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Formulation

@ Observe (Xi,y:),Xi €RI p>1y; €R,i=1,2,...,n
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Formulation

@ Observe (Xi,y:),Xi €RI p>1y; €R,i=1,2,...,n

@ Relation
Yi = f(X/) + &j,

or
yi = f(Xi1, Xi2, ..., Xig) + i

where ¢;'s are i.i.d. and satisfy some conditions
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Formulation

@ Observe (Xi,y:),Xi €RI p>1y; €R,i=1,2,...,n
@ Relation
Yi = f(X/) + &j,
or
yi = (X1, Xz, - . -, Xig) + i,

where ¢;'s are i.i.d. and satisfy some conditions
o Objective: estimating f
@ Desideratum: f € &
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Existing Methods

@ Linear regression, . = a finite-dimensional linear subspace
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@ Linear regression, . = a finite-dimensional linear subspace
@ Kernel

@ Splines

@ Wavelets
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Existing Methods

Linear regression, .# = a finite-dimensional linear subspace

Kernel

Wavelets

°
°
@ Splines
°
°
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Existing Methods

Linear regression, .# = a finite-dimensional linear subspace
Kernel

Splines

Wavelets

F is a Sobolev space

F=H"(Q) = {f L DF € 13(Q),Ya € 29, |a| < m}

where Q € R? is the domain of the function, for « € Z9,
a=(aq,0,...,aq4) and |a| = 27:1 «j, we define the partial
derivative

olol
Ox{rOx5? - - - Oxy?

Def =
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Review of Existing Approach

@ Penalization estimation approach (equivalently, Lagrange multiplier):

min G(f) + X - R(f)

fes

where
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Review of Existing Approach

@ Penalization estimation approach (equivalently, Lagrange multiplier):

min G(f) + X - R(f)

fes

where
o G(f): goodness of fit, e.g., G(f) = > 7_;[yi — F(Xi)]?
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Review of Existing Approach

@ Penalization estimation approach (equivalently, Lagrange multiplier):

P;IE G(f)+X-R(f)

where
o G(f): goodness of fit, e.g., G(f) = > 7_;[yi — F(Xi)]?

) 2
@ R(f): regularity of f, e.g., R(f) = fQ J 1 (5)(3,23{)9.)
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Review of Existing Approach

@ Penalization estimation approach (equivalently, Lagrange multiplier):

P;IE G(f)+X-R(f)

where
o G(f): goodness of fit, e.g., G(f) = > 7_;[yi — F(Xi)]?

) 2
o R(f): regularity of f, e.g., R(f) = [q > °F 21 (afaij)
e Q: domain of f, eg., Q =RY
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More on the Existing Approach

@ Define a regularity functional. Recall

R(f) = /Q M2
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More on the Existing Approach

@ Define a regularity functional. Recall

R(E)= [ IR
Q
@ Essence: Need to show that solving problem

min R(f)

fez

subject to  f(X;) = y!

1

ends up with a quadratic form:
R(f) = fTMf

where f = (f(X1), f(X2),..., f(Xn))T
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More on the Existing Approach

@ Define a regularity functional. Recall

R(E)= [ IR
Q
@ Essence: Need to show that solving problem

min R(f)

fez
subject to  f(X;) = y!

1

ends up with a quadratic form:

R(f) = fTMf

where f = (f(X1), f(X2), ..., f(Xa))T
o If Q is irregular, determining analytically the gram matrix M can be
very difficult.
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Example of Irregular Domain

4 ) A

60 -50 -40 -30 -20 -10 0 10

(a) Horseshoe. (b) Letter R.
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Outline

© Data Driven Method

xiaoming@is atech.edu (Georgia Tech) Estimation on Irregular Domains Birs 9 /38



Unbiased Estimation in a Neighborhood

@ An unbiased alternative:

min > "[yi — FO) + A Y [HAX)F-
i=1 i=1
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Unbiased Estimation in a Neighborhood

@ An unbiased alternative:
mmZ[y, — FX)]? + )\Z |HF (X%

V; 1 g k denote the k nearest neighbors of V. Let
V;, i.e., Vis the average. Taylor expansion:

<t

F(V)) = f(V)+ (V, = V)T TF(V) + %(v,- —~V)THF(V)(V, - V),

where f(V) is the functional value, Jf(V) is the Jacobian, and
Hf(V) is the hessian matrix. Note we have Jf(V) € R? and
HF(V) € RIXI,
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Derivation

@ Rewrite as a linear system:

1
f*%lkﬂ'c—l—V-J—i—EC-H,
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Derivation

@ Rewrite as a linear system:
. 1
f %1k+1~c+V-J+§C~H,

@ A partial implementation of QR-decomposition

R R
[ 1441 Cl=[Q Q] [ 0 lgera)o

where columns of Q; € R(k+1)x(d+1) 5re orthonormal

2
(Q{Ql = lg41), and columns of Q; € REFDX 5 re orthogonal to
the columns of Q1 (i.e., QJ Q; = 0).
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More on Derivation

@ we have

Cc
QJfF =(0 QJQ:) [ Rit R”W ]

J | =QIQ,H.
0 lp2ip H 2
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More on Derivation

@ we have

c
Q;—f* — ( 0 0;02 ) |: R]_]_ R]_2)/2 :|

J
0 lp2ip H

@ least-squares estimator of H
H=(Q;Q)"Q; ",

where (-)* denotes a pseudo-inverse of a matrix.
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More on Derivation

@ we have
R R ¢
ofr = (0 afa:)| gt 2 |
(P?+p)/2 H
@ least-squares estimator of H
H=(Q7Q)"QJf,

where (-)* denotes a pseudo-inverse of a matrix.

@ Frobenius norm of the hessian matrix at a point:

IAf(X)IE = [IHIZ=HTH

= QJ QH.

= (f)7Q(Q]Q2)"(Q; Q)" Q5 F.
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A Quadratic Form

@ Denote

K; = Qz(Q;Q2)+(Q27-Q2)+Q2T-
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A Quadratic Form

@ Denote
K; = Qz(Q;Q2)+(Q27-Q2)+Q2T-
@ We have . .
SOIFFXDIE =D (FTS]K;SF).
i=1 i=1
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A Quadratic Form

@ Denote
=Q2(Q;Q2)"(Q;Q2)"Q; .
@ We have . .
D IAFX)IE =Y (FTSTKiSH).
i=1 i=1
S;
o Let M= (S, - ,STdiag{K1, Kz, -+ ,K,} : , we have
Sh
Z 17 (X7 = 7 MF, (1)

which is a quadratic function of f.
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Close Form Solution

@ Problem becomes

min | ¥ — f||3 4+ AT MF,

<iaoming@isye.gatech.edu (Georgia Tech) Estimation on Irregular Domains Birs 14 / 38



Close Form Solution

@ Problem becomes
min | ¥ — f||3 4+ AT MF,

@ Close form solution:

f=,+2x- MLy,
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Close Form Solution

@ Problem becomes
min | ¥ — f||3 4+ AT MF,

@ Close form solution:
f=,+2x- MLy,

@ J. Chen and X. Huo (2009). A Hessian regularized nonlinear time
series model. Journal of Computational and Graphical Statistics, 18

(3): 694-716, September.
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Outline

© Theoretical Consideration: Rate of Convergence
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Rate of Convergence

@ Rate of convergence: How fast does 2||f, — f||3 goes to zero?
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Rate of Convergence

@ Rate of convergence: How fast does 2||f, — f||3 goes to zero?

2m
@ Stone (1982) showed that O(n™ 2m+d) is the optimal rate of
convergence for nonparametric regression for d-dimensional input,
while the up to order m partial derivatives of the underlying function

f are in L?(Q).
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Rate of Convergence

@ Rate of convergence: How fast does 2||f, — f||3 goes to zero?

@ Stone (1982) showed that O(n_ﬁ%) is the optimal rate of
convergence for nonparametric regression for d-dimensional input,
while the up to order m partial derivatives of the underlying function
f are in L?(Q).

@ Note we have m = 2.
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Rate of Convergence

@ Rate of convergence: How fast does 2||f, — f||3 goes to zero?

2m
@ Stone (1982) showed that O(n™ 2m+d) is the optimal rate of
convergence for nonparametric regression for d-dimensional input,
while the up to order m partial derivatives of the underlying function
f are in L?(Q).
@ Note we have m = 2.

@ Note: we must have 2m > d.
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Preparation: Inner Product in a RKHS

@ For 0 < ¢ < m, a semi-inner-product in W3"(Q) is defined by
o o
(F.8)ar= [ 30 (DA g)ax, )
la|=¢
which gives rise to the related semi-norm

0o
= [ 3 2l fPax. 3)

|a|=¢
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Preparation: Inner Product in a RKHS

@ For 0 < ¢ < m, a semi-inner-product in W3"(Q) is defined by
(f.8)a0 = | > (D)D" g)ax, )
al=¢
which gives rise to the related semi-norm
fla, = /Q l;@%wamdx. (3)

o With T = {X;}7_;, we can also give a discrete version of the
aforementioned semi-norm as

=70 3 DO, @

i=1 |a|=t
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Preparation: Inner Product in a RKHS

@ For 0 < ¢ < m, a semi-inner-product in W3"(Q) is defined by
(f.8)a0 = | > (D)D" g)ax, )
al=¢
which gives rise to the related semi-norm
fla, = /Q l;@%wamdx. (3)

o With T = {X;}7_;, we can also give a discrete version of the
aforementioned semi-norm as

1 ¢ o
\f|2T,e:;ZZ J\D F(X0)I?. (4)
i=1|a|=¢
1 n
o Specially, [f[3o = o f(x)?dx and |f|5, = - > (X))

i=1

xiaoming@isye.gatech.edu (Georgia Tech) Estimation on Irregular Domains Birs 17 / 38



Preparation: ldeal Quadratic form & Sampling Property

@ Ideal quadratic form. For £ = m in (4), we define E1 ,, as the matrix
representing the quadratic form

1
7 = FTET,f (5)

where f = (f(X1), -+, f(Xn))" is the vector of function values at the
knots of T = {X;}";.
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Preparation: ldeal Quadratic form & Sampling Property

@ Ideal quadratic form. For £ = m in (4), we define E1 ,, as the matrix
representing the quadratic form

1
7 = FTET,f (5)

where f = (f(X1), -+, f(Xn))" is the vector of function values at the
knots of T = {X;}";.

@ Sampling property. For the set of sampling points T = {X;}"_; in
domain €2, we assume that there exists a constant By > 0 such that

5max
< B 6
5min =00 ( )

where dmax = sup inf_||X — Xj||, and dmin = min || X; — Xi]|.
XeQXieT J#i
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Property of the Domain 2

@ A Lipschitz domain (or domain with Lipschitz boundary) is a set in
Euclidean space whose boundary is sufficiently regular in the sense
that it can be thought of as locally being the graph of a Lipschitz
continuous function.
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Property of the Domain 2

@ A Lipschitz domain (or domain with Lipschitz boundary) is a set in
Euclidean space whose boundary is sufficiently regular in the sense
that it can be thought of as locally being the graph of a Lipschitz
continuous function.

@ Q be an open set of RY satisfying a uniform cone condition: there
exist a radius r > 0 and an angle 6 € (0,7/2) such that for any
X € Q a unit vector ¢(X) € R¥ exists such that the cone

C(X,¢(X),r,0) = {X+ts:sc R ||s| =1,{(X)"s > cosh,0 < t < r}
(7)

is entirely contained in €.
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Property of the Domain 2

@ A Lipschitz domain (or domain with Lipschitz boundary) is a set in
Euclidean space whose boundary is sufficiently regular in the sense
that it can be thought of as locally being the graph of a Lipschitz
continuous function.

@ Q be an open set of RY satisfying a uniform cone condition: there
exist a radius r > 0 and an angle 6 € (0,7/2) such that for any
X € Q a unit vector ¢(X) € R¥ exists such that the cone

C(X,¢(X),r,0) = {X+ts:sc R ||s| =1,{(X)"s > cosh,0 < t < r}
(7)

is entirely contained in €.

o UP(Q) = {f € W(Q) | BIf3 ,, <|f.,, < BIf3,} bea class of
functions with bilaterally bounded constraint on their mth-order

derivatives, where the constants §,§ > 0 do not depend on functions
f.
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A few theorems, Step 1

@ Bound the eigenvalues of the ideal quadratic form. Let e; < --- < g,
be the eigenvalues of Et , in ascending order.

xiaoming@isye.gatech.edu (Georgia Tech) Estimation on Irregular Domains Birs 20 / 38



A few theorems, Step 1

@ Bound the eigenvalues of the ideal quadratic form. Let e; < --- < g,
be the eigenvalues of Et , in ascending order.

Let Q be an open bounded Lipschitz domain satisfying the uniform cone
condition, and the sample points {X;}7_, fulfill the assumption of (6).

Then there exist constants C3, C4 > 0 such that

Gpj < € < Capj,

where p1 < pa < --- < pp, are the first n eigenvalues of the variational
eigenvalue problem

<¢7 ¢>Q,m = p<¢7 ¢>Q,07 v 1/} € W2m(Q)
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Step 2: Quote a Known Result

@ Using a known rate from functional analysis
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Step 2: Quote a Known Result

@ Using a known rate from functional analysis

(Theorem .|

Let Q be an open bounded Lipschitz domain satisfying the uniform cone

condition, and {e; < --- < e,} the eigenvalues of Et p,, in ascending order.
Then there exist constants Cs, Cg > 0 such that for

m(d):%<j§nwehave

Coj 7 < e < G4 (8)
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Step 3: Rates on Eigenvalues

@ Property of eigenvalues.
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Step 3: Rates on Eigenvalues

@ Property of eigenvalues.

Let g < --- < pp be the eigenvalues of the matrix M in (1). There exist
constants C7, Cg > 0 such that for m(d) < j < n we have

Cijd < < G’
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Step 4: Rate of Convergence

@ Asymptotic rate of convergence
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Step 4: Rate of Convergence

@ Asymptotic rate of convergence

Theorem

Let f,(\) = A,(\)y = (I, + AM)~ty be the CDS estimator from the
multivariate model with the order m > d/2 and denote

() = n7L|f,(A\) — f||2. If n — 0o and A ~ n=2m/(m+d) s chosen, then

Elra(N)] = O(n~2n%a).
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Step 4: Rate of Convergence

@ Asymptotic rate of convergence

Let f,(\) = A,(\)y = (I, + AM)~ty be the CDS estimator from the
multivariate model with the order m > d /2 and denote

() = n7L|f,(A\) — f||2. If n — 0o and A ~ n=2m/(m+d) s chosen, then

Elra(N)] = O(n~2n%a).

@ The above matches the optimal rate in Stone (1982).
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Outline

@ Asymptotic Optimality of the Generalized Cross Validation

satech.edu (Georgia Tech) Estimation on Irregular Domains Birs 24 /38



Asymptotic Optimality

@ Choose the parameter A via the Generalized Cross Validation
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Asymptotic Optimality

@ Choose the parameter A via the Generalized Cross Validation

o Let f,(\) = A,(\)y = (1, + AM)~1y be the estimator of CDS model
with the order m and denote r,(\) = n~||f,()\) — f||%>. The
asymptotic optimality of GCV is defined as

r,,(j\(;)

inf r,(A
AlenR+r()

—pl (9)

where —, means the convergence in probability.
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Three Conditions

(A1) )\ienIg{ir nE[ry,(A\)] — oo.
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Three Conditions

(A1) )\ienIg{ir nE[ry,(A\)] — oo.

(A.2) There exists a sequence {\,} such that r,(\,) —, 0 (the
convergence in probability).
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Three Conditions

(A1) )\ienIg{ir nE[ry,(A\)] — oo.

(A.2) There exists a sequence {\,} such that r,(\,) —, 0 (the
convergence in probability).

(A.3) Let 0 < k1 <--- < Ky be the eigenvalues of K,(\) = AM. For any ¢

pmlson i h)?
such that ¢ — 0, then %

— 0 as n — oo.
_ 2
n n 127:e+1”i
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Asymptotic Optimality of GCV

@ Formal result
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Asymptotic Optimality of GCV

@ Formal result

Under conditions (A.1), (A.2) and (A.3), fa(Ag) is asymptotically optimal,
where \¢g is the GCV choice.
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Outline

© Fast Computation
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A Permutation Approach

@ Sparsity of design matrix M; Recall f = (I, + A-M)~1.Y
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A Permutation Approach

@ Sparsity of design matrix M; Recall f = (I, + A-M)~1.Y

@ The number of nonzeros of M is strictly less than (k + 1)2n
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A Permutation Approach

@ Sparsity of design matrix M; Recall f = (I, + A-M)~1.Y
@ The number of nonzeros of M is strictly less than (k + 1)2n

@ Roughly 3kn as shown in numerical experiments
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A Permutation Approach

@ Sparsity of design matrix M; Recall f = (I, + A-M)~1.Y
@ The number of nonzeros of M is strictly less than (k + 1)2n
@ Roughly 3kn as shown in numerical experiments

@ M can be permutated to a band matrix by the symmetric reverse
Cuthill-Mckee ordering (1969) with O(k log(k)n) complexity
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A Permutation Approach

Sparsity of design matrix M; Recall f = (I, + A-M)~1.Y
The number of nonzeros of M is strictly less than (k + 1)?n
Roughly 3kn as shown in numerical experiments

M can be permutated to a band matrix by the symmetric reverse
Cuthill-Mckee ordering (1969) with O(k log(k)n) complexity

See an example on the next page...

)
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Results of Reordering

M(r,r)
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R f S 2000
500 1000 1500 2000 0 500 1000 1500 2000

nnz = 44618 nnz = 44618
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Complexity After Reordering

@ p is the bandwidth of reordered matrix M
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Complexity After Reordering

@ p is the bandwidth of reordered matrix M

@ A band LDLT decomposition procedure, plus other steps, can find all
eigenvalues with pn® complexity . We observe that p ~ O((kn)%®).
So the overall complexity is O(n?9).
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Complexity After Reordering

@ p is the bandwidth of reordered matrix M

@ A band LDLT decomposition procedure, plus other steps, can find all
eigenvalues with pn® complexity . We observe that p ~ O((kn)%®).
So the overall complexity is O(n?9).

@ The above so far is an empirical observation
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Outline

© Simulations
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Two Major Competitors

@ CDS (our method): completely-data-drive smoothing,
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Two Major Competitors

@ CDS (our method): completely-data-drive smoothing,
@ Soap film (Wood et al. JRSSB 2008)
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Two Major Competitors

@ CDS (our method): completely-data-drive smoothing,
@ Soap film (Wood et al. JRSSB 2008)

@ based on penalty function

AN
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Two Major Competitors
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Two Major Competitors

@ CDS (our method): completely-data-drive smoothing,
@ Soap film (Wood et al. JRSSB 2008)

@ based on penalty function

AN

@ TPS: thin-plate splines
o with Q = RY, you have ¢(z) = ||z — x;||?log ||z — x;|| in 2-D as basis
functions
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Recall the Irregular Domains

4 ) A

60 -50 -40 -30 -20 -10 0 10

(a) Horseshoe. (b) Letter R.
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Horseshoe Example

R = = e -
R = g4 = ] - =
2] 8 = Ch e e R
1= = == 1L
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gt St ——
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g ] = — R —
s —_— — i E
g | = e 1= 31—
e T T T T T T T T
s som ws s som s ws som s
== 1 == 2 =
3 g o] — T
R S | S84 o
——— ——— ——
s som s s som s s s s

Figure: The first, second, and third rows are for n = 1000, 2000, 5000,
respectively. From left to right the noise is dominated by 0 = 0.1, 1, 10.
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Regular Domain [0, 1]
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Letter “R”

El —_ s = g L
T T T ? T T f El T T T
cds. soap tps cds soap tps cds. soap tps
s s s ws s s ws s s
o] 3 o - g1 o
i [— T —— S +
s s s ws s s s s s

Figure: The RMSE is scaled by logy.
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Summary / Future Plans ...

@ The idea of using local estimates to replace an analytical penalty
function—complete data driven approach—seems appealing.

xiaoming@isye.gatech.edu (Georgia Tech) Estimation on Irregular Domains Birs 38 /38



Summary / Future Plans ...

@ The idea of using local estimates to replace an analytical penalty
function—complete data driven approach—seems appealing.

© Numerical experiments demonstrate promise

iaomingQ@isye.gatech.edu (Georgia Tech) Estimation on Irregular Domains Birs 38 /38



Summary / Future Plans ...

@ The idea of using local estimates to replace an analytical penalty
function—complete data driven approach—seems appealing.
© Numerical experiments demonstrate promise
@ Theoretical justification is provided

xiaoming@isye.gatech.edu (Georgia Tech) Estimation on Irregular Domains Birs 38 /38



Summary / Future Plans ...

@ The idea of using local estimates to replace an analytical penalty
function—complete data driven approach—seems appealing.
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@ Acknowledgment: Partially supported by NSF.
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Summary / Future Plans ...

@ The idea of using local estimates to replace an analytical penalty
function—complete data driven approach—seems appealing.
© Numerical experiments demonstrate promise
@ Theoretical justification is provided

@ Acknowledgment: Partially supported by NSF.
@ Thank You!
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