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LKB photon-box

Experiment at Laboratoire Kastler-Brossel, Ecole Normale Supérieure.

I. Dotsenko, M. Mirrahimi, M. Brune, S. Haroche, J.M. Raimond and P. Rouchon,
Phys. Rev. A., 2009.



LKB photon-box: measurement process (1)

Composite system
Field+atom: the Hilbert space H = H, ® H¢, where

Ha=span(lg) |e))(=C?),  Ho= {ch n) | (@) € /2(«:)}.
n=0
Initial state: |g) ® |+)

Joint unitary evolution

|W(t)) € Ha ® Hc being the state of the composite system,
.d
g V) = ((Ha® 1) + (1@ Ho) + Hac) [V) .
The state after this unitary evolution is necessarily of the form
19) ® Mg |¢) + |€) ® Me |9},
where Mg and M. are operators acting on #.. Furthermore, the unitarity

condition implies
MIMg + MiMe = 1.



LKB photon-box: measurement process (2)

Final state is inseparable: we can not write
19) ® Mglw) + &) © Mo [v) = (&lg) + Fle)) @ (Z & |n>> :

We can not associate to the cavity (nor to the atom) a well-defined
wavefunction just before the measurement.

However, we can still compute the probability of having the atom in |g) or in

le): , 2
Po=|Motd ||, . Pe=|Melw) | -
Meas.in [g):  |g) @ Mg ) + [6) @ M ) —s 192 Mal¥)
[Meter ],
Meas.in [e) :  |g) ® Mglu) + &) & Mo ) —s 1O Mel¥)

[Metr]l,,



LKB photon-box: quantum trajectories

State space

Hilbert space of the cavity field: H, = {Z;";O Cn|N) ’ (cn) € IZ(C)} y

Stochastic evolution: v, the wave function after the measurement
of atom number k — 1.

N D/O\:;\:;>¢IZ Detect. in |g) (proba. HMg k) Hj{)
k1) =
+ DX;:ZL;WZ Detect. in |e) (proba. HMeWJk) Hi)

Here
m M, and M, are measurement operators (bounded operators on
the Hilbert space #,) satisfying MjMg + MiMe = 1.

m D, is unitary operator of the form exp(aa’ — a*a) with operator a
defined on . with its domain a subset of H, (annihilation
operator), and where « is a complex control.



Physical operators

Annihilation and creation operators

0o vi 0o 0 - 0 0o 0 0
0 0 V2 0 0 vi 0o o
0 0 0 V3 0 0 V2 o0
0 0 V3
a=lo o o o 0 , a =
vn oo 0 0 © n+i1 0---

Photon counting operator: N = afa = diag(0,1,2,3,---).
Domains:

D(a) =D(a") = {D_cnln) [ (cn)iZo € N'(C)}, D(N) = {D>_ cnln) | (cn)iZo € HP(C)}
n=0

n=0

where H(C) = {(cn)s2, € P(C) | =020 n¥|enl? < oo}

Dispersive measurement operators and displacement operator

B Mg = cos(¢p + N9) and Me = sin(¢g + N9J).

m D(a) = exp(aal — a*a): operator aa’ — a*a being anti-Hermitian and densely
defined in #, it defines a strongly continuous group of isometries on .



Control problem: finite-dimensional approximation

Hilbert space after a Galerkin approximation:

nmax
He = {Z cnln) | (co)isg € c}
n=0

Control goal: to stabilize the Fock state |n).

Lyapunov approach: Lyapunov function V() =1 — [(1 | ¥)|?

Nous choisissons ay tel que:

E (W (¥k+1) | i) < V().

Proof of convergence is based on stochastic versions of Lyapunov
techniques (Doob’s inequality and Kushner’s invariance
principle):
W |. Dotsenko, M. Mirrahimi, M. Brune, S. Haroche, J.M. Raimond, P. Rouchon,
Phys. Rev. A, 2009.

m H. Amini, M. Mirrahimi and P. Rouchon, Submitted.



Reminder: stability ana convergence of stochastic

Doob’s Inequality

Let {X,} be a Markov chain on state space X'. Suppose that there is a
non-negative function V/(x) satisfying I£ (V(X1) | Xo = x) — V(x) = —k(x),
where k(x) > 0 on the set {x : V(x) < A} = Qx. Then

IP( sup V(Xn)>)\|Xo=x><Vg\X).

oco>n>0

Kushner’s invariance Theorem

Consider the same assumptions as that of the Doob’s inequality. Let po = o
be concentrated on a state xo € Qx, i.e. o(xo) = 1. Assume that

0 < k(X»n) — 0in Q» implies that X, — {x | k(x) =0} N Q\ = K.. For the
trajectories never leaving Q,, X, converges to K, almost surely. Also, the
associated conditioned probability measures /i, tend to the largest invariant
set of measures M., C M whose support set is in K. Finally, for the
trajectories never leaving Qx, X, converges, in probability, to the support set
of Mso.



Fidelity between p and the goal Fock state

Finite-dimensional control problem: simulations

100 Random trajectories for a finite-dimensional approximation with a
maximum photon number of 10 and where the target is the Fock state |3).
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Control problems: infinite dimensions

100 Random trajectories with the same feedback law, where the controller is
simulated based on a Galerkin approximation with a maximum photon
number of 10 and the real system is simulated based on a Galerkin
approximation with a maximum photon number of 20.

Fidelity between p and the goal Fock state
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Control problems: infinite dimensions

A single trajectory showing the mass-loss through high-energy levels.

Goal Photon—-Number: 3

Probability

20 50 (pulse number)/40

Photon number +1



Control problem: infinite dimensions

Lyapunov approach

Lyapunov function:
V) =Y anl(n] ¥)I°
n=0

+5(1=F(l(n | 9))) +0 (0034(¢n) +sin®(¢n) — || Mg ) H2 — | Mot Hz) :

where f(x) = (x + x?)/2, ¢ = ¢o + 1Y and

n

11 _ 1A _
”":Z(}_ﬁ) n<n, op=0, U”:Z<R+P)’ n> n.

k=n+1

Feedback law: ax = a(yx) := argmin,,c(_5 5 V(Da [¥x))-

convergence result

For each € > 0, we can choose § > 0 small enough so that

P(|yk) — [n)) > 1 —e.



Control problem: infinite dimensions (Simulations)

100 Random trajectories with the above feedback law, where the controller is
simulated based on a Galerkin approximation with a maximum photon
number of 10 and the real system is simulated based on a Galerkin
approximation with a maximum photon number of 20.

Fidelity between p and the goal Fock state
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Proof’s scheme (1)

We consider the Hilbert spaces /? and h°, together with the norms

) lle =D Knl9)  and (@)l =Y onl(n] )P

n=0 n=0

We consider the sequence of probability measures px defined on the space
of the wavefunctions and induced by the system’s Markov chain.

Lemma 1

Applying the Doob’s inequality, the set of measures {1} is tight for the strong
topology of /*: indeed, taking Vo := E ., (V) and defining

Be = {|) | V() < 2}, we know by Doob’s inequality that 1ux(Be) > 1 — e.
Furthermore, B. is compact with respect to the /2-strong topology.

Lemma 2

Applying Prokhorov’s theorem, there exists a weakly converging
subsequence p, such that, for each function g(«) which is continuous with
respect to the /?-strong topology,

Epi, (9) = Epee (9)-



Proof’s scheme (2)

Bt the choice of the feedback law

E (V(t11) | ) = V(th) = —Ki (voi) — Ka(tr),
where the functions K; and K are positive and

m K is given by the difference of two lower semi-continuous functions with
respect to /2-strong topology;

m K; is continuous with respect to /2-strong topology.
In particular
]Elikn+1 (V) - ]E#kn (V) = 7]E/ikn (K1) - Eukn (K2)'
Noting that E,,, (V) is decreasing and bounded from below
Euor (V) —Ep (V) =0 as n — co.

Thus
Eu,, (K2) — 0 as n— oo.
This implies
By (K2) = 0.



Proof’s scheme (3)

There exists M; tending to +oco when § tends to zero, such that,

ENDO(KZ) = 0
=

supp(pee) C {IM)} UA{Im) | m> Ms}.

Final proposition

Noting that for |m) such that m > Ms;,

v(Im)) =2 om > owmg
and applying the Doobs’s inequality:
Vo

IMs

poo({IM}) > 1 —




Summary

Objective: proving approximate stabilization whenever the pre-compactness
is not ensured because of a mass-loss type phenomena .

dX = f(X)dt +o(X)dv,
and V such that
dE (v)

< ~E k).

A strict Lyapunov approach
The elements of x = {X | K(X) = 0} are restricted to X = X or X such that
V(X) > Vo:

K(X) continuous for a weak-topology;

Decrease of V(X) prevents a mass-loss phenomena.



