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Control Landscapes: What do we really know?

“Kinematic control landscapes” generally universally nice

1 Pure-state transfer problems (finite-dim.)

Only global extrema, no saddles

2 Density-matrix/observable optimization problems

Saddles but no suboptimal extrema

3 Unitary operator optimization: depends on domain

U(N): Critical manifolds but no traps
SU(N): Beware of root-of-unity traps
PU(N): Critical manifolds but no traps

Actual control landscapes — things get messy
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Kinematic vs Actual Control Landscape

Idea: Decompose map from control function space
F : L2[0,T ] 7→ IR into parts

1 Uf : L2[0,T ] 7→ U(N) and
2 G : U(N) 7→ IR (easy problem)

If we are lucky, maybe we can study the control landscape of
(2) — kinematic control landscape — and apply the results to
the actual (hard) problem (1).

More mathematically precisely: If (1) is
(a) surjective (equivalent to controllability) and
(b) has maximum rank everywhere

then the actual control landscape looks like the kinematic one.

But are we this lucky?
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Assumption (a) – controllability

Definition: Given the control system H = H0 + f (t)H1 let L0 be
the set of commutator expression in iH0 and iH1 joined with iH1;
L = L0 ∪ iH0. G0 = exp(L0) and G = exp(L).

Theorem (Controllability)

If L = su(N) or u(N) then there exists a time Tmax and
neighborhood N of (−iH0,−iH1) in L×L such that for all s ∈ N
and g ∈ G there is a control taking s to g in some time
T < Tmax.

Theorem (Exact-time controllability)

If L0 = su(N) or u(N) then there is a critical time Tc and
neighborhood N of (−iH0,−iH1) ∈ L×L such that for all s ∈ N ,
g ∈ G and T > Tc there is a control taking s to g in time T .

Very many quantum systems satisfy L0 = su(N) or u(N).
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Assumption (b) – no singular points

1 Gate optimization: assumption (b) never satisfied over
any function space containing constant controls as all of
these rank-deficient; many non-constant controls also fail
this test.

2 State transfer/observable optimization: for every bilinear
Hamiltonian control system there exist pairs of initial and
target states for which there are singular controls.

Failure of (b) implies that actual landscape need not
resemble kinematic one — Further analysis needed!

1 Counter-examples show that suboptimal extrema exist for
all types of problems above [arXiv:1004.3492]

2 Many critical points with semi-definite Hessian 2nd-order
potential traps [PRL 106,120402]

Are potential traps always actual traps?
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Control Landscapes: What is a Trap?

Not a trivial question!

1 Is it a local extremum for which fidelity (error) assumes
value less than global maximum (minimum)?

2 Is it any point that can attract trajectories?

(2) includes saddles that have domains of attraction but in any
neighborhood there are also points not attracted to saddle.

3 Cases: domain of attraction
1 contains a neighborhood of the point – the case for strict

local extrema under the usual assumptions – typical traps
2 within any neighborhood of the point is open (has positive

measure) but not everything
3 for the point is lower dimensional or has empty interior

(measure-zero)
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Simple example: f (x , y) = x2 + αyn, n ≥ 2

(0,0) critical point: fx(0,0) = 2x = 0, fy = nαyn−1 = 0.

Hessian:

H(x , y) =

(
2 0
0 αn(n − 1)yn−2

)

H(0,0) > 0 (positive definite) if n = 2 and α > 0

H(0,0) ≥ 0 (positive semi-definite) for n > 2.

Definition: ”Second-order” trap: Hessian H(0,0) ≥ 0

Which of the following are traps?
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Minimum, Hessian positive definite
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Saddle, Hessian indefinite
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Second-order trap – minimum
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2nd-order trap – saddle / pos. measure attractive set
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So what is a trap now?

1 Not all “second-order” traps are extrema – many saddles.

Semi-definite Hessian not sufficient for extremum.

Second-order traps that are saddles exist for quantum
control problem — see Example 2 in arXiv:1004.3492.

Could argue saddles are not strictly traps as in any
neighborhood some points will not converge to the saddle.

2 But saddles have domains of attraction; second-order
traps can have positive measure domains of attraction.

3 Domains of attraction depend on algorithm!

Local extrema traps for all local optimization algorithms –
how many second-order traps are suboptimal extrema?

Convergence to saddles possible, especially if they have
positive measure domains of attraction!
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Domains of attraction of a saddle
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What is the probability of trapping?
How can we detect when an optimization run is going badly?
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Convergence: The Good, The Bad & The Ugly
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Optimization Algorithms: Which perform best?

Numerical optimization expensive hence efficiency is key.

Many algorithms, many choices — How do we choose?

1 Global vs Local Optimization:
Optimization algorithms designed to find local extrema far
more efficient than global optimization strategies
Local optimization algorithms preferable if probability of
trapping low.

2 Sequential vs concurrent update:
Sequential update (Krotov) inspired by dynamical systems:
discrete version of continuous flow (Krotov)
Concurrent update motivated by conventional optimization

3 How to choose effective update rules?
Gradient vs higher-order methods (Newton/quasi-Newton)
Search length adjustment (line search)

4 Discretization: How to parametrize the controls?
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Preliminary observations

1 Local optimization algorithms outperform global ones in
general — trapping probability low for suitable initial fields

2 Far from a global optimum sequential update algorithms
generally help you escape faster — but only up to a point.

Sequential update allow larger local changes of the fields
but rapid initial gains may be paid for in terms of decreased
asymptotic rate of convergence.

3 Close to the top concurrent update has clear edge as it can
exploit nonlocal temporal correlations of the fields.

4 Discretization must be considered in analysis — affects
Gradient accuracy — don’t rely on continuous limit
Effective line search strategies — use quadratic model
Rate of convergence — don’t be too greedy
Choice of penalty terms — regularizing penalty terms
unnecessary for finite time steps
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Algorithm Comparison
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Summary and Conclusions

1 Control Landscape:
Actual dynamic landscape appears to be far richer than
kinematic analysis suggests — many questions

2 Numerical Algorithms for solving opt. control problems

Progress in understanding convergence behaviour, etc. but
significant room for improvement!

Many questions — e.g., are some algorithms more likely to
get trapped in (higher-order) saddles?

3 Parametrization of controls/discretization crucial
Analysis of infinite dimensional control problem may not
actually tell us much about what happens in discrete case.

4 Robustness: Optimal control solutions naturally robust but
some perturbations that are more detrimental than others.
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