Projection bodies in complex vector spaces

Judit Abardia

(joint with A. Bernig)

Goethe-Universität Frankfurt

Projection body

V: real vector space of dimension n.

 $\mathcal{K}(V)$: space of compact convex bodies in V.

Definition

Let $\Pi:\mathcal{K}(V) \to \mathcal{K}(V)$ be the operator defined from

$$\begin{split} h(\Pi K, u) &= \mathsf{vol}_{n-1}(K|u^{\perp}), \quad u \in S^{n-1} \\ &= \frac{n}{2}V(K, \dots, K, [-u, u]), \\ &= \int_{S^{n-1}} h([-u, u], v) dS(K, v) = \int_{S^{n-1}} |\langle u, v \rangle| dS(K, v). \end{split}$$

where $h(L, \cdot): S^{n-1} \to \mathbb{R}$, $L \in \mathcal{K}(V)$ is the support function of L.

 ΠK is the projection body of $K \in \mathcal{K}(V)$.

Properties of the projection body

a) Invariant under translations, i.e.

$$\Pi(K + x) = \Pi(K), \quad x \in V, K \in \mathcal{K}(V).$$

b) $GL(V, \mathbb{R})$ -contravariant, i.e.

$$\Pi(\phi K) = |\det \phi|\phi^{-t}(\Pi K), \quad \phi \in GL(V, \mathbb{R}), K \in \mathcal{K}(V).$$

c) It is a continuous Minkowski valuation, i.e.

$$\Pi(K \cup L) + \Pi(K \cap L) = \Pi(K) + \Pi(L), \ K, L \in \mathcal{K}(V), K \cup L \in \mathcal{K}(V),$$

where + denotes de Minkowski sum on V.

Characterization of the projection body (Ludwig)

V: real vector space of dimension n.

If the operator $Z:\mathcal{K}(V) o \mathcal{K}(V)$ is

- translation invariant,
- $SL(V, \mathbb{R})$ -contravariant,
- continuous Minkowski valuation,

then
$$Z = c\Pi$$
, $c \in \mathbb{R}^+$.

The converse also holds.

Complex projection bodies (A.-Bernig)

W: complex vector space of complex dimension m, $m \ge 3$.

If the operator $Z:\mathcal{K}(W) o\mathcal{K}(W)$ is

- translation invariant,
- $SL(W, \mathbb{C})$ -contravariant,
- continuous Minkowski valuation,

then $Z = \Pi_C$ where $C \subset \mathbb{C}$ is a convex body and

$$h(\Pi_C K, u) = V(K, \dots, K, Cu), \quad u \in S^{2m-1},$$

$$Cu = \{cu : c \in C \subset \mathbb{C}\}.$$

The converse also holds for every $C \in \mathcal{K}(\mathbb{C})$.

Complex projection bodies (A.-Bernig)

For m=2,

$$Z:\mathcal{K}(W)\to\mathcal{K}(W)$$

given by

$$h(ZK, u) = \mu(\det(K, u))$$

with $\boldsymbol{\mu}$ a continuous, translation invariant, monotone valuation of degree 1 and

$$\det(K, u) = \{\det(k, u) : k \in K\} \subset \mathbb{C}$$

satisfies all the required properties.

Idea of the proof

(=) Direct from the properties of mixed volumes and the support function.

 \Rightarrow)

- i) McMullen decomposition.
- ii) Z cannot be of degree k, $k \neq 2m-1$.
- iii) If the degree of Z is 2m-1, then $Z=\Pi_C$:
 - McMullen description of real-valued valuations of degree n-1.
 - The involved function is a function of one complex variable.
 - \bullet It is also subbadditive. Thus, the support function of a convex body in $\mathbb{C}.$

Idea of the proof: i)

McMullen decomposition (1977): Let Val be the space of real-valued, translation invariant, continuous valuations on V and $Val_k \subset Val$ the subspace of valuations of degree k. Then,

$$Val = \bigoplus_{k=0,\dots,n} Val_k.$$

In our case:

$$h(ZK,\cdot)=\sum_{k=0}^{2m}f_k(K,\cdot),$$

with $f_k(K, \cdot)$ 1-homogeneous and subadditive for k_0 , k_1 , the minimal and maximal indices with $f_k \neq 0$.

Idea of the proof: ii)

 $\mathbf{k} = \mathbf{0}$: the Euler characteristic is the only 0-degree valuation.

 $\mathbf{k} = 2\mathbf{m}$: the volume is the only 2m-degree valuation.

 $1 \le k < 2m - 1$: define

$$\tilde{Z}(K) = \int_{S^1} \int_{S^1} q_1 Z(q_2 K) dq_1 dq_2$$

and use the Klain's injectivity theorem.

Injectivity theorem (Klain 2000): Let $\mu \in \operatorname{Val}_k(V)$ even and $E \subset V$ a k-dimensional subspace. Then, there exists a function $Kl_{\mu} : \operatorname{Gr}_k(V) \to \mathbb{R}$ which uniquely determines μ and

$$\mu(K) = \mathrm{Kl}_{\mu}(E) \operatorname{vol}(K), K \in \mathcal{K}(E).$$

Idea of the proof: iii)

k = 2m - 1:

Theorem (McMullen 1980): If $\mu \in \operatorname{Val}_{n-1}(V)$, there exists a continuous, 1-homogeneous function $f: V^* \to \mathbb{R}$ with

$$\mu(K) = \int_{S^{n-1}} f(v) dS(K, v) = V(K, \dots, K, f).$$

Moreover, f is unique up to a linear function.

In our case:

$$h(ZK, u) = V(K, \ldots, K, f_u).$$

Using the $SL(W,\mathbb{C})$ -contravariance, we get $f_u \equiv f \circ h^*$, for all $h \in SL(W,\mathbb{C})$ with h(u) = u.

Moreover, $f_u(\xi_1 + \xi_2) = f_u(\xi_1)$ if $(\xi_2, u) = 0$.

Idea of the proof: iii)

Thus, $f_u(\xi) = G((\xi, u)) = G(\langle \xi, u \rangle + i \langle \xi, Ju \rangle)$ with $G : \mathbb{C} \to \mathbb{R}$ continuous, 1-homogenous function.

Using that h(ZK, u) is a support function and the Minkowski's existence theorem, we get that G is a convex function.

Classical Brunn-Minkowski inequalities

Let $K, L \in \mathcal{K}(V)$ and $0 \le \lambda \le 1$. Then,

- $\operatorname{vol}((1-\lambda)K + \lambda L)^{1/n} \ge (1-\lambda)\operatorname{vol}(K)^{1/n} + \lambda\operatorname{vol}(L)^{1/n}$, with equality for $\lambda \in (0,1)$ iff K and L lie in parallel hyperplanes or are homothetics.
- $W_i(K+L)^{1/(n-i)} \ge W_i(K)^{1/(n-i)} + W_i(L)^{1/(n-i)}$, with equality iff K and L are homothetics.
- $V((K + L)[n i], \mathbf{C})^{1/(n-i)} \ge V(K[n i], \mathbf{C})^{1/(n-i)} + V(L[n i], \mathbf{C})^{1/(n-i)}$, where $\mathbf{C} = (K_1, \dots, K_i)$.

Brunn-Minkowski inequality for Π_C

with equality iff K and L are homothetic.

Let $K, L \in \mathcal{K}(W)$ with non-empty interior. Then $\operatorname{vol}(\Pi_{\mathcal{C}}(K+L))^{1/2m(2m-1)} \geq \operatorname{vol}(\Pi_{\mathcal{C}}K)^{1/2m(2m-1)} + \operatorname{vol}(\Pi_{\mathcal{C}}L)^{1/2m(2m-1)},$

Symmetry property

Let
$$\mathbf{K}:=(K_1,\ldots,K_{2m-1}),\mathbf{L}:=(L_1,\ldots,L_{2m-1})\in\mathcal{K}(W)^{2m-1}$$
 and $C\subset\mathcal{K}(\mathbb{C})$. Then,

$$V(\Pi_C \mathbf{K}, \mathbf{L}) = V(\Pi_{\overline{C}} \mathbf{L}, \mathbf{K}),$$

with
$$h(\Pi_C \mathbf{K}, u) = V(K_1, \dots, K_{2m-1}, Cu), u \in S^{2m-1}$$
.