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LKB photon-box

Experiment at Laboratoire Kastler-Brossel, École Normale Supérieure.
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LKB photon-box: measurement process (1)

Composite system

Field+atom: the Hilbert space H = Ha ⊗Hc , where

Ha = span(|g〉 , |e〉)(≡ C2), Hc =

{
∞∑

n=0

cn |n〉
∣∣∣ (cn) ∈ l2(C)

}
.

Initial state: |g〉 ⊗ |ψ〉

Joint unitary evolution

|Ψ(t)〉 ∈ Ha ⊗Hc being the state of the composite system,

i
d
dt
|Ψ〉 = ((Ha ⊗ 1) + (1⊗ Hc) + Hac) |Ψ〉 .

The state after this unitary evolution is necessarily of the form

|g〉 ⊗Mg |ψ〉+ |e〉 ⊗Me |ψ〉 ,

whereMg andMe are operators acting on Hc . Furthermore, the unitarity
condition implies

M†gMg +M†eMe = 1.



LKB photon-box: measurement process (2)
Final state is inseparable: we can not write

|g〉 ⊗Mg |ψ〉+ |e〉 ⊗Me |ψ〉 =
(
α̃ |g〉+ β̃ |e〉

)
⊗

(∑
n

c̃n |n〉

)
.

We can not associate to the cavity (nor to the atom) a well-defined
wavefunction just before the measurement.

However, we can still compute the probability of having the atom in |g〉 or in
|e〉:

Pg =
∥∥∥Mg |ψ〉

∥∥∥2

Hc
, Pe =

∥∥∥Me |ψ〉
∥∥∥2

Hc
.

Measurement result

Meas. in |g〉 : |g〉 ⊗Mg |ψ〉+ |e〉 ⊗Me |ψ〉 −→
|g〉 ⊗Mg |ψ〉∥∥∥Mg |ψ〉

∥∥∥
Hc

,

Meas. in |e〉 : |g〉 ⊗Mg |ψ〉+ |e〉 ⊗Me |ψ〉 −→
|e〉 ⊗Me |ψ〉∥∥∥Me |ψ〉

∥∥∥
Hc

.



LKB photon-box: quantum trajectories

State space

Hilbert space of the cavity field: Hc =
{∑∞

n=0 cn |n〉
∣∣∣ (cn) ∈ l2(C)

}
..

Stochastic evolution: ψk the wave function after the measurement
of atom number k − 1.

|ψk+1〉 =



Dαk Mg |ψk 〉∥∥∥Mg |ψk 〉
∥∥∥
H

Detect. in |g〉
(

proba.
∥∥∥Mg |ψk 〉

∥∥∥2

H

)
Dαk Me |ψk 〉∥∥∥Me |ψk 〉

∥∥∥
H

Detect. in |e〉
(

proba.
∥∥∥Me |ψk 〉

∥∥∥2

H

)
Here

Mg andMe are measurement operators (bounded operators on
the Hilbert space Hc) satisfyingM†gMg +M†eMe = 1.

Dα is unitary operator of the form exp(αa† − α∗a) with operator a
defined on Hc with its domain a subset of Hc (annihilation
operator), and where α is a complex control.



Physical operators
Annihilation and creation operators

a =



0
√

1 0 0 · · · 0 · · ·
0 0

√
2 0 · · · 0 · · ·

0 0 0
√

3 · · · 0 · · ·

0 0 0 0
. . . 0 · · ·

...
...

...
...

. . .
√

n · · ·
...

...
...

...
...

...
. . .


, a† =



0 0 0 · · · · · ·√
1 0 0 · · · · · ·

0
√

2 0 · · · · · ·
0 0

√
3 · · · · · ·

...
...

...
0 0 0

√
n + 1 0 · · ·

...
...

...
...

...


Photon counting operator: N = a†a = diag(0, 1, 2, 3, · · · ).
Domains:

D(a) = D(a†) = {
∞∑

n=0

cn |n〉 | (cn)∞n=0 ∈ h1(C)}, D(N) = {
∞∑

n=0

cn |n〉 | (cn)∞n=0 ∈ h2(C)}

where hk (C) = {(cn)∞n=0 ∈ l2(C) |
∑∞

n=0 nk |cn|2 <∞}.

Dispersive measurement operators and displacement operator

Mg = cos(φ0 + Nϑ) andMe = sin(φ0 + Nϑ).

D(α) = exp(αa† − α∗a): operator αa† − α∗a being anti-Hermitian and densely
defined in H, it defines a strongly continuous group of isometries on H.



Control problem: finite-dimensional approximation
Hilbert space after a Galerkin approximation:

Hc =


nmax∑
n=0

cn |n〉 | (cn)nmax

n=0 ∈ C


Control goal: to stabilize the Fock state |n̄〉.

Lyapunov approach: Lyapunov function V(ψ) = 1− |〈n̄ | ψ〉|2

Nous choisissons αk tel que:

E (V(ψk+1) | ψk ) ≤ V(ψk ).

Proof of convergence is based on stochastic versions of Lyapunov
techniques (Doob’s inequality and Kushner’s invariance
principle):

I. Dotsenko, M. Mirrahimi, M. Brune, S. Haroche, J.M. Raimond, P. Rouchon,
Phys. Rev. A, 2009.

H. Amini, M. Mirrahimi and P. Rouchon, Submitted.



Reminder: stability and convergence of stochastic
processes

Doob’s Inequality

Let {Xn} be a Markov chain on state space X . Suppose that there is a
non-negative function V (x) satisfying E (V (X1) | X0 = x)− V (x) = −k(x),
where k(x) ≥ 0 on the set {x : V (x) < λ} ≡ Qλ. Then

P

(
sup
∞>n≥0

V (Xn) ≥ λ | X0 = x

)
≤ V (x)

λ
.

Kushner’s invariance Theorem

Consider the same assumptions as that of the Doob’s inequality. Let µ0 = σ
be concentrated on a state x0 ∈ Qλ, i.e. σ(x0) = 1. Assume that
0 ≤ k(Xn)→ 0 in Qλ implies that Xn → {x | k(x) = 0} ∩Qλ ≡ Kλ. For the
trajectories never leaving Qλ, Xn converges to Kλ almost surely. Also, the
associated conditioned probability measures µ̃n tend to the largest invariant
set of measures M∞ ⊂ M whose support set is in Kλ. Finally, for the
trajectories never leaving Qλ, Xn converges, in probability, to the support set
of M∞.



Finite-dimensional control problem: simulations

100 Random trajectories for a finite-dimensional approximation with a
maximum photon number of 10 and where the target is the Fock state |3〉.
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Control problems: infinite dimensions

100 Random trajectories with the same feedback law, where the controller is
simulated based on a Galerkin approximation with a maximum photon

number of 10 and the real system is simulated based on a Galerkin
approximation with a maximum photon number of 20.
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Control problems: infinite dimensions

A single trajectory showing the mass-loss through high-energy levels.
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Control problem: infinite dimensions

Lyapunov approach

Lyapunov function:

V(ψ) =
∞∑

n=0

σn |〈n | ψ〉|2

+δ
(

1−f (|〈n | ψ〉|2)
)

+δ

(
cos4(φn̄) + sin4(φn̄)−

∥∥∥Mg |ψ〉
∥∥∥2
−
∥∥∥Me |ψ〉

∥∥∥2
)
.

where f (x) = (x + x2)/2, φn̄ = φ0 + n̄ϑ and

σn =
n̄∑

k=n+1

(
1
k
− 1

k2

)
, n < n̄, σn̄ = 0, σn =

n∑
k=n̄+1

(
1
k

+
1
k2

)
, n > n̄.

Feedback law: αk = α(ψk ) := argminα∈[−ᾱ,ᾱ]V(Dα |ψk 〉).

convergence result (recent joint work with Ram Somaraju and Pierre Rouchon)

For each ε > 0, we can choose δ > 0 small enough so that

P(|ψk 〉 → |n̄〉) > 1− ε.



Control problem: infinite dimensions (Simulations)

100 Random trajectories with the above feedback law, where the controller is
simulated based on a Galerkin approximation with a maximum photon

number of 10 and the real system is simulated based on a Galerkin
approximation with a maximum photon number of 20.
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Proof’s scheme (1)
We consider the Hilbert spaces l2 and hσ, together with the norms

‖ |ψ〉 ‖l2 =
∞∑

n=0

|〈n | ψ〉|2 and ‖ |ψ〉 ‖hσ =
∞∑

n=0

σn|〈n | ψ〉|2.

We consider the sequence of probability measures µk defined on the space
of the wavefunctions and induced by the system’s Markov chain.

Lemma 1

Applying the Doob’s inequality, the set of measures {µk} is tight for the strong
topology of l2: indeed, taking V0 := Eµ0 (V) and defining
Bε = {|ψ〉 | V(ψ) < V0

ε
}, we know by Doob’s inequality that µk (Bε) ≥ 1− ε.

Furthermore, Bε is compact with respect to the l2-strong topology.

Lemma 2

Applying Prokhorov’s theorem, there exists a weakly converging
subsequence µkn such that, for each function g(ψ) which is continuous with
respect to the l2-strong topology,

Eµkn
(g)→ Eµ∞(g).



Proof’s scheme (2)

Bt the choice of the feedback law

E (V(ψk+1) | ψk )− V(ψk ) = −K1(ψk )− K2(ψk ),

where the functions K1 and K2 are positive and

K1 is given by the difference of two lower semi-continuous functions with
respect to l2-strong topology;

K2 is continuous with respect to l2-strong topology.

In particular

Eµkn+1 (V)− Eµkn
(V) = −Eµkn

(K1)− Eµkn
(K2).

Noting that Eµk (V) is decreasing and bounded from below

Eµkn+1 (V)− Eµkn
(V)→ 0 as n→∞.

Thus
Eµkn

(K2)→ 0 as n→∞.
This implies

Eµ∞(K2) = 0.



Proof’s scheme (3)

ω-limit set

There exists Mδ tending to +∞ when δ tends to zero, such that,

Eµ∞(K2) = 0
⇒

supp(µ∞) ⊂ {|n̄〉} ∪ {|m〉 | m > Mδ}.

Final proposition

Noting that for |m〉 such that m > Mδ,

V(|m〉) ≥ σm > σMδ

and applying the Doobs’s inequality:

µ∞({|n̄〉}) > 1− V0

σMδ

.



Summary

Objective: proving approximate stabilization whenever the pre-compactness
is not ensured because of a mass-loss type phenomena .

dX = f (X )dt +σ(X )dνt ,

and V such that
dE (V)

dt
≤ −E (K (X )) .

A strict Lyapunov approach

The elements of χ = {X | K (X ) = 0} are restricted to X = X̄ or X such that
V(X ) > V0:

1 K (X ) continuous for a weak-topology;

2 Decrease of V(X ) prevents a mass-loss phenomena.


