Finite controllability of ∞-d quantum systems: Approximate controllability of trapped-ion quantum states

Department of Physics, University of Windsor

University of Windsor *W* Windsor, ON, Canada

thinking forward

Outline

- Work done in collaboration with Tony Bloch (Michigan) and Roger Brockett (Harvard)
- Finite controllability
- E.g.: spin-half coupled to QHO
 - Can show approx. controllability
- Two similar systems that are not finite controllable

Finite controllability

Definition

Given

- -a system, and
- -a nested set of finite dimensional subspaces
- it will be said to be finitely controllable if
 - it can be transferred from any point in one of the subspaces to any other point in that subspace
 - with a trajectory lying entirely within the subspace.

Finite controllability theorem

Consider a complex Hilbert space X together with a nested set of finite-dimensional subsets

$$\mathbf{H} = \{\mathbf{H}_{1} \subset \mathbf{H}_{2} \subset \mathbf{H}_{3} \cdots \}$$

Consider $i\dot{\Psi} = \left(\sum_{i=1}^{m} u_{i}B_{i}\right)\Psi$

where the B_i are Hermitian control operators. Assume

- H_1 is an invariant subspace for B_1
- the system is unit vector controllable on $\rm H_1$ using only $\rm B_1$

Finite controllability theorem (cont'd)

lf

- for each H_{α} ; $\alpha \neq 1$ there is a B_{α} that leaves H_{α} invariant, and
- -for any unit vector in H_{α} the orbit generated by $exp(iB_{\alpha})$ contains a point in one of the lower dimensional subspaces H_{β}

then any unit vector in any of the H_i can be steered to any other unit vector in any other H_j using a finite number of piecewise constant controls.

Bloch, Brockett, Rangan, quant-ph/0608075; ITAC 55, 1797 (2010)

Finite controllability

Explicit scheme

E.g.: trapped-ion quantum states

Field-free eigenstates transitively connected by two resonant, monochromatic fields

Mathematical formulation

Interaction Hamiltonian: $H_1 = (1/2) \mu \sigma_x E(t) \cos(k\xi_0(a+a^t)-\omega_L t)$ $= \sigma_x \Omega(t) \cos(\eta(a+a^t)-\omega_L t)$ Lamb-Dicke parameter $\eta = k\xi_0$

Go into rotating frame, make RWA

Non-zero matrix elements in control Hamiltonian: <S,n| H_I |S',m>

Carrier ($\omega_L = \omega_0$):First red sideband ($\omega_L = \omega_0 - \omega_m$): $|\downarrow n\rangle \leftrightarrow |\uparrow n\rangle \sim L_n(\eta^2)$ $|\downarrow n\rangle \leftrightarrow |\uparrow n-1\rangle \sim i L^{(1)}_n(\eta^2)$

D. J. Wineland *et al., J. Res. Natl. Inst. Stand. Technol.* <u>103</u>, 259 (1998).
D. Leibfried, R. Blatt, C. Monroe, D. Wineland. *Rev. Mod. Phys.* <u>75</u>, 281 (2003).

Infinite Lie algebra

$$i\dot{\Psi} = (uB_c + vB_r)\Psi = (H_c + H_r)\Psi$$

$$A = (uB_c + vB_r)\Psi = (H_c + H_r)\Psi$$

$$A = (uB_c + vB_r)\Psi = (H_c + H_r)\Psi$$

$$A = (uB_c + vB_r)\Psi = (H_c + H_r)\Psi$$

$$B = (uB_c + vB_r)\Psi = (H_c + H_r)\Psi$$

$$B = (uB_c + vB_r)\Psi = (H_c + H_r)\Psi$$

$$B = (uB_c + vB_r)\Psi = (H_c + H_r)\Psi$$

$$B = (uB_c + vB_r)\Psi = (H_c + H_r)\Psi$$

$$B = (uB_c + vB_r)\Psi = (H_c + H_r)\Psi$$

$$B = (uB_c + vB_r)\Psi = (H_c + H_r)\Psi$$

$$B = (uB_c + vB_r)\Psi = (H_c + H_r)\Psi$$

$$B = (uB_c + vB_r)\Psi = (H_c + H_r)\Psi$$

$$B = (uB_c + vB_r)\Psi = (H_c + H_r)\Psi$$

$$B = (uB_c + vB_r)\Psi$$

exp(-iH∆t)

 $= \exp(-i(H_c + H_r)\Delta t)$

= $\exp(-iH_c\Delta t) \cdot \exp(-iH_r\Delta t)$

 $.exp(-1/2[H_{c},H_{r}](\Delta t)^{2})$

 $.exp(1/12[H_{c},[H_{c},H_{r}]](\Delta t)^{3})$

 $.exp(1/12[[H_c,H_r],H_r](\Delta t)^3)...$

Lie algebra is ∞-D The *alternate* application of control fields removes a chirp instability in unitary flows. (Brockett, Rangan, & Bloch, CDC 2003)

Finite controllability of trapped-ion

Reachable set includes superpositions of finite numbers of eigenstates. Approximate controllability of trapped-ion quantum states (BBR, quant-ph/0608075, ITAC 2010)

Also see: Ervedoza-Puel, Ann. I. H. Poincaré 26, 2111 (2009)

Lamb-Dicke limit

Transition matrix elements: $<\Phi_1 | H_1 | \Phi_2 >$

Carrier:First red sideband: $|\downarrow n\rangle \leftrightarrow |\uparrow n\rangle \sim L_n(\eta^2)$ $|\downarrow n\rangle \leftrightarrow |\uparrow n-1\rangle \sim i L^{(1)}_n(\eta^2)$

In practical implementations, finding the control pulses is difficult (annoying) since the matrix elements depend on Laguerre polynomials

Lamb-Dicke limit (LDL): (motional cooling) $\xi_0 \ll \lambda, \eta \ll 1$

Carrier: $|\downarrow n\rangle \leftrightarrow |\uparrow n\rangle \sim 1$

First red sideband: $|\downarrow n\rangle \leftrightarrow |\uparrow n-1\rangle \sim \sqrt{n}$

Explicit control schemes

In LDL:Law-Eberly scheme, PRL 76, 1055 (1996)Kneer-Law scheme, PRA 57, 2096 (1998)Beyond LDL:Wei, Liu & Nori, PRA 70, 63801 (2004)Aim:Start from ground state and create a finitesuperposition of trapped-ion energy eigenstatesMethod:reverse engineer

Experimental demonstration:

(LDL) Ben-Kish et al., Phys. Rev. Lett. <u>90</u>, 037902 (2003). Without LDA (demonstration of principle): B.E. King et al., Phys. Rev. Lett. <u>81</u>, 3631 (1998).

E.g.: spin-1/2 with 2 QHO's

BUT - No finite controllability

E.g.: Two trapped-ions

Two spin $\frac{1}{2}$ systems coupled to a quantum harmonic oscillator Assume we have independent controls $u^{(1)}$, $u^{(2)}$ and $v^{(1)}$

Have eigenstate controllability, can also make specific types of states: e.g.: Turquette et al., Phys. Rev. Lett. 81, 3631 (1998).

E.g.: Two trapped-ions

Two spin $\frac{1}{2}$ systems coupled to a quantum harmonic oscillator Assume we have independent controls $u^{(1)}$, $u^{(2)}$ and $v^{(1)}$

...but does not satisfy conditions for finite controllability.

Approximate controllability?

Two spin ½ systems coupled to a quantum harmonic oscillator Assume we have 6 independent controls, still not fin. cont.

Summary

Finite controllability

-Approx. controllability of spin-half particle coupled to an harmonic oscillator

No finite controllability for

- Spin-half particle coupled to two harmonic oscillators
- •Two spin-half particles coupled to an harmonic oscillator
 - •Conjecture: the latter system is not approximately controllable using sequential fields

rangan@uwindsor.ca

Acknowledgements

Students: <u>D. Rooney</u>, S. Mirzaee, A. Torabi, D. Travo, <u>M. Sheikh, J. Donohue</u>, M. Tywoniuk, pdf T. Cheng

Collaborators: Silvia Mittler @ UWO, Tony Bloch @ U.Mich, Roger Brockett @Harvard

