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Formulation

Observe (Xi , yi ),Xi ∈ R
d , p ≥ 1, yi ∈ R, i = 1, 2, . . . , n

Relation
yi = f (Xi ) + εi ,

or
yi = f (Xi1,Xi2, . . . ,Xid) + εi ,

where εi ’s are i.i.d. and satisfy some conditions

Objective: estimating f

Desideratum: f ∈ F
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Existing Methods

Linear regression, F = a finite-dimensional linear subspace

Kernel

Splines

Wavelets

...

F is a Sobolev space

F = Hm(Ω) =
{

f : Dαf ∈ L2(Ω),∀α ∈ Z
d
+, |α| ≤ m

}

where Ω ∈ R
d is the domain of the function, for α ∈ Z

d
+,

α = (α1, α2, ..., αd ) and |α| =
∑d

i=1 αi , we define the partial
derivative

Dαf =
∂|α|f

∂xα1
1 ∂xα2

2 · · · ∂xαd

d
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Review of Existing Approach

Penalization estimation approach (equivalently, Lagrange multiplier):

min
f ∈F

G (f ) + λ · R(f )

where

G (f ): goodness of fit, e.g., G (f ) =
∑n

i=1[yi − f (Xi )]
2

R(f ): regularity of f , e.g., R(f ) =
∫

Ω

∑p
i ,j=1

(

∂2f
∂xi∂xj

)2

Ω: domain of f , e.g., Ω = Rd
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More on the Existing Approach

Define a regularity functional. Recall

R(f ) =

∫

Ω
‖Hf ‖2F

Essence: Need to show that solving problem

min
f ∈F

R(f )

subject to f (Xi) = y ′i

ends up with a quadratic form:

R(f ) = fTMf

where f = (f (X1), f (X2), . . . , f (Xn))
T

If Ω is irregular, determining analytically the gram matrix M can be
very difficult.
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Example of Irregular Domain
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(a) Horseshoe.
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Unbiased Estimation in a Neighborhood

An unbiased alternative:

min
f ∈F

n
∑

i=1

[yi − f (Xi)]
2 + λ

n
∑

i=1

‖Hf (Xi)‖
2
F .

Let Vi , 1 ≤ i ≤ k , denote the k nearest neighbors of V0. Let
V̄ = 1

k+1

∑k
i=0Vi , i.e., V̄ is the average. Taylor expansion:

f (Vi ) ≈ f (V̄) + (Vi − V̄)TJ f (V̄) +
1

2
(Vi − V̄)THf (V̄)(Vi − V̄),

i = 0, 1, · · · , n,

where f (V̄) is the functional value, J f (V̄) is the Jacobian, and
Hf (V̄) is the hessian matrix. Note we have J f (V̄) ∈ R

d and
Hf (V̄) ∈ R

d×d .
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Derivation

Rewrite as a linear system:

f∗ ≈ 1k+1 · c + V · J+
1

2
C ·H,

A partial implementation of QR-decomposition

[

1k+1 V 1
2C

]

=
[

Q1 Q2

]

[

R11 R12

0 I(d2+d)/2

]

,

where columns of Q1 ∈ R
(k+1)×(d+1) are orthonormal

(QT
1 Q1 = Id+1), and columns of Q2 ∈ R

(k+1)× d2+d
2 are orthogonal to

the columns of Q1 (i.e., QT
2 Q1 = 0).
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More on Derivation

we have

QT
2 f

∗ =
(

0 QT
2 Q2

)

[

R11 R12

0 I(p2+p)/2

]





c
J

H



 = QT
2 Q2H.

least-squares estimator of H

Ĥ = (QT
2 Q2)

+QT
2 f

∗,

where (·)+ denotes a pseudo-inverse of a matrix.

Frobenius norm of the hessian matrix at a point:

‖Ĥf (Xi )‖
2
F = ‖Ĥ‖22 = ĤT Ĥ

= (f∗)TQ2(Q
T
2 Q2)

+(QT
2 Q2)

+QT
2 f

∗.
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A Quadratic Form

Denote
Ki = Q2(Q

T
2 Q2)

+(QT
2 Q2)

+QT
2 .

We have
n

∑

i=1

‖Ĥf (Xi)‖
2
F =

n
∑

i=1

(fTST
i KiSi f).

Let M = (ST
1 , · · · ,S

T
n )diag{K1,K2, · · · ,Kn}







S1
...
Sn






, we have

n
∑

i=1

‖Ĥf (Xi )‖
2
F = fTMf, (1)

which is a quadratic function of f.
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‖Ĥf (Xi)‖
2
F =

n
∑

i=1

(fTST
i KiSi f).

Let M = (ST
1 , · · · ,S

T
n )diag{K1,K2, · · · ,Kn}







S1
...
Sn






, we have

n
∑

i=1
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Close Form Solution

Problem becomes
min
f

‖Y − f‖22 + λfTMf,

Close form solution:

f̂ = (In + λ ·M)−1 ·Y.

J. Chen and X. Huo (2009). A Hessian regularized nonlinear time
series model. Journal of Computational and Graphical Statistics, 18
(3): 694-716, September.
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Rate of Convergence

Rate of convergence: How fast does 1
n
‖f̂n − f ‖22 goes to zero?

Stone (1982) showed that O(n−
2m

2m+d ) is the optimal rate of
convergence for nonparametric regression for d -dimensional input,
while the up to order m partial derivatives of the underlying function
f are in L2(Ω).

Note we have m = 2.

Note: we must have 2m > d .
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Preparation: Inner Product in a RKHS

For 0 ≤ ℓ ≤ m, a semi-inner-product in Wm
2 (Ω) is defined by

〈f , g〉Ω,ℓ =

∫

Ω

∑

|α|=ℓ

ℓ!

α!
(Dαf )(Dαg)dx , (2)

which gives rise to the related semi-norm

|f |2Ω,ℓ =

∫

Ω

∑

|α|=ℓ

ℓ!

α!
|Dαf |2dx . (3)

With T = {Xi}
n
i=1, we can also give a discrete version of the

aforementioned semi-norm as

|f |2T ,ℓ =
1

n

n
∑

i=1

∑

|α|=ℓ

ℓ!

α!
|Dαf (Xi)|

2. (4)

Specially, |f |2Ω,0 =
∫

Ω f (x)2dx and |f |2T ,0 =
1

n

n
∑

i=1
f (Xi)

2.
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Specially, |f |2Ω,0 =
∫

Ω f (x)2dx and |f |2T ,0 =
1

n

n
∑

i=1
f (Xi)

2.
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Preparation: Inner Product in a RKHS

For 0 ≤ ℓ ≤ m, a semi-inner-product in Wm
2 (Ω) is defined by

〈f , g〉Ω,ℓ =

∫

Ω

∑

|α|=ℓ

ℓ!

α!
(Dαf )(Dαg)dx , (2)

which gives rise to the related semi-norm

|f |2Ω,ℓ =

∫

Ω

∑

|α|=ℓ

ℓ!

α!
|Dαf |2dx . (3)

With T = {Xi}
n
i=1, we can also give a discrete version of the

aforementioned semi-norm as

|f |2T ,ℓ =
1

n

n
∑

i=1

∑

|α|=ℓ

ℓ!

α!
|Dαf (Xi)|

2. (4)

Specially, |f |2Ω,0 =
∫

Ω f (x)2dx and |f |2T ,0 =
1

n

n
∑

i=1
f (Xi)

2.

xiaoming@isye.gatech.edu (Georgia Tech) Estimation on Irregular Domains Birs 17 / 38



Preparation: Ideal Quadratic form & Sampling Property

Ideal quadratic form. For ℓ = m in (4), we define ET ,m as the matrix
representing the quadratic form

|f |2T ,m =
1

n
fTET ,mf (5)

where f = (f (X1), · · · , f (Xn))
T is the vector of function values at the

knots of T = {Xi}
n
i=1.

Sampling property. For the set of sampling points T = {Xi}
n
i=1 in

domain Ω, we assume that there exists a constant B0 > 0 such that

δmax

δmin
≤ B0, (6)

where δmax = sup
X∈Ω

inf
Xi∈T

‖X − Xi‖, and δmin = min
j 6=i

‖Xj − Xi‖.
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Property of the Domain Ω

A Lipschitz domain (or domain with Lipschitz boundary) is a set in
Euclidean space whose boundary is sufficiently regular in the sense
that it can be thought of as locally being the graph of a Lipschitz
continuous function.

Ω be an open set of Rd satisfying a uniform cone condition: there
exist a radius r > 0 and an angle θ ∈ (0, π/2) such that for any
X ∈ Ω a unit vector ζ(X ) ∈ R

d exists such that the cone

C (X , ζ(X ), r , θ) = {X+ts : s ∈ R
d , ‖s‖ = 1, ζ(X )T s ≥ cos θ, 0 ≤ t ≤ r}

(7)
is entirely contained in Ω.

Um
2 (Ω) = {f ∈ Wm

2 (Ω) | B |f |2Ω,m ≤ |f |2T ,m ≤ B|f |2Ω,m} be a class of
functions with bilaterally bounded constraint on their mth-order
derivatives, where the constants B,B > 0 do not depend on functions
f .
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A few theorems, Step 1

Bound the eigenvalues of the ideal quadratic form. Let e1 ≤ · · · ≤ en
be the eigenvalues of ET ,m in ascending order.

Theorem

Let Ω be an open bounded Lipschitz domain satisfying the uniform cone
condition, and the sample points {Xj}

n
j=1 fulfill the assumption of (6).

Then there exist constants C3,C4 > 0 such that

C3ρj ≤ ej ≤ C4ρj ,

where ρ1 ≤ ρ2 ≤ · · · ≤ ρn are the first n eigenvalues of the variational
eigenvalue problem

〈φ,ψ〉Ω,m = ρ〈φ,ψ〉Ω,0, ∀ ψ ∈ Wm
2 (Ω).
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Step 2: Quote a Known Result

Using a known rate from functional analysis

Theorem

Let Ω be an open bounded Lipschitz domain satisfying the uniform cone
condition, and {e1 ≤ · · · ≤ en} the eigenvalues of ET ,m in ascending order.
Then there exist constants C5,C6 > 0 such that for
m(d) = (d+m−1)!

d!(m−1)! < j ≤ n we have

C5j
2m
d ≤ ej ≤ C6j

2m
d . (8)
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Step 3: Rates on Eigenvalues

Property of eigenvalues.

Theorem

Let µ1 ≤ · · · ≤ µn be the eigenvalues of the matrix M in (1). There exist
constants C7,C8 > 0 such that for m(d) < j ≤ n we have

C7j
2m
d ≤ µj ≤ C8j

2m
d .
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Step 4: Rate of Convergence

Asymptotic rate of convergence

Theorem

Let f̂n(λ) = An(λ)y = (In + λM)−1y be the CDS estimator from the
multivariate model with the order m > d/2 and denote
rn(λ) = n−1‖f̂n(λ)− f‖2. If n → ∞ and λ ∼ n−2m/(2m+d) is chosen, then

E [rn(λ)] = O(n−
2m

2m+d ).

The above matches the optimal rate in Stone (1982).
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Asymptotic Optimality

Choose the parameter λ via the Generalized Cross Validation

Let f̂n(λ) = An(λ)y = (In + λM)−1y be the estimator of CDS model
with the order m and denote rn(λ) = n−1‖f̂n(λ)− f‖2. The
asymptotic optimality of GCV is defined as

rn(λ̂G )

inf
λ∈R+

rn(λ)
−→p 1 (9)

where −→p means the convergence in probability.
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Three Conditions

(A.1) inf
λ∈R+

nE [rn(λ)] → ∞.

(A.2) There exists a sequence {λn} such that rn(λn) −→p 0 (the
convergence in probability).

(A.3) Let 0 ≤ κ1 ≤ · · · ≤ κn be the eigenvalues of Kn(λ) = λM. For any ℓ

such that
ℓ

n
→ 0, then

(n−1
∑n

i=ℓ+1 κ
−1
i )

2

n−1
∑n

i=ℓ+1 κ
−2
i

→ 0 as n → ∞.
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Asymptotic Optimality of GCV

Formal result

Theorem

Under conditions (A.1), (A.2) and (A.3), f̂n(λ̂G ) is asymptotically optimal,
where λ̂G is the GCV choice.
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A Permutation Approach

Sparsity of design matrix M; Recall f̂ = (In + λ ·M)−1 · Y

The number of nonzeros of M is strictly less than (k + 1)2n

Roughly 3kn as shown in numerical experiments

M can be permutated to a band matrix by the symmetric reverse
Cuthill-Mckee ordering (1969) with O(k log(k)n) complexity

See an example on the next page...
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Results of Reordering

0 500 1000 1500 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nnz = 44618

M

0 500 1000 1500 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nnz = 44618

M(r,r)

xiaoming@isye.gatech.edu (Georgia Tech) Estimation on Irregular Domains Birs 30 / 38



Complexity After Reordering

p is the bandwidth of reordered matrix M

A band LDLT decomposition procedure, plus other steps, can find all
eigenvalues with pn2 complexity . We observe that p ≈ O((kn)0.5).
So the overall complexity is O(n2.5).

The above so far is an empirical observation
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Two Major Competitors

CDS (our method): completely-data-drive smoothing,

Soap film (Wood et al. JRSSB 2008)

based on penalty function

R(f ) =

∫

Ω

(

∂2f

∂x2
+
∂2f

∂y2

)2

dxdy

TPS: thin-plate splines

with Ω = R
d , you have φ(z) = ‖z − xi‖

2 log ‖z − xi‖ in 2-D as basis
functions
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Recall the Irregular Domains
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(a) Horseshoe.
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Horseshoe Example
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Figure: The first, second, and third rows are for n = 1000, 2000, 5000,
respectively. From left to right the noise is dominated by σ = 0.1, 1, 10.
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Regular Domain [0, 1]2
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Letter “R”
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Figure: The RMSE is scaled by log10.
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Summary / Future Plans . . .

The idea of using local estimates to replace an analytical penalty
function—complete data driven approach—seems appealing.

1 Numerical experiments demonstrate promise
2 Theoretical justification is provided
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