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Basic definitions and Notation

Let X = (Xi,...,X,) be a random vector in R” with full
dimensional support. We say that the distribution of X is

o logaritmically concave, if X has density of the form e~"(*)

with h: R" — (—o0, 00| convex;
e isotropic, if EX; = 0 and EX;X; = d; ;.

For x € R" we put
1/2
o x| = Il = (L 12)

1/r
o IIxll, = (Zpalxil”) ) 1< r < 00, [Ix]lee = maxi|x;

@ P;x - canonical projection of x onto {y € R": supp(y) C I},
0#£1c{1,...,n}.



Order Statistics

For an n—dimensional random vector X by X > XJ > ... > X

we denote the nonincreasing rearrangement of | Xi|,...,|Xy|
(in particular Xj = max{|Xi|,...,|Xa|} and
Xy =min{|Xy|,...,|Xs|}). Random variables X, 1 < k < n, are

called order statistics of X.
Problem Find upper bound for P(X} > t).

If coordinates of X; are independent symmetric exponential r.v.
with variance 1 then Med(X}) ~ log(en/k) for k < n/2.



We have for isotropic logconcave vectors X,

PG>0 =P( J {IXl>t..0%]>1)

i <...<ik

< Y > P(m X, > t,...,mXi > t)

I'1<..A<I'k 771::|:1 ..... T]k::tl

< > > P(\}E(Wlxﬁ + o X)) > t\/;)

i< <ig m==1,...m==%1
n\ 1
< <k>2 exp ( - Et\/;)

Therefore

P(X; >t) < exp(— %t\/;) for t > Cﬂlog (e—:)



Exponential concentration

Random vector X in R" satisfies exponential concentration
inequality with a constant « if

P(X € A+ atBj) >1—exp(—t) if P(X€ A)>=andt>0.

N =

Conjecture (Kannan-Lovasz-Simonovits)

Isotropic log-concave vectors satisfy exponential concentration with
universal «

Known to hold for unconditional permutationally invariant
isotropic log-concave vectors (Klartag'11+).

The best known bound for general case is a < n°/12

(Guedon-Milman'10+).



Order statistics under exponential concentration

Proposition
If X is isotropic n-dimensional and satisfies exponential
concentration inequality with a constant o > 1 then

P(X; > t) <exp ( - %\/Et) for t > 8alog (%)

Sketch of the proof. The set
n. ;. en k
A= {x e R™: #{/. |xi| > 4alog (?)} < 5}
has measure p at least 1/2. If z=x+y € A+ \/EsBé7 then less

than k/2 of |x;|'s are bigger than 4alog(en/k) and less than k/2
of |y;|'s are bigger than /2s, so

1
P(X: > 4alog <eT(n> +\/§S) < 1—pu(A+VksB) < eXp(—a\/Es).



Order Statistics for isotropic log-concave vectors

Kannan-Lovasz-Simonovits Conjecture is open, nevertheless one
may show the estimate for order statistics.

Let X be n-dimensional log-concave isotropic vector. Then

P(X; > t) <exp ( — %\/;t) for t > Clog (e—kn)

Our approach is based on the suitable estimate of moments of the
process Nx(t), where

Nx(t) = Z ]l{XiZt} t>0.
i=1



Estimate for Ny

For any isotropic log-concave vector X and p > 1 we have

5 p 2p nt?
E(t2Nx(t))P < (Cp)2P  fort > Clog (?).

To get estimate for order statistics we observe that X/ > t implies
that Nx(t) > k/2 or N_x(t) > k/2 and vector —X is also
isotropic and log-concave. Estimates for Nx and Chebyshev's
inequality gives

2 Cp

p 2p
P(X; > t) < <E> (ENx(t)P +EN_x(t)P) < z(t—ﬂ)

provided that t > Clog(nt?/p?). We take p = %t k and notice
that the restriction on t follows by the assumption that
t > Clog(en/k).



Paouris Theorem

Proof of estimate for Nx(t) is based on two ideas. First is that the
restriction of a log-concave vector X to a convex set is
log-concave. Second is Paouris’ concentration of mass result.

Theorem (Paouris)

For any isotropic log-concave vector X in R”,
1
P(\X|2t)§exp<—ft) for t > C+/n,

equivalently

(BIX|P)P < C(va+p) forp>2.




Estimate for Nx implies Paouris concentration

Suppose that X is a random vector in R" such that

E(2Nyx(t))' < (AN fort > Ay, 1> /n, U e O(n),

where A1, A are finite constants. Then

1
P(|X] > tv/n) < exp ( — C—Altﬁ) for t > max{CA1, Ay }.

Idea of the proof. For any Uy, ..., U, € O(n),

E |/| N III EN ! ! 71/ Z for / n

x(t) < ( x(t ) < < ) Z ’
13 U,X( )_ 14 U,X( ) = t ri=z \/>
If Ul, ey U/ are random rotations then one may show that

!
ExEy [ [ Nux(t) = Ex(Eu, Nu,x(t))' > n'CT'P(1X| > 2t\/n)

i=1

and we take | = [/nt/(v/eC A)].



Concentration of /, norms, 1 < r < 2

Problem. What is the concentration for /, norms of X7

Case 1 < r < 2 reduces to the Paouris result for r = 2, since by
the Holder's inequality || X||, < n*/"~1/2|X|. Thus

(BX[2)/P < C(n/" 4 n/=12p)
and
L 1o-1yr 1/r
IP’(||XH,2t)§exp(—Etn ) for t > Cn*/".

These bounds are optimal.



Concentration of /, norms, r > 2

Example It is not hard to see that if Xi,..., X, are independent
symmetric exponential r.v.'s with variance one then

1

(EIX2)Y? = =(rm¥/" +p) for p=2,r>2.n> C".

ol

Theorem

For any & > 0 there exist constants Cy(0), Co(6) < C6~/2 such
that for any isotropic logconcave vector X and r > 2 + 0,

P\1/p 1/r
S G > 2.
(EIX[2)P < Go(6) (™" + p)  forp>2

Equivalently

P(|X]l > t) < exp (- t) fort> G(8)rm/",

C1(9)




Concentration of /, norms, r > 2 - idea of the proof

We have
n 1/r n 1/r s—1 1/r
IXIe= (X)) = (2 x1r) " < (22 a)
i=1 i=1 k=0
where s = [log, n]. It is easy to check that

S oo
Z 2K log"(en27k) < Cn Zj’2*j <(Cr)'n
k=0 j=1

Thus for t1, ..., tx > 0 we get

Pl = (4 (3 6)"))

S

S
<B(L 20" - Glog'(en2 ™) 2 3 1)
k=0
<Zexp( 1 % éti/r),



Uniform Paouris-type estimate

Theorem

For any m < n and any isotropic log-concave vector X in R" we
have for t > 1,

IP’( sup |P;X| > Ctv/mlog (ﬂ)) < exp(— _ G0 log (ﬂ))

\l|=m m log(em)

Idea of the proof. We have

IC{1,...,N
[l|=m

m s—1
sup } ’P/X‘ _ (kgl ’XE’2)1/2 < 2(;2I‘X;’|2)1/27

where s = [log, m].



Weak parameter

For a vector X in R"” we define

ox(p) = sup (EI{t,X)[")/P p>2.
tesn—1
Examples
e For isotropic log-concave vectors X, ox(p) < p/V/2.
e For subgaussian vectors X, ox(p) < C/p.

@ We say that an isotropic vector X is 1, if ox(p) < Cp*/®
(uniform distributions on suitable normalized B balls are v,
with @ = min(r, 2))



Paouris theorem with weak parameter

Theorem (Paoouris)

For any log-concave random vector X,

(BIX|P)/? < C((BIX])Y2 + ox(p)) forp>2,

P(X| > t) <exp (—ox'(&)) fort > C(EIX]2)2

Corollary

|m

For any log-concave vector X in R", any Euclidean norm || || on R"
and p > 1 we have

(EIXIIP)P < C(EIXIZ)M2+ sup (El(t, X)[P)?), (1)

<1

where (R", || - ||+) is a dual space to (R, || - ||).

It is an open problem whether (1) holds for arbitrary norms



Bounds with use of weak parameter

For any n-dimensional log-concave isotropic vector X,

P(X > t) <exp ( — a;(l (%t\ﬁ)) for t > Clog (eTn>

As before the proof is based on a suitable estimate of Nx:

Let X be an isotropic log-concave vector in R". Then

nt?
E(t2Nx(t))P < (Cox(p))®® forp>2,t> Clog <02 (p)>
X




Uniform bound for projections with weak parameter

Theorem

Let X be an isotropic log-concave vector in R". Then for any
t>1,

ty/mlog (£
(w2 on o )

where

mg = mo(X, t)—sup{k<m klog(k) <oy (tﬁlog(%))}.




Weak parameter for convolution of log-concave measures

Proposition

Let X, ... X9 pe independent isotropic log-concave vectors
and Y =9 x;XU). Then

ov(p) < C(VBIx| + plixllec).  forp = 2.

Sketch of the proof. Fix t € S"L. Let E; be independent
symmetric exponential random variables with variance 1. The
result of Borell gives E|(t, X(0)|P < CPE|E;|P for p > 1. Hence

p) 1/p

d N 1P\ 1/P d
(El(t, Y)[P)P = (E \Zx,-<t,x(')>\ ) < (B[ xE
=1 i=1
< C(vplx| + plixll);

where the last inequality follows by the Gluskin and Kwapien
bound. O



Order statistics of convolutions

Corollary

Let X1 ... X(m) pe independent isotropic log-concave vectors
and Y =1, x;X(). Then

P(Y;" > t) <exp ( - % min {|lj|lz, ”i\ﬁo }) for t > |x|log <e7n>

V.




Uniform bound for projections of convolutions

Theorem

Let Y =39 XD, where X, ... X(@) are independent
isotropic n-dimensional log-concave vectors. Assume that |x| <1
and ||x||eo g b<1.

i)Ifb> \F then for any t > 1,

IP’( sup |P/Y|>Ctﬁlog<:>><exp<—wg(fﬁ)).

IS by /log(e?b2m)

i) If b < \F then for any t > 1,
IP’( sup |PY|> Cty/mlog (en)>
m

IC{1,...,n}
[l|=m

< exp ( — min {thIog2 (%), é\/ﬁlog (e—n’:) })
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