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Motivation

Control problems for PDE are interesting for at least two reasons:

They emerge in most real applications. PDE as the models of
Continuum and Quantum Mechanics. Furthermore, in real
world, there is always something to be optimized, controlled,
optimally shaped, etc.

Answering to these control problems often requires a deep
understanding of the underlying dynamics and a better master
of the standard PDE models.

Surprisingly enough, this has led to an important ensemble of new
tools and results and some fascinating problems are still widely
open.
Furthermore, these kind of techniques are of application in some
other fields, such as inverse problems theory, optimal shape design
and parameter identification issues.
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These problems are also challenging and important from the
viewpoint of numerical analysis and

Often, classical intuition based on finite-dimensionality and
smoothness fails...
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Warning!

Warning:
Probably, this lecture will be only of interest for you if:

You have a model for your problem.

This model is a PDE (or closely related).

It is preferably of conservative nature. Highly dissipative
dynamics may lead to other phenomena.

There is a control you want to compute numerically...
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Continuous versus discrete

Two approaches:

Continuous: PDE first + Control → implement the resulting
algorithm numerically.

Discrete: Replace the PDE and the control problem by a
discrete version → Apply discrete control tools

Do these processes lead to the same result?

CONTROL + NUMERICS
=

NUMERICS + CONTROL?
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NO!!!!!!

E. Z., SIAM Review, 47 (2) (2005), 197-243.
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Important progresses has been done in recent years by many
authors.

In this lecture I report mainly on the joint developed in
collaboration with Sylvain Ervedoza, Sorin Micu, Liviu Ignat,
Aurora Marica, Martin Gugat, ... among others concerning
the wave equation, as a prototype of infinite dimensional
purely conservative dynamical system.

But the list of contributors to the field is much longer: R.
Glowinski, J. L. Lions, M. Asch, G. Lebeau, G. Leugering, J.
M. Coron, O. Glass, M. Tucsnak, M. Negreanu, C. Castro,
Ch. Schwab, N. Cindea, J.A. Infante, F. Macià,....
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The instabilities above are due to high frequency numerical
spurious solutions.

Numerical analysis ensures that all solutions of the PDE can be
approximated by the numerical ones but it does not guarantee that
other virtual numerical realities emerge.

And in fact they often do and can produce damage.
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These issues are also very relevant and have been investigated
systematically in the context of aeronautics optimal shape design.
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The two approaches

Discrete: Discretization + Control

Advantages: Discrete clouds of values. No fine regularity
issues. Automatic differentiation. Black box optimization,...

Drawbacks:
”Invisible” geometrical aspects.
Scheme dependent.

Continuous: Continuous control theory + discretization.

Advantages: “Simpler” formal computations. Solver
independent. Sensitive to fine regularity issues.

Drawbacks:
Needs a significant amount of PDE and Functional Analysis
theory.
Subtle for complex problems.
More sophisticated algorithms
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In the end, in a way or another, a discrete optimization problem
needs to be solved.

Steepest descent:

uk+1 = uk − ρ∇J(uk).

Discrete version of continuous gradient systems

u′(τ) = −∇J(u(τ)).
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Wave control

Most of this talk will be devoted to discuss recent development on
the control of wave-like equations. But most of the results
presented here can be applied for the Schrödinger equation that, to
a large extent, can be thought as being a wave model with infinite
velocity of propagation.
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THE 1-D CONTROL PROBLEM

The 1-d wave equation, with Dirichlet boundary conditions,
describing the vibrations of a flexible string, with control on one
end:






ytt − yxx = 0, 0 < x < 1, 0 < t < T
y(0, t) = 0; y(1, t) =v(t), 0 < t < T
y(x , 0) = y0(x), yt(x , 0) = y1(x), 0 < x < 1

y = y(x , t) is the state and v = v(t) is the control.
The goal is to stop the vibrations, i.e. to drive the solution to
equilibrium in a given time T : Given initial data {y0(x), y1(x)} to
find a control v = v(t) such that

y(x ,T ) = yt(x ,T ) = 0, 0 < x < 1.
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THE 1-D OBSERVATION PROBLEM
The control problem above is equivalent to the following one, on
the adjoint wave equation:






ϕtt − ϕxx = 0, 0 < x < 1, 0 < t < T
ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T
ϕ(x , 0) = ϕ0(x), ϕt(x , 0) = ϕ1(x), 0 < x < 1.

The energy of solutions is conserved in time, i.e.

E (t) =
1

2

∫ 1

0

[
|ϕx(x , t)|2 + |ϕt(x , t)|2

]
dx = E (0), ∀0 ≤ t ≤ T .

The question is then reduced to analyze whether the folllowing
inequality is true. This is the so called observability inequality:

E (0) ≤ C (T )

∫ T

0
|ϕx(1, t)|2 dt.

The answer to this question is easy to gues: The observability
inequality holds if and only if T ≥ 2.
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Wave localized at t = 0 near the extreme x = 1 that propagates
with velocity one to the left, bounces on the boundary point x = 0
and reaches the point of observation x = 1 in a time of the order
of 2.
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This observability inequality is easy to prove by several means.

• Use D’Alambert’s formula

ϕ = f (x + t) + g(x − t)

indicating that information propagates along rays with
velocity one, and bounces on the boundary points.

• Use the Fourier representation of solutions in which it is
clearly seen that solutions are periodic with time-period 2.

• Multipliers: Multiply the equation by xϕx , ϕt and ϕ and
integrate by parts....
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CONSTRUCTION OF THE CONTROL:
Once the observability inequality is known the control is easy to
characterize. Following J.L. Lions’ HUM (Hilbert Uniqueness
Method), the control is

v(t) = ϕx(1, t),

where u is the solution of the adjoint system corresponding to
initial data (ϕ0, ϕ1) ∈ H1

0 (0, 1)× L2(0, 1) minimizing the functional

J(ϕ0, ϕ1) =
1

2

∫ T

0
|ϕx(1, t)|2dt+

∫ 1

0
y0ϕ1dx− < y1, ϕ0 >H−1×H1

0
,

in the space H1
0 (0, 1)× L2(0, 1).

Note that J is convex. The continuity of J in H1
0 (0, 1)× L2(0, 1) is

guaranteed by the fact that ϕx(1, t) ∈ L2(0,T ) (hidden regularity).
Moreover,

COERCIVITY OF J = OBSERVABILITY INEQUALITY.
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CONCLUSION

The 1-d wave equation is controllable from one end, in time 2,
twice the length of the interval.

Similar results are true in several space dimensions. The
region in which the observation/control applies needs to be
large enough to capture all rays of Geometric Optics.
According to the terminology coined in the paper by Bardos -
Lebeau - Rauch, this is the so-called Geometric Control
Condition (GCC).

When the GCC is not satisfied one may control projections of
solutions into eigenfunctions clusters with a cost that
increases exponentially as the frequency function increases.
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Tools to prove observability inequalities

Explicit D’Alembert’s formula:

ϕ(x , t) = f (x + t) + g(x − t);

Fourier series:

Ingham’s Theorem. (1936) Let {µk}k∈Z be a sequence of
real numbers such that

µk+1 − µk ≥ γ > 0, ∀k ∈ Z.

Then, for any T > 2π/γ there exists C (T , γ) > 0 such that

1

C (T , γ)

∑

k∈Z

| ak |2≤
∫ T

0

∣∣∣∣∣
∑

k∈Z

ake iµk t

∣∣∣∣∣

2

dt ≤ C (T , γ)
∑

k∈Z

| ak |2

for all sequences of complex numbers {ak} ∈ &2
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Sidewise energy propagation:

[ϕtt − ϕxx = 0] ≡ [ϕxx − ϕtt = 0.]
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Pointwise controllers and observers

Take x0 ∈ (0, 1). How much energy we can recover from
measurements done on x0?

ϕ(x0, t) =
∑

k∈Z

ake ikπtsin(kπx0).

Furthermore, if T > 2,
∫ T

0

∣∣∣
∑

ake ikπtsin(kπx0)
∣∣∣
2
dt ∼

∑
sin2(kπx0)|ak |2.

Obviously, two cases:

When x0 is irrational: sin2(kπx0) += 0 for all k and the
quantity under consideration is a norm, i.e. it provides
information on all the Fourier components of the solutions.
The case: x0 ∈ Q, some of the weights sin2(kπx0) vanish an
the quadratic term is not a norm.

But, even if, sin2(kπx0) += 0 for all k, the norm under
consideration is not the L2-one we expect!!!!
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Can we explain this in terms of rays, and the propagation of waves
(and antiwaves)?

If x0 is rational we can build a finite number of rays and anti-rays
that always intersect in x0 for the time interval (0, 2) of periodicity
of solutions.
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The case x0 irrational.

Can we expect that
∣∣∣ sin(kπx0)

∣∣∣ ≥ α > 0, ∀k?

This is impossible!!!!
Indeed, this would mean that

∣∣∣kπx0 −mπ| ≥ β

for all k,m ∈ Z. And this is obviously false.
For suitable irrational numbers x0 we can get

∣∣∣kπx0 −mπ| ≥ β/k.

And this is the best we can get.
In this case we get an observation inequality but with a loss of one
derivative.
For some other irrational numbers (Liouville ones, for instance) the
degeneracy may be arbitrary fast.
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Conclusion

Making measurements in the interior of the domain is a much less
robust process than doing it on the boundary (actually, one
boundary measurement=two measurements in the interior since
the boundary condition adds one).
In some cases we fail to capture all the Fourier components and,
even if we are able to do it, this does not happen in the energy
space, but there is a loss of at least one derivative.

Ex0 ≤ C

∫ T

0
|ϕ(x0, t)|2dt.

Similar phenomena occur for lumped control problems, an in
the control of the linearized bilinear control system for the
Scrödinger equation with laser beams.
This shows that the rigorous analysis of these problems at the PDE
level can be subtle.
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The continuous approach: Gradient algorithms

The control was characterized as being the minimizer over
H1

0 (0, 1)× L2(0, 1) of

J(ϕ0, ϕ1) =
1

2

∫ T

0
|ϕx(1, t)|2dt+

∫ 1

0
y0ϕ1dx− < y1, ϕ0 >H−1×H1

0
.

We produce an algorithm in which:

We replace J by some numerical approximation Jh with an
order hθ.
We apply a gradient iteration algorithm to Jh.

The following holds

Theorem

(S. Ervedoza & E. Z., 2011)
In K ∼ C | log(h)| iterations, the controls vK

h obtained after
applying K iterations of the gradient algorithm to Jh fulfill:

||v − vK
h || ≤ C | log(h)|max(θ,1)hθ.
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This continuous approach is easy to be implemented.

Note however that it does not yield any result on the control
of the approximated finite-dimensional dynamics but only the
convergence towards the continuous control.

Similar results have been proved by S. Micu, M. Tucsnak and
N. Cindea in the context of D. Russell’s iteration for
computing controls out of feedback stabilization results. Our
result shows that it is a fact that systematically can be proved
once the functional setting for the control and the numerical
approximation is clear enough.
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The continuous approach: Exact penalization

It is also natural analyze the issue of controllability from the point
of view of optimal control. In some sense, the exact control
property has to be a limit of some optimal control problem when
the penalty parameter is large enough....

Theorem

(M. Gugat & E. Z., 2011)
There exists a constant γ (that can be computed explicitly out of
the observability constant) such that when minimizing

1

2
||v ||2L2(0,T ) + γ||(y(T ), yt(T ))||L2(0,1)×H−1(0,1)

over the class of solutions of





ytt − yxx = 0, 0 < x < 1, 0 < t < T
y(0, t) = 0; y(1, t) =v(t), 0 < t < T
y(x , 0) = y0(x), yt(x , 0) = y1(x), 0 < x < 1

it satisfies the exact control requirement:

y(T ) ≡ yt(T ) ≡ 0.
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The discrete approach: Numerical phantoms

FROM FINITE TO INFINITE DIMENSIONS IN PURELY
CONSERVATIVE SYSTEMS.....
Set h = 1/(N + 1) > 0 and consider the mesh

x0 = 0 < x1 < ... < xj = jh < xN = 1− h < xN+1 = 1,

which divides [0, 1] into N + 1 subintervals
Ij = [xj , xj+1], j = 0, ...,N.
Finite difference semi-discrete approximation of the wave equation:






u′′j −
1
h2 [uj+1 + uj−1 − 2uj ] = 0, 0 < t < T , j = 1, . . . ,N

uj(t) = 0, j = 0, N + 1, 0 < t < T
uj(0) = u0

j , u′j(0) = u1
j , j = 1, . . . ,N.

Enrique Zuazua Control and Numerics: Continuous versus discrete approaches



Motivation Continuous versus discrete Wave control The continuous approach: Gradient algorithms The continuous approach: Exact penalization The discrete approach: Numerical phantoms The discrete approach: Filtering Further results.

The energy of the semi-discrete system (obviuosly a discrete
version of the continuous one)

Eh(t) =
h

2

N∑

j=0

[
| u′j |2 +

∣∣∣∣
uj+1 − uj

h

∣∣∣∣
2
]

.

It is constant in time.
Is the following observability inequality true?

Eh(0) ≤ Ch(T )

∫ T

0

∣∣∣∣
uN(t)

h

∣∣∣∣
2

dt

(
−uN(t)

h
=

uN+1 − uN(t)

h
∼ ux(1, t).

)

YES! It is true for all h > 0 and for all time T .
BUT, FOR ALL T > 0 (!!!!!)

Ch(T )→∞, h → 0.
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CONCLUSION

The classical convergence (consistency+stability) does not
guarantee continuous dependence for the observation problem with
respect to the discretization parameter.
WHY?
Convergent numerical schemes do reproduce all continuous waves
but, when doing that, they create a lot of spurious (non-realistic,
purely numerical) high frequency solutions. This spurious solutions
distroy the observation properties and are an obstacle for the
controls to converge as the mesh-size gets finer and finer.

Enrique Zuazua Control and Numerics: Continuous versus discrete approaches



Motivation Continuous versus discrete Wave control The continuous approach: Gradient algorithms The continuous approach: Exact penalization The discrete approach: Numerical phantoms The discrete approach: Filtering Further results.

SPECTRAL ANALYSIS

Eigenvalue problem

− 1
h2 [wj+1 + wj−1 − 2wj ] = λwj , j = 1, . . . ,N

w0 = wN+1 = 0.

The eigenvalues 0 < λ1(h) < λ2(h) < · · · < λN(h) are

λh
k =

4

h2
sin2

(
kπh

2

)

and the eigenvectors

wh
k = (wk,1, . . . ,wk,N)T : wk,j = sin(kπjh), k, j = 1, . . . ,N.

It follows that
λh

k → λk = k2π2, as h → 0

and the eigenvectors coincide with those of the wave equation.

Enrique Zuazua Control and Numerics: Continuous versus discrete approaches



Motivation Continuous versus discrete Wave control The continuous approach: Gradient algorithms The continuous approach: Exact penalization The discrete approach: Numerical phantoms The discrete approach: Filtering Further results.

Then, the solutions of the semi-discrete system may be written in
Fourier series as follows:

*u =
N∑

k=1



ak cos

(√
λh

kt

)
+

bk√
λh

k

sin

(√
λh

kt

)

 *wh
k .

Compare with the Fourier representation of solutions of the
continuous wave equation:

u =
∞∑

k=1

(
ak cos(kπt) +

bk

kπ
sin(kπt)

)
sin(kπx)

The only relevant difference is that the time-frequencies do not
quite coincide, but they converge as h → 0.
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DISPERSION DIAGRAM: LACK OF GAP.

Graph of the square roots of the eigenvalues both in the
continuous and in the discrete case. The gap is clearly independent
of k in the continuous case while it is of the order of h for large k
in the discrete one.
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SPURIOUS NUMERICAL SOLUTION

*u = exp
(
i
√

λN(h) t
)

*wN − exp
(
i
√

λN−1(h) t
)

*wN−1.

Spurious semi-discrete wave combining the last two
eigenfrequencies with very little gap:

√
λN(h)−

√
λN−1(h) ∼ h.

h = 1/61, (N = 60), 0 ≤ t ≤ 120. The solution exhibits a
time-periodicity property with period τ of the order of τ ∼ 50
which contradicts the time-periodicity of period 2 of the wave
equation. High frequency wave packets travel at a group velocity
∼ h.
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GAP
=

GROUP VELOCITY
=

VELOCITY OF PROPAGATION OF HIGH FREQUENCY
WAVE PACKETS.
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Filtering

WHAT IS THE REMEDY?

To filter the high frequencies, i.e. keep only the components of the
solution corresponding to indexes: k ≤ δ/h with 0 < δ < 1.
Filtering reestablishes the gap condition, then waves propagate
with a speed which is uniform with respect to h and the
observability inequality becomes uniform too.

√
λh

k −
√

λh
k−1 ≥ π cos

(
πδ

2

)
> 0, for k ≤ δh−1.

This can be done rigorously with the aid of

Ingham’s Theorem. (1936) Let {µk}k∈Z be a sequence of real
numbers such that

µk+1 − µk ≥ γ > 0, ∀k ∈ Z.

Then, for any T > 2π/γ there exists C (T , γ) > 0 such that

1

C (T , γ)

∑

k∈Z

| ak |2≤
∫ T

0

∣∣∣∣∣
∑

k∈Z

ake iµk t

∣∣∣∣∣

2

dt ≤ C (T , γ)
∑

k∈Z

| ak |2

for all sequences of complex numbers {ak} ∈ &2.
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CONCLUSION

Given any T > 2, choose 0 < δ < 1 such that T > 2/ cos(πδ/2).

The choice of 0 < δ < 1 is obviously possible since 2/T < 1.

Then, we can control UNIFORMLY ON h the solution
PARTIALLY:

πδ(y(T ), yt(T )) = 0

and

the numerical controls vh → v , the control of the wave equation.
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Without filtering, the control diverges as h → 0.
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With appropriate filtering the control converges as h → 0.
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TWO-GRID ALGORITHM

High frequencies producing lack of gap and spurious numerical
solutions correspond to large eigenvalues

√
λh

N ∼ 2/h.

When refining the mesh

h → h/2,

√
λh/2

2N ∼ 4/h.

All solutions on the coarse mesh when projected to the fine one are
no longer pathological.
TWO GRIDS ∼ FILTERING WITH PARAMETER δ = 1/2.
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Further results:

Black box to transfer control results from time-continuous
conservative semigroups into time-discrete ones. This leads to
a huge class of control results for fully discrete schemes (S.
Ervedoza, Ch. Zheng & EZ, JFA, 2008).

Controls can be ensured to be smooth when the data to be
controlled are smooth minimizing the following variant of the
functional J:

Jη(ϕ
0, ϕ1) =

1

2

∫ T

0
η(t)|ϕx(1, t)|2dt+

∫ 1

0
y0ϕ1dx− < y1, ϕ0 >

with η(0) = η(T ) = 0.

Convergence rates for filtered controls. In the present
finite-difference context, for initial data to be controlled with
one more derivative (y0, y1) ∈ H1

0 (0, 1)× L2(0, 1) the
convergence rate of controls in L2(0,T ) is h2/3.
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More sophisticated numerical algorithms based on
Discontinuous Galerkin and higher order Finite Element
Methods have been developed by A. Marica.
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