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Projection body

V' real vector space of dimension n.
KC(V): space of compact convex bodies in V.

Definition
Let T1: IC(V) — K(V) be the operator defined from

h(NK, u) = vol,_1(K|ut), we St

- gV(K,...,K, [—u, u]),

:/ h([—u,u],v)dS(K,v):/ [, VIdS(K, v).
Snfl

Sn—1

where h(L,-) : S"~! — R, L € K(V) is the support function of L.

MK is the projection body of K € K(V).
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Properties of the projection body

a) Invariant under translations, i.e.
MNK+x)=M(K), xeV,KeK(V).
b) GL(V,R)-contravariant, i.e.
MN(¢K) = |detg|p " (NK), ¢ € GL(V,R),K € K(V).
c) It is a continuous Minkowski valuation, i.e.
MN(KUL)+N(KNL) = N(K)+N(L), K,L e K(V),KUL € K(V),

where + denotes de Minkowski sum on V.
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Characterization of the projection body (Ludwig)

V' real vector space of dimension n.

If the operator Z : IC(V) — K(V) is
@ translation invariant,
e SL(V,R)-contravariant,
@ continuous Minkowski valuation,
then Z = cl, c € RT.

The converse also holds.
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Complex projection bodies (A.-Bernig)

W': complex vector space of complex dimension m, m > 3.

If the operator Z : IC(W) — K(W) is
@ translation invariant,
e SL(W,C)-contravariant,
@ continuous Minkowski valuation,

then Z =M¢ where C C C is a convex body and
h(McK,u) = V(K,...,K,Cu), ueS§>™1
Cu={cu:ceCcC}

The converse also holds for every C € K(C).
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Complex projection bodies (A.-Bernig)

For m = 2,
Z: K(W)— K(W)

given by
h(ZK. u) = p(det(K, u))

with g a continuous, translation invariant, monotone valuation of
degree 1 and

det(K, u) = {det(k,u) : ke K} CC

satisfies all the required properties.

Judit Abardia Projection bodies in complex vector spaces



Idea of the proof

<) Direct from the properties of mixed volumes and the support

function.

=)

i) McMullen decomposition.

)
ii) Z cannot be of degree k, k # 2m — 1.
)

i) If the degree of Z is 2m — 1, then Z = Tl¢:
e McMullen description of real-valued valuations of degree n — 1.
e The involved function is a function of one complex variable.
o It is also subbadditive. Thus, the support function of a convex

body in C.
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|dea of the proof: i)

McMullen decomposition (1977): Let Val be the space of
real-valued, translation invariant, continuous valuations on V and
Val, C Val the subspace of valuations of degree k. Then,

Val = @ Valy.
k=0,...,n

In our case:

2m
h(ZK’ ) = Z fk(K’ ‘)7
k=0

with fx(K,-) 1-homogeneous and subadditive for ko, ki, the
minimal and maximal indices with f; # 0.
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|dea of the proof: ii)

k = 0: the Euler characteristic is the only 0-degree valuation.
k = 2m: the volume is the only 2m-degree valuation.
1 <k < 2m — 1: define

Z(K) —/ / 01 Z(q2K)dqudgn
stJst
and use the Klain's injectivity theorem.

Injectivity theorem (Klain 2000): Let p € Vali(V) even and
E C V a k-dimensional subspace. Then, there exists a function
Kl, : Gri(V) — R which uniquely determines j and

u(K) = K1, (E) vol(K), K € K(E).
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|dea of the proof: iii)

k=2m-1:
Theorem (McMullen 1980): If 1 € Val,_1(V), there exists a
continuous, 1-homogeneous function f : V* — R with

W(K) = /S F(v)dS(K,v) = V(K,..., K, f).

Moreover, f is unique up to a linear function.
In our case:
h(ZK,u) = V(K,...,K, f,).

Using the SL(W, C)-contravariance, we get f, = f o h*, for all
h € SL(W,C) with h(u) = u.

Moreover, f,(£1 + &) = fu(&1) if (§2,u) = 0.
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|dea of the proof: iii)

Thus, 7,(¢) = G((&,u)) = G((&, u) + (€, Ju)) with G : C - R

continuous, 1-homogenous function.

Using that h(ZK, u) is a support function and the Minkowski's
existence theorem, we get that G is a convex function.
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Classical Brunn-Minkowski inequalities

Let K,Le K(V) and 0 < XA < 1. Then,

o vol((1 — MK 4+ AL)Y" > (1 — X)vol(K)Y/" + Avol(L)/",
with equality for A € (0,1) iff K and L lie in parallel
hyperplanes or are homothetics.

° V‘/I(K+ L)l/(n—i) > VVI,(K)I/(n—i) + M/;(L)l/(n_i),
with equality iff K and L are homothetics.

o V((K+L)[n—i],C)Y=) >

V(K[n—i],C)Y (=1 4+ v(L[n — i],C)/ (=),
where C = (K1, ..., Kj).
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Brunn-Minkowski inequality for ¢

Let K, L € K(W) with non-empty interior. Then
VO|(nc(K—|—L))1/2m(2m_1) > VO|(|_|CK)1/2m(2m_1)—|—VO|(nCL)1/2m(2m_1)7

with equality iff K and L are homothetic.
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Symmetry property

Let K :=(Ki,...,Kom-1),L:= (L1,..., Lam—1) € K(W)?*™! and
C C K(C). Then,

V(NcK, L) = V(ML K),

with h(McK, u) = V(K1,. .., Kom—-1, Cu), u € S2™ 1.
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