## Towards Completely-Data-Driven Functional Estimation

Xiaoming Huo

School of Industrial \& Systems Engineering Georgia Institute of Technology, Atlanta

Banff International Research Station<br>Tuesday, December 13, 2011

Jointly work with Z. Yang \& H. Xie \& Y. Lu

## Outline

(1) Background
(2) Data Driven Method
(3) Theoretical Consideration: Rate of Convergence

44 Asymptotic Optimality of the Generalized Cross Validation
(5) Fast Computation
(6) Simulations

## Outline

## (1) Background

(2) Data Driven Method
(3) Theoretical Consideration: Rate of Convergence

4 Asymptotic Optimality of the Generalized Cross Validation
(5) Fast Computation
(6) Simulations

## Formulation

- Observe $\left(X_{i}, y_{i}\right), X_{i} \in \mathbb{R}^{d}, p \geq 1, y_{i} \in \mathbb{R}, i=1,2, \ldots, n$ where $\varepsilon_{i}$ 's are i.i.d. and satisfy some conditions - Obiective: estimating $f$ - Desideratum:


## Formulation

- Observe $\left(X_{i}, y_{i}\right), X_{i} \in \mathbb{R}^{d}, p \geq 1, y_{i} \in \mathbb{R}, i=1,2, \ldots, n$
- Relation

$$
y_{i}=f\left(X_{i}\right)+\varepsilon_{i}
$$

or

$$
y_{i}=f\left(X_{i 1}, X_{i 2}, \ldots, X_{i d}\right)+\varepsilon_{i}
$$

where $\varepsilon_{i}$ 's are i.i.d. and satisfy some conditions

## Formulation

- Observe $\left(X_{i}, y_{i}\right), X_{i} \in \mathbb{R}^{d}, p \geq 1, y_{i} \in \mathbb{R}, i=1,2, \ldots, n$
- Relation

$$
y_{i}=f\left(X_{i}\right)+\varepsilon_{i}
$$

or

$$
y_{i}=f\left(X_{i 1}, X_{i 2}, \ldots, X_{i d}\right)+\varepsilon_{i}
$$

where $\varepsilon_{i}$ 's are i.i.d. and satisfy some conditions

- Objective: estimating $f$


## Formulation

- Observe $\left(X_{i}, y_{i}\right), X_{i} \in \mathbb{R}^{d}, p \geq 1, y_{i} \in \mathbb{R}, i=1,2, \ldots, n$
- Relation

$$
y_{i}=f\left(X_{i}\right)+\varepsilon_{i}
$$

or

$$
y_{i}=f\left(X_{i 1}, X_{i 2}, \ldots, X_{i d}\right)+\varepsilon_{i}
$$

where $\varepsilon_{i}$ 's are i.i.d. and satisfy some conditions

- Objective: estimating $f$
- Desideratum: $f \in \mathscr{F}$


## Existing Methods

- Linear regression, $\mathscr{F}=$ a finite-dimensional linear subspace - Kernel - $\mathcal{F}$ is a Sobolev space



## Existing Methods

- Linear regression, $\mathscr{F}=$ a finite-dimensional linear subspace - Kernel


## - $\mathcal{F}$ is a Sobolev space



## Existing Methods

- Linear regression, $\mathscr{F}=$ a finite-dimensional linear subspace
- Kernel
- Splines


## Existing Methods

- Linear regression, $\mathscr{F}=$ a finite-dimensional linear subspace
- Kernel
- Splines
- Wavelets


## Existing Methods

- Linear regression, $\mathscr{F}=$ a finite-dimensional linear subspace
- Kernel
- Splines
- Wavelets
- F is a Sobolev space


## Existing Methods

- Linear regression, $\mathscr{F}=$ a finite-dimensional linear subspace
- Kernel
- Splines
- Wavelets
- $\mathcal{F}$ is a Sobolev space

$$
\mathcal{F}=H^{m}(\Omega)=\left\{f: D^{\alpha} f \in L^{2}(\Omega), \forall \alpha \in \mathbb{Z}_{+}^{d},|\alpha| \leq m\right\}
$$

where $\Omega \in \mathbb{R}^{d}$ is the domain of the function, for $\alpha \in \mathbb{Z}_{+}^{d}$, $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right)$ and $|\alpha|=\sum_{i=1}^{d} \alpha_{i}$, we define the partial derivative

$$
D^{\alpha} f=\frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \cdots \partial x_{d}^{\alpha_{d}}}
$$

## Review of Existing Approach

- Penalization estimation approach (equivalently, Lagrange multiplier):

$$
\min _{f \in \mathscr{F}} G(f)+\lambda \cdot R(f)
$$

where

## Review of Existing Approach

- Penalization estimation approach (equivalently, Lagrange multiplier):

$$
\min _{f \in \mathscr{F}} G(f)+\lambda \cdot R(f)
$$

where

- $G(f)$ : goodness of fit, e.g., $G(f)=\sum_{i=1}^{n}\left[y_{i}-f\left(X_{i}\right)\right]^{2}$


## Review of Existing Approach

- Penalization estimation approach (equivalently, Lagrange multiplier):

$$
\min _{f \in \mathscr{F}} G(f)+\lambda \cdot R(f)
$$

where

- $G(f)$ : goodness of fit, e.g., $G(f)=\sum_{i=1}^{n}\left[y_{i}-f\left(X_{i}\right)\right]^{2}$
- $R(f)$ : regularity of $f$, e.g., $R(f)=\int_{\Omega} \sum_{i, j=1}^{p}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)^{2}$


## Review of Existing Approach

- Penalization estimation approach (equivalently, Lagrange multiplier):

$$
\min _{f \in \mathscr{F}} G(f)+\lambda \cdot R(f)
$$

where

- $G(f)$ : goodness of fit, e.g., $G(f)=\sum_{i=1}^{n}\left[y_{i}-f\left(X_{i}\right)\right]^{2}$
- $R(f)$ : regularity of $f$, e.g., $R(f)=\int_{\Omega} \sum_{i, j=1}^{p}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)^{2}$
- $\Omega$ : domain of $f$, e.g., $\Omega=\mathcal{R}^{d}$


## More on the Existing Approach

- Define a regularity functional. Recall

$$
R(f)=\int_{\Omega}\|\mathbf{H} f\|_{F}^{2}
$$

- Essence: Need to show that solving problem



## More on the Existing Approach

- Define a regularity functional. Recall

$$
R(f)=\int_{\Omega}\|\mathbf{H} f\|_{F}^{2}
$$

- Essence: Need to show that solving problem

$$
\begin{array}{rc}
\min _{f \in \mathscr{F}} & R(f) \\
\text { subject to } & f\left(X_{i}\right)=y_{i}^{\prime}
\end{array}
$$

ends up with a quadratic form:

$$
R(f)=\mathbf{f}^{T} \mathbf{M} \mathbf{f}
$$

where $\mathbf{f}=\left(f\left(X_{1}\right), f\left(X_{2}\right), \ldots, f\left(X_{n}\right)\right)^{T}$

## More on the Existing Approach

- Define a regularity functional. Recall

$$
R(f)=\int_{\Omega}\|\mathbf{H} f\|_{F}^{2}
$$

- Essence: Need to show that solving problem

$$
\begin{array}{rc}
\min _{f \in \mathscr{F}} & R(f) \\
\text { subject to } & f\left(X_{i}\right)=y_{i}^{\prime}
\end{array}
$$

ends up with a quadratic form:

$$
R(f)=\mathbf{f}^{T} \mathbf{M} \mathbf{f}
$$

where $\mathbf{f}=\left(f\left(X_{1}\right), f\left(X_{2}\right), \ldots, f\left(X_{n}\right)\right)^{T}$

- If $\Omega$ is irregular, determining analytically the gram matrix $\mathbf{M}$ can be very difficult.


## Example of Irregular Domain


(a) Horseshoe.

(b) Letter R .

## Outline

(1) Background

## (2) Data Driven Method

(3) Theoretical Consideration: Rate of Convergence

4 Asymptotic Optimality of the Generalized Cross Validation
(5) Fast Computation
(6) Simulations

## Unbiased Estimation in a Neighborhood

- An unbiased alternative:

$$
\min _{f \in \mathcal{F}} \sum_{i=1}^{n}\left[y_{i}-f\left(X_{i}\right)\right]^{2}+\lambda \sum_{i=1}^{n}\left\|\mathcal{H} f\left(X_{i}\right)\right\|_{F}^{2}
$$

## Unbiased Estimation in a Neighborhood

- An unbiased alternative:

$$
\min _{f \in \mathcal{F}} \sum_{i=1}^{n}\left[y_{i}-f\left(X_{i}\right)\right]^{2}+\lambda \sum_{i=1}^{n}\left\|\mathcal{H} f\left(X_{i}\right)\right\|_{F}^{2}
$$

- Let $\mathbf{V}_{i}, 1 \leq i \leq k$, denote the $k$ nearest neighbors of $\mathbf{V}_{0}$. Let $\overline{\mathbf{V}}=\frac{1}{k+1} \sum_{i=0}^{k} \mathbf{V}_{i}$, i.e., $\overline{\mathbf{V}}$ is the average. Taylor expansion:

$$
\begin{aligned}
& f\left(\mathbf{V}_{i}\right) \approx f(\overline{\mathbf{V}})+\left(\mathbf{V}_{i}-\overline{\mathbf{V}}\right)^{T} \mathcal{J} f(\overline{\mathbf{V}})+\frac{1}{2}\left(\mathbf{V}_{i}-\overline{\mathbf{V}}\right)^{T} \mathcal{H} f(\overline{\mathbf{V}})\left(\mathbf{V}_{i}-\overline{\mathbf{V}}\right), \\
& i=0,1, \cdots, n
\end{aligned}
$$

where $f(\overline{\mathbf{V}})$ is the functional value, $\mathcal{J} f(\overline{\mathbf{V}})$ is the Jacobian, and $\mathcal{H} f(\overline{\mathbf{V}})$ is the hessian matrix. Note we have $\mathcal{J} f(\overline{\mathbf{V}}) \in \mathbb{R}^{d}$ and $\mathcal{H} f(\overline{\mathbf{V}}) \in \mathbb{R}^{d \times d}$.

## Derivation

- Rewrite as a linear system:

$$
\mathbf{f}^{*} \approx \mathbf{1}_{k+1} \cdot c+\mathbf{V} \cdot \mathbf{J}+\frac{1}{2} \mathbf{C} \cdot \mathbf{H}
$$

- A partial implementation of QR-decomposition


## Derivation

- Rewrite as a linear system:

$$
\mathbf{f}^{*} \approx \mathbf{1}_{k+1} \cdot c+\mathbf{V} \cdot \mathbf{J}+\frac{1}{2} \mathbf{C} \cdot \mathbf{H}
$$

- A partial implementation of QR-decomposition

$$
\left[\begin{array}{lll}
\mathbf{1}_{k+1} & \mathbf{V} & \frac{1}{2} \mathbf{C}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{Q}_{1} & \mathbf{Q}_{2}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R}_{11} & \mathbf{R}_{12} \\
\mathbf{0} & \mathbf{I}_{\left(d^{2}+d\right) / 2}
\end{array}\right]
$$

where columns of $\mathbf{Q}_{1} \in \mathbb{R}^{(k+1) \times(d+1)}$ are orthonormal
$\left(\mathbf{Q}_{1}^{T} \mathbf{Q}_{1}=\mathbf{I}_{d+1}\right)$, and columns of $\mathbf{Q}_{2} \in \mathbb{R}^{(k+1) \times \frac{d^{2}+d}{2}}$ are orthogonal to the columns of $\mathbf{Q}_{1}$ (i.e., $\mathbf{Q}_{2}^{T} \mathbf{Q}_{1}=\mathbf{0}$ ).

## More on Derivation

- we have

$$
\mathbf{Q}_{2}^{T} \mathbf{f}^{*}=\left(\begin{array}{ll}
\mathbf{0} & \mathbf{Q}_{2}^{T} \mathbf{Q}_{2}
\end{array}\right)\left[\begin{array}{cc}
\mathbf{R}_{11} & \mathbf{R}_{12} \\
\mathbf{0} & \mathbf{I}_{\left(p^{2}+p\right) / 2}
\end{array}\right]\left[\begin{array}{l}
c \\
\mathbf{J} \\
\mathbf{H}
\end{array}\right]=\mathbf{Q}_{2}^{T} \mathbf{Q}_{2} \mathbf{H}
$$

where $(\cdot)^{+}$denotes a pseudo-inverse of a matrix.

- Frobenius norm of the hessian matrix at a point:


## More on Derivation

- we have

$$
\mathbf{Q}_{2}^{T} \mathbf{f}^{*}=\left(\begin{array}{ll}
\mathbf{0} & \mathbf{Q}_{2}^{T} \mathbf{Q}_{2}
\end{array}\right)\left[\begin{array}{cc}
\mathbf{R}_{11} & \mathbf{R}_{12} \\
\mathbf{0} & \mathbf{I}_{\left(p^{2}+p\right) / 2}
\end{array}\right]\left[\begin{array}{l}
c \\
\mathbf{J} \\
\mathbf{H}
\end{array}\right]=\mathbf{Q}_{2}^{T} \mathbf{Q}_{2} \mathbf{H}
$$

- least-squares estimator of $\mathbf{H}$

$$
\hat{\mathbf{H}}=\left(\mathbf{Q}_{2}^{T} \mathbf{Q}_{2}\right)^{+} \mathbf{Q}_{2}^{T} \mathbf{f}^{*},
$$

where $(\cdot)^{+}$denotes a pseudo-inverse of a matrix.

## More on Derivation

- we have

$$
\mathbf{Q}_{2}^{T} \mathbf{f}^{*}=\left(\begin{array}{ll}
\mathbf{0} & \mathbf{Q}_{2}^{T} \mathbf{Q}_{2}
\end{array}\right)\left[\begin{array}{cc}
\mathbf{R}_{11} & \mathbf{R}_{12} \\
\mathbf{0} & \mathbf{I}_{\left(p^{2}+p\right) / 2}
\end{array}\right]\left[\begin{array}{c}
c \\
\mathbf{J} \\
\mathbf{H}
\end{array}\right]=\mathbf{Q}_{2}^{T} \mathbf{Q}_{2} \mathbf{H}
$$

- least-squares estimator of $\mathbf{H}$

$$
\hat{\mathbf{H}}=\left(\mathbf{Q}_{2}^{T} \mathbf{Q}_{2}\right)^{+} \mathbf{Q}_{2}^{T} \mathbf{f}^{*},
$$

where $(\cdot)^{+}$denotes a pseudo-inverse of a matrix.

- Frobenius norm of the hessian matrix at a point:

$$
\begin{aligned}
\left\|\hat{\mathcal{H}} f\left(X_{i}\right)\right\|_{F}^{2} & =\|\hat{\mathbf{H}}\|_{2}^{2}=\hat{\mathbf{H}}^{\top} \hat{\mathbf{H}} \\
& =\left(\mathbf{f}^{*}\right)^{T} \mathbf{Q}_{2}\left(\mathbf{Q}_{2}^{T} \mathbf{Q}_{2}\right)^{+}\left(\mathbf{Q}_{2}^{T} \mathbf{Q}_{2}\right)^{+} \mathbf{Q}_{2}^{T} \mathbf{f}^{*} .
\end{aligned}
$$

## A Quadratic Form

- Denote

$$
\mathbf{K}_{i}=\mathbf{Q}_{2}\left(\mathbf{Q}_{2}^{T} \mathbf{Q}_{2}\right)^{+}\left(\mathbf{Q}_{2}^{T} \mathbf{Q}_{2}\right)^{+} \mathbf{Q}_{2}^{T} .
$$

- We have



## A Quadratic Form

- Denote

$$
\mathbf{K}_{i}=\mathbf{Q}_{2}\left(\mathbf{Q}_{2}^{T} \mathbf{Q}_{2}\right)^{+}\left(\mathbf{Q}_{2}^{T} \mathbf{Q}_{2}\right)^{+} \mathbf{Q}_{2}^{T} .
$$

- We have

$$
\sum_{i=1}^{n}\left\|\hat{\mathcal{H}} f\left(X_{i}\right)\right\|_{F}^{2}=\sum_{i=1}^{n}\left(\mathbf{f}^{T} \mathbf{S}_{i}^{T} \mathbf{K}_{i} \mathbf{S}_{i} \mathbf{f}\right)
$$

## A Quadratic Form

- Denote

$$
\mathbf{K}_{i}=\mathbf{Q}_{2}\left(\mathbf{Q}_{2}^{T} \mathbf{Q}_{2}\right)^{+}\left(\mathbf{Q}_{2}^{T} \mathbf{Q}_{2}\right)^{+} \mathbf{Q}_{2}^{T}
$$

- We have

$$
\sum_{i=1}^{n}\left\|\hat{\mathcal{H}} f\left(X_{i}\right)\right\|_{F}^{2}=\sum_{i=1}^{n}\left(\mathbf{f}^{T} \mathbf{S}_{i}^{T} \mathbf{K}_{i} \mathbf{S}_{i} \mathbf{f}\right)
$$

- Let $\mathbf{M}=\left(\mathbf{S}_{1}^{T}, \cdots, \mathbf{S}_{n}^{T}\right) \operatorname{diag}\left\{\mathbf{K}_{1}, \mathbf{K}_{2}, \cdots, \mathbf{K}_{n}\right\}\left(\begin{array}{c}\mathbf{S}_{1} \\ \vdots \\ \mathbf{S}_{n}\end{array}\right)$, we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|\hat{\mathcal{H}} f\left(X_{i}\right)\right\|_{F}^{2}=\mathbf{f}^{T} \mathbf{M} \mathbf{f} \tag{1}
\end{equation*}
$$

which is a quadratic function of $\mathbf{f}$.

## Close Form Solution

- Problem becomes

$$
\min _{\mathbf{f}}\|\mathbf{Y}-\mathbf{f}\|_{2}^{2}+\lambda \mathbf{f}^{T} \mathbf{M f}
$$

series model. Journal of Computational and Graphical Statistics, 18 (3): 694-716, September.

## Close Form Solution

- Problem becomes

$$
\min _{\mathbf{f}}\|\mathbf{Y}-\mathbf{f}\|_{2}^{2}+\lambda \mathbf{f}^{T} \mathbf{M f}
$$

- Close form solution:

$$
\hat{\mathbf{f}}=\left(\mathbf{I}_{n}+\lambda \cdot \mathbf{M}\right)^{-1} \cdot \mathbf{Y}
$$

## Close Form Solution

- Problem becomes

$$
\min _{\mathbf{f}}\|\mathbf{Y}-\mathbf{f}\|_{2}^{2}+\lambda \mathbf{f}^{T} \mathbf{M f}
$$

- Close form solution:

$$
\hat{\mathbf{f}}=\left(\mathbf{I}_{n}+\lambda \cdot \mathbf{M}\right)^{-1} \cdot \mathbf{Y}
$$

- J. Chen and X. Huo (2009). A Hessian regularized nonlinear time series model. Journal of Computational and Graphical Statistics, 18 (3): 694-716, September.


## Outline

(1) Background
(2) Data Driven Method
(3) Theoretical Consideration: Rate of Convergence

4 Asymptotic Optimality of the Generalized Cross Validation
(5) Fast Computation
(6) Simulations

## Rate of Convergence

- Rate of convergence: How fast does $\frac{1}{n}\left\|\hat{f}_{n}-f\right\|_{2}^{2}$ goes to zero?
$\square$
- Note: we must have $2 m>d$


## Rate of Convergence

- Rate of convergence: How fast does $\frac{1}{n}\left\|\hat{f}_{n}-f\right\|_{2}^{2}$ goes to zero?
- Stone (1982) showed that $O\left(n^{-\frac{2 m}{2 m+d}}\right)$ is the optimal rate of convergence for nonparametric regression for $d$-dimensional input, while the up to order $m$ partial derivatives of the underlying function $f$ are in $L^{2}(\Omega)$.


## Rate of Convergence

- Rate of convergence: How fast does $\frac{1}{n}\left\|\hat{f}_{n}-f\right\|_{2}^{2}$ goes to zero?
- Stone (1982) showed that $O\left(n^{-\frac{2 m}{2 m+d}}\right)$ is the optimal rate of convergence for nonparametric regression for $d$-dimensional input, while the up to order $m$ partial derivatives of the underlying function $f$ are in $L^{2}(\Omega)$.
- Note we have $m=2$.


## Rate of Convergence

- Rate of convergence: How fast does $\frac{1}{n}\left\|\hat{f}_{n}-f\right\|_{2}^{2}$ goes to zero?
- Stone (1982) showed that $O\left(n^{-\frac{2 m}{2 m+d}}\right)$ is the optimal rate of convergence for nonparametric regression for $d$-dimensional input, while the up to order $m$ partial derivatives of the underlying function $f$ are in $L^{2}(\Omega)$.
- Note we have $m=2$.
- Note: we must have $2 m>d$.


## Preparation: Inner Product in a RKHS

- For $0 \leq \ell \leq m$, a semi-inner-product in $W_{2}^{m}(\Omega)$ is defined by

$$
\begin{equation*}
\langle f, g\rangle_{\Omega, \ell}=\int_{\Omega} \sum_{|\alpha|=\ell} \frac{\ell!}{\alpha!}\left(D^{\alpha} f\right)\left(D^{\alpha} g\right) \mathrm{d} x \tag{2}
\end{equation*}
$$

which gives rise to the related semi-norm

$$
\begin{equation*}
|f|_{\Omega, \ell}^{2}=\int_{\Omega} \sum_{|\alpha|=\ell} \frac{\ell!}{\alpha!}\left|D^{\alpha} f\right|^{2} \mathrm{~d} x \tag{3}
\end{equation*}
$$

## Preparation: Inner Product in a RKHS

- For $0 \leq \ell \leq m$, a semi-inner-product in $W_{2}^{m}(\Omega)$ is defined by

$$
\begin{equation*}
\langle f, g\rangle_{\Omega, \ell}=\int_{\Omega} \sum_{|\alpha|=\ell} \frac{\ell!}{\alpha!}\left(D^{\alpha} f\right)\left(D^{\alpha} g\right) \mathrm{d} x \tag{2}
\end{equation*}
$$

which gives rise to the related semi-norm

$$
\begin{equation*}
|f|_{\Omega, \ell}^{2}=\int_{\Omega} \sum_{|\alpha|=\ell} \frac{\ell!}{\alpha!}\left|D^{\alpha} f\right|^{2} \mathrm{~d} x \tag{3}
\end{equation*}
$$

- With $T=\left\{X_{i}\right\}_{i=1}^{n}$, we can also give a discrete version of the aforementioned semi-norm as

$$
\begin{equation*}
|f|_{T, \ell}^{2}=\frac{1}{n} \sum_{i=1}^{n} \sum_{|\alpha|=\ell} \frac{\ell!}{\alpha!}\left|D^{\alpha} f\left(X_{i}\right)\right|^{2} \tag{4}
\end{equation*}
$$

## Preparation: Inner Product in a RKHS

- For $0 \leq \ell \leq m$, a semi-inner-product in $W_{2}^{m}(\Omega)$ is defined by

$$
\begin{equation*}
\langle f, g\rangle_{\Omega, \ell}=\int_{\Omega} \sum_{|\alpha|=\ell} \frac{\ell!}{\alpha!}\left(D^{\alpha} f\right)\left(D^{\alpha} g\right) \mathrm{d} x \tag{2}
\end{equation*}
$$

which gives rise to the related semi-norm

$$
\begin{equation*}
|f|_{\Omega, \ell}^{2}=\int_{\Omega} \sum_{|\alpha|=\ell} \frac{\ell!}{\alpha!}\left|D^{\alpha} f\right|^{2} \mathrm{~d} x \tag{3}
\end{equation*}
$$

- With $T=\left\{X_{i}\right\}_{i=1}^{n}$, we can also give a discrete version of the aforementioned semi-norm as

$$
\begin{equation*}
|f|_{T, \ell}^{2}=\frac{1}{n} \sum_{i=1}^{n} \sum_{|\alpha|=\ell} \frac{\ell!}{\alpha!}\left|D^{\alpha} f\left(X_{i}\right)\right|^{2} \tag{4}
\end{equation*}
$$

- Specially, $|f|_{\Omega, 0}^{2}=\int_{\Omega} f(x)^{2} \mathrm{~d} x$ and $|f|_{T, 0}^{2}=\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)^{2}$.


## Preparation: Ideal Quadratic form \& Sampling Property

- Ideal quadratic form. For $\ell=m$ in (4), we define $\mathbf{E}_{T, m}$ as the matrix representing the quadratic form

$$
\begin{equation*}
|f|_{T, m}^{2}=\frac{1}{n} \mathbf{f}^{T} \mathbf{E}_{T, m} \mathbf{f} \tag{5}
\end{equation*}
$$

where $\mathbf{f}=\left(f\left(X_{1}\right), \cdots, f\left(X_{n}\right)\right)^{T}$ is the vector of function values at the knots of $T=\left\{X_{i}\right\}_{i=1}^{n}$.

## Preparation: Ideal Quadratic form \& Sampling Property

- Ideal quadratic form. For $\ell=m$ in (4), we define $\mathbf{E}_{T, m}$ as the matrix representing the quadratic form

$$
\begin{equation*}
|f|_{T, m}^{2}=\frac{1}{n} \mathbf{f}^{T} \mathbf{E}_{T, m} \mathbf{f} \tag{5}
\end{equation*}
$$

where $\mathbf{f}=\left(f\left(X_{1}\right), \cdots, f\left(X_{n}\right)\right)^{T}$ is the vector of function values at the knots of $T=\left\{X_{i}\right\}_{i=1}^{n}$.

- Sampling property. For the set of sampling points $T=\left\{X_{i}\right\}_{i=1}^{n}$ in domain $\Omega$, we assume that there exists a constant $B_{0}>0$ such that

$$
\begin{equation*}
\frac{\delta_{\max }}{\delta_{\min }} \leq B_{0} \tag{6}
\end{equation*}
$$

where $\delta_{\max }=\sup _{X \in \Omega} \inf _{X_{i} \in T}\left\|X-X_{i}\right\|$, and $\delta_{\text {min }}=\min _{j \neq i}\left\|X_{j}-X_{i}\right\|$.

## Property of the Domain $\Omega$

- A Lipschitz domain (or domain with Lipschitz boundary) is a set in Euclidean space whose boundary is sufficiently regular in the sense that it can be thought of as locally being the graph of a Lipschitz continuous function.


## Property of the Domain $\Omega$

- A Lipschitz domain (or domain with Lipschitz boundary) is a set in Euclidean space whose boundary is sufficiently regular in the sense that it can be thought of as locally being the graph of a Lipschitz continuous function.
- $\Omega$ be an open set of $\mathbb{R}^{d}$ satisfying a uniform cone condition: there exist a radius $r>0$ and an angle $\theta \in(0, \pi / 2)$ such that for any $X \in \Omega$ a unit vector $\zeta(X) \in \mathbb{R}^{d}$ exists such that the cone
$C(X, \zeta(X), r, \theta)=\left\{X+t \mathbf{s}: \mathbf{s} \in \mathbb{R}^{d},\|\mathbf{s}\|=1, \zeta(X)^{T} \mathbf{s} \geq \cos \theta, 0 \leq t \leq r\right\}$
is entirely contained in $\Omega$.


## Property of the Domain $\Omega$

- A Lipschitz domain (or domain with Lipschitz boundary) is a set in Euclidean space whose boundary is sufficiently regular in the sense that it can be thought of as locally being the graph of a Lipschitz continuous function.
- $\Omega$ be an open set of $\mathbb{R}^{d}$ satisfying a uniform cone condition: there exist a radius $r>0$ and an angle $\theta \in(0, \pi / 2)$ such that for any $X \in \Omega$ a unit vector $\zeta(X) \in \mathbb{R}^{d}$ exists such that the cone
$C(X, \zeta(X), r, \theta)=\left\{X+t \mathbf{s}: \mathbf{s} \in \mathbb{R}^{d},\|\mathbf{s}\|=1, \zeta(X)^{T} \mathbf{s} \geq \cos \theta, 0 \leq t \leq r\right\}$
is entirely contained in $\Omega$.
- $U_{2}^{m}(\Omega)=\left\{\left.f \in W_{2}^{m}(\Omega)|\underline{B}| f\right|_{\Omega, m} ^{2} \leq|f|_{T, m}^{2} \leq \bar{B}|f|_{\Omega, m}^{2}\right\}$ be a class of functions with bilaterally bounded constraint on their $m$ th-order derivatives, where the constants $\underline{B}, \bar{B}>0$ do not depend on functions $f$.


## A few theorems, Step 1

- Bound the eigenvalues of the ideal quadratic form. Let $e_{1} \leq \cdots \leq e_{n}$ be the eigenvalues of $\mathbf{E}_{T, m}$ in ascending order.


## A few theorems, Step 1

- Bound the eigenvalues of the ideal quadratic form. Let $e_{1} \leq \cdots \leq e_{n}$ be the eigenvalues of $\mathbf{E}_{T, m}$ in ascending order.


## Theorem

Let $\Omega$ be an open bounded Lipschitz domain satisfying the uniform cone condition, and the sample points $\left\{X_{j}\right\}_{j=1}^{n}$ fulfill the assumption of (6). Then there exist constants $C_{3}, C_{4}>0$ such that

$$
C_{3} \rho_{j} \leq e_{j} \leq C_{4} \rho_{j}
$$

where $\rho_{1} \leq \rho_{2} \leq \cdots \leq \rho_{n}$ are the first $n$ eigenvalues of the variational eigenvalue problem

$$
\langle\phi, \psi\rangle_{\Omega, m}=\rho\langle\phi, \psi\rangle_{\Omega, 0}, \quad \forall \psi \in W_{2}^{m}(\Omega) .
$$

## Step 2: Quote a Known Result

- Using a known rate from functional analysis Theorem


## Step 2: Quote a Known Result

- Using a known rate from functional analysis


## Theorem

Let $\Omega$ be an open bounded Lipschitz domain satisfying the uniform cone condition, and $\left\{e_{1} \leq \cdots \leq e_{n}\right\}$ the eigenvalues of $\mathbf{E}_{T, m}$ in ascending order. Then there exist constants $C_{5}, C_{6}>0$ such that for $m(d)=\frac{(d+m-1)!}{d!(m-1)!}<j \leq n$ we have

$$
\begin{equation*}
C_{5} j^{\frac{2 m}{d}} \leq e_{j} \leq C_{6} j^{\frac{2 m}{d}} \tag{8}
\end{equation*}
$$

## Step 3: Rates on Eigenvalues

- Property of eigenvalues.


## Step 3: Rates on Eigenvalues

- Property of eigenvalues.


## Theorem

Let $\mu_{1} \leq \cdots \leq \mu_{n}$ be the eigenvalues of the matrix $\mathbf{M}$ in (1). There exist constants $C_{7}, C_{8}>0$ such that for $m^{(d)}<j \leq n$ we have

$$
C_{7} j^{\frac{2 m}{d}} \leq \mu_{j} \leq C_{8} j^{\frac{2 m}{d}}
$$

## Step 4: Rate of Convergence

- Asymptotic rate of convergence

- The above matches the optimal rate in Stone (1982)


## Step 4: Rate of Convergence

- Asymptotic rate of convergence


## Theorem

Let $\hat{\mathbf{f}}_{n}(\lambda)=\mathbf{A}_{n}(\lambda) \mathbf{y}=\left(\mathbf{I}_{n}+\lambda \mathbf{M}\right)^{-1} \mathbf{y}$ be the CDS estimator from the multivariate model with the order $m>d / 2$ and denote $r_{n}(\lambda)=n^{-1}\left\|\hat{\mathbf{f}}_{n}(\lambda)-\mathbf{f}\right\|^{2}$. If $n \rightarrow \infty$ and $\lambda \sim n^{-2 m /(2 m+d)}$ is chosen, then

$$
E\left[r_{n}(\lambda)\right]=O\left(n^{-\frac{2 m}{2 m+d}}\right)
$$

## Step 4: Rate of Convergence

- Asymptotic rate of convergence


## Theorem

Let $\hat{\mathbf{f}}_{n}(\lambda)=\mathbf{A}_{n}(\lambda) \mathbf{y}=\left(\mathbf{I}_{n}+\lambda \mathbf{M}\right)^{-1} \mathbf{y}$ be the CDS estimator from the multivariate model with the order $m>d / 2$ and denote $r_{n}(\lambda)=n^{-1}\left\|\hat{\mathbf{f}}_{n}(\lambda)-\mathbf{f}\right\|^{2}$. If $n \rightarrow \infty$ and $\lambda \sim n^{-2 m /(2 m+d)}$ is chosen, then

$$
E\left[r_{n}(\lambda)\right]=O\left(n^{-\frac{2 m}{2 m+d}}\right)
$$

- The above matches the optimal rate in Stone (1982).


## Outline

(1) Background
(2) Data Driven Method
(3) Theoretical Consideration: Rate of Convergence

44 Asymptotic Optimality of the Generalized Cross Validation
(5) Fast Computation
(6) Simulations

## Asymptotic Optimality

- Choose the parameter $\lambda$ via the Generalized Cross Validation where $\longrightarrow_{p}$ means the convergence in probability.


## Asymptotic Optimality

- Choose the parameter $\lambda$ via the Generalized Cross Validation
- Let $\hat{\mathbf{f}}_{n}(\lambda)=\mathbf{A}_{n}(\lambda) \mathbf{y}=\left(\mathbf{I}_{n}+\lambda \mathbf{M}\right)^{-1} \mathbf{y}$ be the estimator of CDS model with the order $m$ and denote $r_{n}(\lambda)=n^{-1}\left\|\hat{\mathbf{f}}_{n}(\lambda)-\mathbf{f}\right\|^{2}$. The asymptotic optimality of GCV is defined as

$$
\begin{equation*}
\frac{r_{n}\left(\hat{\lambda}_{G}\right)}{\inf _{\lambda \in \mathbb{R}_{+}} r_{n}(\lambda)} \longrightarrow_{p} 1 \tag{9}
\end{equation*}
$$

where $\longrightarrow_{p}$ means the convergence in probability.

## Three Conditions

(A.1) $\inf _{\lambda \in \mathbb{R}_{+}} n E\left[r_{n}(\lambda)\right] \rightarrow \infty$.

There exists a sequence $\left\{\lambda_{n}\right\}$ such that $r_{n}\left(\lambda_{n}\right) \longrightarrow_{p} 0$ (the convergence in probability).

## Three Conditions

(A.1) $\inf _{\lambda \in \mathbb{R}_{+}} n E\left[r_{n}(\lambda)\right] \rightarrow \infty$.
(A.2) There exists a sequence $\left\{\lambda_{n}\right\}$ such that $r_{n}\left(\lambda_{n}\right) \longrightarrow_{p} 0$ (the convergence in probability).

## Three Conditions

(A.1) $\inf _{\lambda \in \mathbb{R}_{+}} n E\left[r_{n}(\lambda)\right] \rightarrow \infty$.
(A.2) There exists a sequence $\left\{\lambda_{n}\right\}$ such that $r_{n}\left(\lambda_{n}\right) \longrightarrow_{p} 0$ (the convergence in probability).
(A.3) Let $0 \leq \kappa_{1} \leq \cdots \leq \kappa_{n}$ be the eigenvalues of $\mathbf{K}_{n}(\lambda)=\lambda \mathbf{M}$. For any $\ell$ such that $\frac{\ell}{n} \rightarrow 0$, then $\frac{\left(n^{-1} \sum_{i=\ell+1}^{n} \kappa_{1}^{-1}\right)^{2}}{n^{-1} \sum_{i=\ell+1}^{n} \kappa_{i}^{-2}} \rightarrow 0$ as $n \rightarrow \infty$.

## Asymptotic Optimality of GCV

- Formal result


## Theorem

 Under conditions (A.1), (A.2) and (A.3), $\hat{\mathbf{f}}_{n}\left(\hat{\lambda}_{G}\right)$ is asymptotically optimal, where $\hat{\lambda}_{G}$ is the GCV choice.
## Asymptotic Optimality of GCV

- Formal result

Theorem
Under conditions (A.1), (A.2) and (A.3), $\hat{\mathbf{f}}_{n}\left(\hat{\lambda}_{G}\right)$ is asymptotically optimal, where $\hat{\lambda}_{G}$ is the GCV choice.

## Outline

(1) Background
(2) Data Driven Method
(3) Theoretical Consideration: Rate of Convergence

44 Asymptotic Optimality of the Generalized Cross Validation
(5) Fast Computation
(6) Simulations

## A Permutation Approach

- Sparsity of design matrix $\mathbf{M}$; Recall $\hat{\mathbf{f}}=\left(\mathbf{I}_{n}+\lambda \cdot \mathbf{M}\right)^{-1} \cdot \mathbf{Y}$ - Roughly 3 kn as shown in numerical experiments - M can be permutated to a band matrix by the sym netric reverse Cuthill-Mckee ordering (1969) with $O(k \log (k) n)$ complexity


## A Permutation Approach

- Sparsity of design matrix $\mathbf{M}$; Recall $\hat{\mathbf{f}}=\left(\mathbf{I}_{n}+\lambda \cdot \mathbf{M}\right)^{-1} \cdot \mathbf{Y}$
- The number of nonzeros of $\mathbf{M}$ is strictly less than $(k+1)^{2} n$
- Roughly 3 kn as shown in numerical experiments - M can be permutated to a band matrix by the symmetric reverse Cuthill-Mckee ordering (1969) with $O(k \log (k) n)$ comnlexity


## A Permutation Approach

- Sparsity of design matrix $\mathbf{M}$; Recall $\hat{\mathbf{f}}=\left(\mathbf{I}_{n}+\lambda \cdot \mathbf{M}\right)^{-1} \cdot \mathbf{Y}$
- The number of nonzeros of $\mathbf{M}$ is strictly less than $(k+1)^{2} n$
- Roughly 3 kn as shown in numerical experiments


## A Permutation Approach

- Sparsity of design matrix $\mathbf{M}$; Recall $\hat{\mathbf{f}}=\left(\mathbf{I}_{n}+\lambda \cdot \mathbf{M}\right)^{-1} \cdot \mathbf{Y}$
- The number of nonzeros of $\mathbf{M}$ is strictly less than $(k+1)^{2} n$
- Roughly $3 k n$ as shown in numerical experiments
- M can be permutated to a band matrix by the symmetric reverse Cuthill-Mckee ordering (1969) with $O(k \log (k) n)$ complexity


## A Permutation Approach

- Sparsity of design matrix $\mathbf{M}$; Recall $\hat{\mathbf{f}}=\left(\mathbf{I}_{n}+\lambda \cdot \mathbf{M}\right)^{-1} \cdot \mathbf{Y}$
- The number of nonzeros of $\mathbf{M}$ is strictly less than $(k+1)^{2} n$
- Roughly $3 k n$ as shown in numerical experiments
- M can be permutated to a band matrix by the symmetric reverse Cuthill-Mckee ordering (1969) with $O(k \log (k) n)$ complexity
- See an example on the next page...


## Results of Reordering



## Complexity After Reordering

- $p$ is the bandwidth of reordered matrix $\mathbf{M}$
- A band $L D L^{\top}$ decomposition procedure, plus other steps, can find all eigenvalues with $p n^{2}$ complexity So the overall complexity is $O\left(n^{2.5}\right)$ - The above so far is an empirical observation


## Complexity After Reordering

- $p$ is the bandwidth of reordered matrix $\mathbf{M}$
- A band $L D L^{T}$ decomposition procedure, plus other steps, can find all eigenvalues with $p n^{2}$ complexity. We observe that $p \approx O\left((k n)^{0.5}\right)$. So the overall complexity is $O\left(n^{2.5}\right)$.


## Complexity After Reordering

- $p$ is the bandwidth of reordered matrix $\mathbf{M}$
- A band $L D L^{T}$ decomposition procedure, plus other steps, can find all eigenvalues with $p n^{2}$ complexity. We observe that $p \approx O\left((k n)^{0.5}\right)$. So the overall complexity is $O\left(n^{2.5}\right)$.
- The above so far is an empirical observation


## Outline

(1) Background
(2) Data Driven Method
(3) Theoretical Consideration: Rate of Convergence

44 Asymptotic Optimality of the Generalized Cross Validation
(5) Fast Computation
(6) Simulations

## Two Major Competitors

- CDS (our method): completely-data-drive smoothing,


## Two Major Competitors

- CDS (our method): completely-data-drive smoothing,
- Soap film (Wood et al. JRSSB 2008)


## Two Major Competitors

- CDS (our method): completely-data-drive smoothing,
- Soap film (Wood et al. JRSSB 2008)
- based on penalty function

$$
R(f)=\int_{\Omega}\left(\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}\right)^{2} d x d y
$$

## Two Major Competitors

- CDS (our method): completely-data-drive smoothing,
- Soap film (Wood et al. JRSSB 2008)
- based on penalty function

$$
R(f)=\int_{\Omega}\left(\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}\right)^{2} d x d y
$$

- TPS: thin-plate splines


## Two Major Competitors

- CDS (our method): completely-data-drive smoothing,
- Soap film (Wood et al. JRSSB 2008)
- based on penalty function

$$
R(f)=\int_{\Omega}\left(\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}\right)^{2} d x d y
$$

- TPS: thin-plate splines
- with $\Omega=\mathbb{R}^{d}$, you have $\phi(z)=\left\|z-x_{i}\right\|^{2} \log \left\|z-x_{i}\right\|$ in 2-D as basis functions


## Recall the Irregular Domains


(a) Horseshoe.

(b) Letter R .

## Horseshoe Example



Figure: The first, second, and third rows are for $n=1000,2000,5000$, respectively. From left to right the noise is dominated by $\sigma=0.1,1,10$.

## Regular Domain $[0,1]^{2}$



## Letter "R"



Figure: The RMSE is scaled by $\log _{10}$.

## Summary / Future Plans

- The idea of using local estimates to replace an analytical penalty function-complete data driven approach-seems appealing.


## Summary / Future Plans

- The idea of using local estimates to replace an analytical penalty function-complete data driven approach-seems appealing.
(1) Numerical experiments demonstrate promise


## Summary / Future Plans

- The idea of using local estimates to replace an analytical penalty function-complete data driven approach-seems appealing.
(1) Numerical experiments demonstrate promise
(2) Theoretical justification is provided


## Summary / Future Plans

- The idea of using local estimates to replace an analytical penalty function-complete data driven approach-seems appealing.
(1) Numerical experiments demonstrate promise
(2) Theoretical justification is provided
- Acknowledgment: Partially supported by NSF.


## Summary / Future Plans

- The idea of using local estimates to replace an analytical penalty function-complete data driven approach-seems appealing.
(1) Numerical experiments demonstrate promise
(2) Theoretical justification is provided
- Acknowledgment: Partially supported by NSF.
- Thank You!

