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Background: Version 1
The Madden-Julian Oscillation (MJO) is characterized by

• Pronounced multiscale convective organizations over the Indo-Pacific warm
pool region

• Mainly equatorially-trapped, eastward propagating speed of ∼ 5-8 m/s

• Irregular periodicity (e.g., ∼ 20–90 days)

• Associated westerly wind bursts (WWB) near the Dateline

MJO prediction and predictability are significant research areas

• Major source of tropical sub-seasonal (2 weeks-2 months) predictability
(e.g., Lau and Waliser, 2005)
– Statistical models suggest predictability of 15–20 days
– Dynamical models suggest predictability of 25–30 days.

• Global influences through tropical-extratropical interactions

• Fundamentally interfacing the short-term weather prediction (I.C. problem)
and the very long range climate prediction (B.C. problem).
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• GCM or NWP models have major difficulties in simulating MJO, and ap-
pear to be sensitive to model moist, esp. convection and cloud, processes
(e.g., Tokioka et al. 1988; Slingo et al., 1996; Wang and Schlesinger, 1999;
Maloney and Hartmann, 2001; Lin et al., 2006)

• Multiscale modeling and global cloud-system-resolving modeling appear to
be promising forecast tools (e.g., Miura et al., 2007; Kharioutdinov et al.,
2008; Tao et al., 2009)

• Minimal coupled nonlinear oscillator model predicted the system’s main
features (Majda and Stechmann, 2009)
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Background: Version 2
• Detecting chaos and understanding the limit of prediction time based on

experimental data analyses is an important task in many areas of science
and engineering.

• It is often challenging, since experimental/observational data can be very
noisy.

• To make the task amenable, an important step is to first reduce noise in the
signals.

• When the signals are linear, this is a simple task since we have a variety of
linear filters to choose from to clean up the data.

• When the signals are nonlinear, and especially chaotic, then the problem
becomes highly nontrivial since linear filters severely distort even clean
chaotic signals (e.g., Badii et al., 1988) let alone effectively reduce noise
from them.
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Motivational question
• There have been considerable efforts to standardize observation-based di-

agnostics for objectively evaluating GCM simulations of the MJO (Waliser
et al., 2009; Kim et al., 2009). Several EOF-based MJO indices have been
developed for both operational monitoring and research purposes.

• Ding et al. (2010) showed an inconclusive range (3 and 5 weeks) of theoreti-
cal potential predictability based on such indices using nonlinear finite-time
Lyapunov exponent (NFTLE), and indicated that the discrepancy may be
caused by noise contamination.

• Question: How can we gain significant insights into the MJO predictability
by analyzing the MJO indices?

• Challenges: We need to suitably pre-process (i.e., filter) the observational
data, then comprehensively characterize the underlying dynamics of the pro-
cessed data.
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MJO indices

• Maloney and Hartmann (1998): Index based on the first two EOFs of the
bandpass-filtered (20-80 days) 850 hPa zonal wind averaged 5◦S-5◦N around
the equator.

• Wheeler and Hendon (2004) realtime multivariate MJO (RMM): Index based
on the the first two EOFs of combined 850- and 200-hPa zonal winds as well
as OLR from 15◦S-15◦N.

• Tian et al. (2006): Index based on the first extended EOF of the bandpass-
filtered (30-90-day) rainfall anomalies.

• Xue et al. (2002) and Gottschalck, NOAA CPC MJO indices: Indices based
on the first extended EOF of 200hPa velocity potential anomalies from equa-
torward of 30◦N.
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Adaptive Denoising Algorithm
• Partition a time series into segments (or windows) of length 2n + 1 points,

where neighboring segments overlap by n+1 points
• For each segment, fit a best polynomial of order K
• Denote the fitted polynomial for the i-th and (i+1)-th segments by

y(i)(l1), y(i+1)(l2), l1, l2 = 1, · · · ,2n+1, respectively.

• Combine the trends in the overlapped region to obtain

y(c)(l) = w1y(i)(l +n)+w2y(i+1)(l), l = 1,2, · · · ,n+1

where w1 =
(
1− l−1

n

)
,w2 = l−1

n can be written as (1−x/n), where x denotes
the distances between the point and the centers of the two fitted curves

• The trend is smooth at the non-boundary points, and has at least the right-
or left-derivative at the boundary points
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Choosing the parameters K and w when the true
signal is unknown

• w can not be greater than 1/2 of a local period of the variation of the signal,
if one does want to trace out the detailed variations of the signal.

• When the signal is highly nonlinear, then K ≤ 2; however high-order poly-
nomials may not be well defined when w is small.

• Fix K to be 2, then check how the variance of the residual data varies with
w; a generic pattern is that the variance

1. increases with w when w is small (almost perfect fitting, little denoising)

2. flattens out when w keeps increasing (usually desired)

3. increases sharply again when w is further increased (window size too big,
local variations largely removed)

• Increase K until the above pattern changes little.
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Denoising

• Chaotic Lorenz ’63 model:

ẋ =−10(x− y)+D1η1(t),

ẏ =−xz+28x− y+D2η2(t),

ż = xy− 8
3z+D3η3(t),

(1)

• Measurement noise: x(t)+n(t); RMSE =
√

1
N ∑

N
i=1[x(i)− x̂(i)]2

• Dynamical noise: noise is in the equations of the system (Di 6= 0); RMSE
cannot be defined; effectiveness of denoising can be evaluated through re-
covery of chaotic signatures

• Experimental data: both measurement and dynamical noise may exist; RMSE
cannot be defined
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Denoising of the Lorenz model
Chaotic Lorenz ’63 model with measurement noise

SNR ≡ 10 log10σ2
x/σ2

n= 13.89 dB:
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(a) Clean and noisy data
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(b) Chaos: projective filtering
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(c) Adatptive denoising
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(d) Wavelet denoisinig
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Denoising of chaotic Lorenz data: performance
• Badii et al. Phys. Rev. Lett. 1988: linear filtering is not suitable for chaotic

data
• Adaptive denoising can more effectively reduce both measurement and dy-

namical noise than chaos and wavelet based approaches (and therefore, is
the most effective)
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Recovered chaotic signatures

Fractal dimension (correlation dimension D2, Grassberger-Procaccia, 1983) and
the Scale-Dependent Lyapunov Exponent (SDLE, Gao et al. 2007)
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NOAA CPC pentad MJO indices

• Extended Empirical Orthogonal Function (EEOF) analysis is applied to pen-
tad 200-hPa velocity potential (χ200) anomalies equatorward of 30oN during
ENSO-neutral and weak ENSO winters (November-April) in 1979-2000.

• The first EEOF is composed of ten time-lagged patterns.

• Ten MJO indices are the minus projection of the pentad χ200 anomalies onto
the ten time-lagged patterns of the first EEOF of pentad CHI200 anomalies.

• Anomalies are based on the 1979-1995 period, and each index is normal-
ized by its standard deviation during ENSO-neutral and weak ENSO winters
(November-April) in 1979-2000.

• The blueish (reddish) color represents the enhanced (suppressed ) convec-
tion, and the x-axis labels the centers (20oE, 70oE, 80oE, 100oE, 120oE,
140oE, 160oE, 120oW, 40oW and 10oW)
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Pre-processing MJO index data (at 80◦E)
• The NOAA CPC pentad MJO indices from 1978–present.
• Green and red curves: window sizes 33 and 11 (∼82.5 and 27.5 days)
• Focus of further analysis: bandpassed signal

(27.5 to 82.5 days; 82.5 days is not an important scale)
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Logarithmic Power Spectral Density (PSD) of
MJO index (80◦E)

• Bandpass filtering makes the spectral peaks sharper
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b) Bandpassed signal
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Phase diagram for bandpassed MJO index data
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• To obtain the phase space (i.e.,
a circle) of a harmonic oscillator
from a signal x(t) = sinωt, one may
plot x(t + L) against x(t), with L =
1/4 of the period of the motion

• The plot suggests a circular (oscil-
latory) motion with period close to
3×5×4 = 60 days

• The amplitude of the motion varies
considerably

• Question: Is the motion regular or
chaotic?
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Basics of chaos theory

• Chaos also called strange attractor

• Being an attractor, trajectories in the phase space bounded

• Being strange, nearby trajectories diverge exponentially fast: dr ∼ dr0eλ1t ,
λ1: the largest positive Lyapunov exponent
—Sensitive dependence on initial conditions

• A strange attractor typically is a fractal—non-integer dimension

• Popular test for chaos:
Positive Lyapunov exponent + non-integer fractal dimension
— False-alarm example: The 1/ f 2H+1 process with Hurst parameter H has
a fractal dimension 1/H

• Key: a unifying tool to classify various types of processes: to identify dif-
ferent scale ranges where different types of processes are manifested
— Scale-Dependent Lyapunov Exponent (SDLE)
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Characterizing chaos by the scale-dependent
Lyapunov exponent (SDLE)

(e.g., Gao, Cao, Tung, and Hu, 2007)
• Consider an ensemble of trajectories in phase space
• Denote the initial separation between two nearby trajectories by ε0, and their

average separation at time t and t +∆t by εt and εt+∆t , respectively
• Being defined in an average sense, εt and εt+∆t can be readily computed

from any processes, even if they are non-differentiable
• When ∆t → 0, SDLE λ(εt) is defined by

εt+∆t = εteλ(εt)∆t or λ(εt) =
lnεt+∆t − lnεt

∆t

• Equivalently, we have a differential equation for εt ,
dεt

dt
= λ(εt)εt

• 1/λ(εt) amounts to the error doubling time
— larger doubling time means longer prediction time scale
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SDLE λ(ε) for chaos, noisy chaos, & noise-induced chaos

• Chaos: λ(ε)≈ λ1 = const (largest positive Lyapunov exponent)
• Noisy chaos & noise-induced chaos: λ(ε)∼−γ lnε on small scales
• (i) Stochastic Lorenz (’63) system (e.g., Tung et al., 2009)

(ii) Noisy logistic map
xn+1 = µxn(1− xn)+Pn,0 < xn < 1,µ = 3.74, σPn

= 0.002
—without noise, motion is periodic — Noise-induced chaos
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Power-law scaling of λ(ε) for 1/ f 2H+1 processes

Can prove λ(ε)∼ ε−1/H

For ON/OFF intermittency, H = (3−µ)/2

Similar power-law scaling for Levy processes
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Detecting intermittent chaos
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• Intermittent chaos: regular
and chaotic motions co-exist;
chaotic phase can be much
shorter than regular phase

• Very difficult to characterize

• Existing methods cannot detect
such motions from noisy time
series

• SDLE easily works, due to scale
separation property

• Example: logistic map
xn+1 = axn(1− xn), a = 3.8284
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Physical significance of the SDLE
• 1/λ(ε) amounts to the error doubling time

— larger doubling time means longer prediction time scale

• The first estimate of the doubling time in GCM was 5 days, given by the
Mintz-Arakawa two-layer model (Charney et al. 1966)

• With greater computational power and model complexity, one would expect
doubling time to increase; however, the estimate of the doubling time has
been decreasing

– A recent estimate (Simmons & Hollingsworth, 2002): < 2 days

• Lorenz suggests that the major factor for the decrease of the doubling time
has been the decrease in spatial resolution which introduces finescale uncer-
tainty

• ε is closely related to spatial resolution; when ε decreases, both λ(ε)∼− lnε

and λ(ε)∼ ε−1/H diverges
— they are more relevant to reality

Page 26



The Pseudo-Ensemble Technique
(Gao, Tung, and Hu, 2009)

Essence: ensemble forecasting equivalent based on one time series
• Define a sequence of “shells” indexed as k:

εk ≤ ‖Vi−Vj‖ ≤ εk +∆εk, |i− j|> w,

where Vi,Vj are vectors sampled from a single trajectory, or vectors reconstructed from a
time series x1,x2, · · · using Taken embedding theorem,

Vi = [xi,xi+L, · · · ,xi+(m−1)L],

where m and L are embedding dimension and delay time, respectively
• Computation of the SDLE

λ(εt) =
〈

ln‖Vi+t+∆t −Vj+t+∆t‖− ln‖Vi+t −Vj+t‖
〉
/∆t,

where the angle brackets denote average within a shell

• Can proveR t
0 λ(εt)dt = Λ(t) =

〈
ln‖Vi+t −Vj+t‖− ln‖Vi−Vj‖

〉
= lnεt − lnε0

Λ(t): Time-dependent exponent (TDE) curves (Gao & Zheng, 93,94)

It’s pseudo because all the vectors are from the single trajectory or time
series
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Prediction in the Lorenz ’96 model
• The model is supposed to represent a 1-D atmosphere; F is a positive constant, t is (non-

dimensional) time, and Xn are values for some scalar atmospheric quantity on N equally
spaced latitude circle

dXn/dt =−Xn−2Xn−1 +Xn−1Xn+1−Xn +F, n = 1,2, · · · ,N
• N = 40,F = 8 are chosen here; there are 13 positive Lyapunov exponents, D≈ 27.1
• Can extrapolate to small scales to recover information not resolved by a single dataset
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Predictability of MJO (80◦E): original data

• SDLE plot does not show any structure
— suggesting noisy dynamics

• Prediction time is ∼ 20 days, roughly the same as what obtained previously
(e.g., Waliser, 2005)

0.65 0.7 0.75 0.8
−5

0

5

10

15

20
x 10

−3

ε

λ(
ε)

 (
pe

r 
da

y)

0 20 40 60
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t (day)

ln
 ε

 (
t)

Page 29



Predictability of MJO (80◦E): filtered data

• SDLE plot shows two distinct scalings:
λ(ε)∼−γ lnε and λ(ε)∼ λ1 = constant

• There are two prediction time scales
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RMM1: filtered data
• There are also two prediction time scales

−3 −2 −1 0
0

0.1

0.2

0.3

ε

λ(
ε)

 (
pe

r 
da

y)

0 20 40 60 80 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

t (day)

ln
 ε

 (
t)

Weak chaos regime

(λ(ǫ) ∼ const)

Fast loss of predictability regime

(λ(ǫ) ∼−γ l nǫ)

Page 31



Spatial variability of MJO’s predictability
Neither scaling behavior varies much along the longitude
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The meaning of chaos and oscillation in MJO?

  

• Chaotic Rossler attractor:
sharp spectral peaks weak
when phase coherence is
gradually lost

• MJO’s oscillation comes
from phase coherence;
its amplitude variation is
chaotic driven by stochas-
ticity
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Summary and Conclusions
• Without filtering, using SDLE and pseudo-ensemble approach, the raw in-

dices suggest noisy dynamics with predictability of ∼ 20 days.
• Suitable bandpass filtering of MJO indices has brought out the MJO features

much better; two distinct scaling regions for the bandpassed MJO indices

– a stochastically driven regime with rapid loss of predictability (∼ 20−25
days) (should be cross-examined with the unfiltered data)

– a weak chaos regime with a prediction time of ∼ 25−30 days
• These features vary little along the equatorial belt, indicating that MJO is a

very coherent event.
• The ∼ 50-day predictability is much longer than found by previous studies

and is approaching the lifetime of the MJO.
• The CR-GCM or the MMF approach might have simulated the ‘stochastic’

equivalent better than conventional GCMs for NWP purposes.
• Theoretical models could capture the essence of the MJO dynamics as a

stochatically-driven chaotic oscillator and offer fundamental understanding.
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