = D(β n

j ), ∀j ∈ S̃n
g,∀g ∈ S)→ 1 as n,p→ ∞
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Directional Consistency in Group NGC

Under a group irrepresentable condition and some other regularity ones, we
have

The index set of the groups for which β̂ n
g 6= 0 is correctly specified with

high probability

Directional consistency holds with high probability
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Selected Numerical Results

Setup:

Nodes: p = 120 nodes partitioned into G = 15 groups of size 8 each

Structure of VAR: d = 2, T = 10

Sample Size: n = 150

Network strength: TP = 1680 edges from first two lag

Signal Strength: SNR = 1

Performance Criteria: FPR, FNR, MCC
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False Positives and False Negatives
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False Negative Rate
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Matthews Correlation Coefficient
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Sample Output: Adjacency Matrices
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Application to Stock Returns

Daily stock prices (Pt) of p = 41 firms from G = 4 different
categories (Banking, IT, Energy, Retail)
observed for T = 4 days (Sep 21 - Sep 24, 2010) every 5 minutes
from 11 am to 3 pm
Daily log returns log(Rt) = log(Pt/Pt−1) are calculated to reduce
non-stationarity issues
Stocks at different times of the day (n = 48) treated as replicates
for that day
Lasso and group lasso based NGC estimators are used to
estimate the network structure of graphical Granger model
λ chosen by ten-fold cross-validation

Data from http://wrds-web.wharton.upenn.edu/wrds/
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Adjacency Matrices
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Estimated Network: Lasso
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Estimated Network: Group Lasso
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Estimated Network: Thresholded Group Lasso
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Concluding Remarks

Network Granger Causality can be useful for discovering temporal
regulatory mechanisms
Grouping structure of variables can be beneficial, especially if
coupled with a thresholding step
Need for correctly estimating the lag of the model
Truncating (group) lasso performs well, when Granger causal
effects decay over time, at the cost of solving a non-convex
problem
Thresholding (group) lasso a worthy alternative
Asymptotics of pure time series model (no replicates) challenging
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