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The continuous model

The 1 — d wave equation with non-homogeneous boundary conditions:

yie(x, t) — yux(x,t) = 0, x € (0,1), t >0,
¥(0,t) =0, y(1,t) = v(t), t >0, (1)
y(X,O) = yO(X)7 yt(Xa 0) = yl(X)9 S (07 1)
Exact controllability: V(y',y%) € V/

H=tx L2, 3v € L2(0, T) st. y(x, T) = ye(x, T) = 0.
The adjoint 1 — d wave equation with homogeneous boundary conditions:

ure(x, t) — uxx(x,t) =0, x € (0,1), t >0,
u(0,t) =u(l,t)=0, t >0, (2)
u(x, T) = uO(x), ue(x, T) = ul(x), x € (0,1).

Well-posed in the energy space V := H} x L2. The energy is conserved in time:
0 1 1 2 2 102 12
E(u un) = SlluC Ol + [luel Olf22) = Sl + [ull2)-
The observability inequality holds for all solutions of (2), provided T > 2:
T
e, u) < C(7) [ a1 o) 3)
0
Hilbert Uniqueness Method (HUM): exact controllability < observability inequality

@ Lions J.L., Contrélabilité exacte, perturbations et stabilisation des systémes distribués, Masson, 1988.
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The HUM control

The HUM control v has the explicit form
v(t) = (1) := Bx(1, 1),

where @i(x, t) is the solution of (2) corresponding to the minimum (&°, i') € V of
30, ! / 0L bt — (7,5, (0, 0), e O))wr v

Example: y! = 0 and the initial position y° given by

1, xe[0,1/2
y2(x) = H(x) 1={ -1, xe {1/2,/1]),

for which the optimal control is

} } ~1/2, te(0,1/2]U(1,3/2],
v(t) = n(t) = { 1/2/, te 21/2,/11 U §3/2,/2]).

i

k= = £ = i cl

Figure: The initial position H(x) (left) versus the HUM control ¥4 (middle) versus the solution of the
controlled problem (right) (red = 1, orange = 1/2, green = 0, cyan = -1/2 and blue = -1).
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Linear and quadratic FEM spaces

N €N, h=1/(N+1). An uniform grid of [0, 1]: nodes x; and midpoints x;,1 5.

u = {ue H}(0,1) s.t. uly €P1(l), 0<j <N} = span{qb'f’j}

= {u € H3(0,1) s.t. uly; € Pa(fj), 0 <j < N} =span{¢};} ®span{e} ;,, »}

(. X . X X X X,
% Xan N Xar Nt e ) e N K

Figure: The basis functions: ¢g,j (left), ¢g’j+1/2 (middle) and ¢?,j (right).

Linear/quaratic semi-discretization of the adjoint problem (2):
{ Find ufi(-, t) ; Uh st S (uf(- 1), wz)Lz + (U, 1), 9B) i = O, Vel € UP,
ug(x, T)= up (X), p’t(x T)= up (X)7 x € (0,1),
which can be written as a system of second-order linear differential equations (ODEs):
MpU (1) + SpUR(2) = 0, UR(T) = Up°, Up (T) = Upt, p=1,2,
where M{',S{7 - tri-diagonal and Mé’, 52" - pentha-diagonal mass and stiffness matrices.
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Discrete functional setting

Discrete analogues of H3(0,1), L2(0,1) or H=1(0,1):

9‘(,’;"‘ = {Fg = (Fp,j/p)lggpN-%—p—l S (CpN+p—1 s.t. ||F2Hh,i,p < OO}, i = 1,0,—1.

Inner products defining the discrete spaces i}{h’i, i=1,0,—-1:

(Ef, FM)pip i= ((ME(SH) =)= ShER, Fh)pe, i =1,0,—1.

!
Discrete energy space and its dual: V := 9{2’1 X 9{2‘0 and Vﬁ‘ = ﬂ-fg’fl X 9{2’0.

Problem (9) is well-posed in Vg. The total energy is conserved in time:

1 1
ep(Upl upt) = E(IIUZ(t)H%,Lp +IUp (Dllf0,5) = E(IIUZ’OI e TIURHEL ). (10)

Discrete observability inequality

T
EA(UE° UL < AT [ 1IBLUNE)IE.. o (11)
0
where
1 ..
o1 =% ()= (pN+p—1,pN),
Bo.i: { 0, otherwise. (12)
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Spectral analysis and non-uniform observability results

The solution of (9) admits the following Fourier

representation w0 P
/
; .

pN+p—1
~, - yhky hk
Uh(t) = g /;1 “I,;,;t exp(LitAy )" '

Figure: The square roots of the eigenvalues,
)\Z: the continuous, acoustic, optic, resonant
modes and p = 1.

() ~m+ 17 /24 +1°/1920,  A3(n) ~ n + 11° /1440.
CA(T) in (11) blows-up. !!!
Infante J.-A., Zuazua E., Boundary observability for the space semidiscretization of the 1-d wave
equation, M2AN, 1999.

Marica A., Zuazua E., On the quadratic finite element approximation of 1 — d waves: propagation,
observation and control, in preparation.

Marica A., Zuazua E., Localized solutions and filtering mechanisms for the DG semi-discretizations of the
1-d wave equation, C. R. Acad. Sci. Paris Ser. |, 2010.

) &) &) R

Micu S., Uniform boundary controllability of a semi-discrete 1-D wave equation, Numer. Math., 2002:
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Bi-grid filtering algorithm. Uniform observability results.

BY = {F] = (Fj)1<j<n st Fiojin = (Fuoj + Fioj42)/2, YO <j < (N —1)/2}

B ={F} = (Foj2)1<j<on+1 st Fojiijo = (Foj+ Faji1)/2, YO<j < N,
and Foj41 = (F2,0 + F2,0j42)/2, VO < j < (N —1)/2}.

For all initial data (U,I;'.’O, UI,;'.’I) € (Bh x BN V;’, in the adjoint problem (9) and for all T > 2,
the observability inequality (11) holds uniformly as h — 0.

Uniform observability results for the fully discrete conservative scheme:
hk+1 h,k hk—1 20 nphy—1 chyyhk+1 hk—1Yy /o _
UBkHL _oyhk 4 ghk=1 4 (582 (M) LSh(UBKL 4 ubk-1) /2 — 0,
@ Ervedoza S., Zheng C., Zuazua E., On the observability of time-discrete conservative linear systems, J.
Functional Analysis, 254(12)(2008), 3037-3078.

Ignat L., Zuazua E., Convergence of a two-grid algorithm for the control of the wave equation,
J.Eur.Math.Soc., 2009.

Loreti P., Mehrenberger M., An Ingham type proof for a two-grid observability theorem, EAIM: COCV,
2008.

@ Marica A., Zuazua E., On the quadratic finite element approximation of 1 — d waves: propagation,
observation and control, in preparation.

Negreanu M., Zuazua E., Convergence of a multigrid method for thecontrollability-of a 1=d wave
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On the discrete control problem

For a particular solution flf,(t) of the adjoint problem (9), consider the non-homogeneous problem

MPY ] o (8) + SPYh(t) = —(BP)*BRON(t),  Yh(0)=YPO Y] .(0)=YPL (13)

The discrete quadratic functional:

b (4

T
1
050,05 = 2 [ IIBLUNER, 0 de — (Y, Y50, (U}(0). Ub(0)
0
U,’;(t) being the solution of the adjoint problem (9) with initial data (UZ’O, Uf,’l).

The uniform observability inequality (11) in the class of initial data ’BI’; X BZ implies
@ the coercivity of 3,’;

@ the convergence of the last component of B;,’lNJg(t) to the continuous optimal control V.
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Hg := (Hp,j/p)1<j<pNtp—1, Where A oi/p = (H, ¢pj/ )2, forall1<j<pN+4+p-—1
The numerical approximation of H(x) we consider is Yho = Hg = (M,’,’)_lltlg.

Some projections:

h (V172 h,k h N ho hk h,k
Hi = Z (GRS TRRTEL Hi,i= > (H{, 90 )hoaer s
k=(N+1)/2
Hbo — N2 Hb hok  pha _ N Hh hya,k
2,0 — Z ( 29 302 )h 0,2%¥2 ) 2.hi Z ( 29 902 )h,O,ZSOQ , &€ {37 O}.
k=1 k=(N+1)/2
| 4
[ L
|
(a) HY (b) H?,Io (c) H'f.,hi (d) Hgﬁ:
Iy ) uL A "
! | ’ 4 1
(e) H3 M Hyh (8) Hz7; (h) H3

Figure: The discrete Heaviside functions H” and their projections

Py-FEM approximation of waves
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Figure: The Fourier coefficients of HZ for p =1 (left), p = 2 (center, blue=acoustic, red=optic), p = 2 - the
optic branch (right).
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Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data (Up°, Up") = (DS UlG) € VA, for

example the trivial one. This step yields the solution Ug olt).
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Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data (Up°, Up") = (DS UlG) € VA, for
example the trivial one. This step yields the solution UZ’O(t).
Step 2. Compute the first gradient (G0, G1g) 1= V3A(UP0, UN'G) by solving (13) with initial

p,0?
data (YZ:g,YZ:é) and Og(t) = Uz,O(t)' This produces the solution Yg’o(t). Then
h,0 Z h1
G = —(5h) 1M,’;Yg,07t(T) and G = Ygﬂo(T).
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Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data (Up°, Up") = (DS UlG) € VA, for

example the trivial one. This step yields the solution UZ’O(t).
Step 2. Compute the first gradient (G0, G1g) 1= V3A(UP0, UN'G) by solving (13) with initial

p,0?
data (YZ:g,YZ:é) and Og(t) = Uz,O(t)' This produces the solution Yg’o(t). Then
h,0 Z h1
G = —(5h) 1M,’;Yg,07t(T) and G = Ygﬂo(T).

Step 3. If (HGZ:8||%,1,p + ||GZ:(1J||2 )1/2 > €, compute the first descent direction

h,0,p
(D" phly = _(GhO Ghly 7
p,0> = p,0/ p,0° =p,0/*

Aurora Marica (BCAM) P»-FEM approximation of waves Quantum control, Banff - Apr.-5-11 11 /20



R ———.—————
Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data (Up°, Up") = (DS UlG) € VA, for

p,0° ,0
example the trivial one. This step yields the solution Ug olt).

Step 2. Compute the first gradient (G0, G1g) 1= V3A(UP0, UN'G) by solving (13) with initial

p,0?
data (YZ:g,YZ:é) and Og(t) = Uz,O(t)' This produces the solution ngo(t). Then

h0 _ — h1l _
Gyo= —(5h) 1M,’;Yg,07t(T) and G = Ygﬂo(T).

Step 3. If (HGZ:8||%,1,p + HGZ:(IJH%,O,;:)IQ > €, compute the first descent direction
h,0 ~h1y _ h,0 ~h,1
(DP,O’ Dp,O) - 7(Gp,0’ Gp,O)'

Step 4. Given (UZ;(,),, UZ:,I,), (ng(,),, Gg:},) and (Dg:?,, DZ:,{ in Vf,, compute them n + 1:
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Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data (Up°, Up") = (DS UlG) € VA, for

example the trivial one. This step yields the solution Ug’o(t).
Step 2. Compute the first gradient (G0, G1g) 1= V3A(UP0, UN'G) by solving (13) with initial

p,0?
data (YZ:g,YZ:é) and Og(t) = Uz,o(t)- This produces the solution ngo(t). Then
h,0 Z h1
G = —(5h) 1M,’;Yg,07t(T) and G = Ygﬂo(T).

Step 3. If (HGZ’%H% 1ot ||GZ’(1J||%1 0 p)l/2 > €, compute the first descent direction
h,0 ~h1y _ h,0 ~h,1
(DP,O’ Dp,O) - 7(Gp,0’ Gp,O)'
Step 4. Given (UZ;(,),, UZ:,I,), (ng(,),, Gg:},) and (Dg:?,, DZ:,{ in Vf,, compute them n + 1:

Step 4.a. Solve (9) with data (Uf,’o, Ug’l) = (Dgi?,, DZ’},) and denote the solution by Dg’n(t).
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Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data (Up°, Up") = (DS UlG) € VA, for

example the trivial one. This step yields the solution Ug’o(t).
Step 2. Compute the first gradient (G0, G1g) 1= V3A(UP0, UN'G) by solving (13) with initial

p,0?
data (YZ:g,YZ:é) and Og(t) = UZ,O(t)' This produces the solution ngo(t). Then
h,0 Z h1
G = —(5h) 1M,’;Yg,07t(T) and G = Ygﬂo(T).

Step 3. If (HGZ:8||%,1,p + ||ngé||i’0,p)l/2 > €, compute the first descent direction

(D0 Do) = ~(G;5.Gylo):

Step 4. Given (U,’;;(,),, UZ:,I,)7 (ng(,),, Gg:},) and (Dg:?,, DZ:,{ in Vf,, compute them n + 1:

Step 4.a. Solve (9) with data (UZ’O, Ug’l) = (Dgi?,, DZ’},) and denote the solution by Dg’n(t).
Step 4.b. Solve (13) with trivial initial data and Ug(t) = Df,,,,(t) and denote the solution by

h,0 _ _ hl _
Yh o (b). Take Zph = —(SH)"IMAYh L (T)and Zpn =Yh (7).
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Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data (Up°, Up") = (DS UlG) € VA, for

example the trivial one. This step yields the solution Ug’o(t).
Step 2. Compute the first gradient (G0, G1g) 1= V3A(UP0, UN'G) by solving (13) with initial

p,0?
data (YZ:g,YZ:é) and Og(t) = UZ,O(t)' This produces the solution ngo(t). Then
h,0 Z h1
G = —(5h) 1M,’;Yg,07t(T) and G = Ygﬂo(T).

Step 3. If (HGZ:8||%,1,p + ||ngé||i’0,p)l/2 > €, compute the first descent direction
B0 h,1 h0 ~h,1
(Dpyoz Dpyo) = 7(Gp,ov pro)-
Step 4. Given (U,’;;(,),, UZ:,I,)7 (ng(,),, Gg:},) and (Dg:?,, DZ:,{ in Vf,, compute them n + 1:
Step 4.a. Solve (9) with data (UZ’O, Ug’l) = (Dgi?,, DZ’},) and denote the solution by Dg’n(t).

Step 4.b. Solve (13) with trivial initial data and Ug(t) = Df,,,,(t) and denote the solution by

h,0 _ _ hl _
Yh o (b). Take Zph = —(SH)"IMAYh L (T)and Zpn =Yh (7).

h,0(,2 h,1()2
Gp:nllh,1.pH1Gpinl 1,0,
h,0 h,0 h,1 h,1 .
(Zp27:Dp)n)h,1,pH(Zp)nsDpln)k,0,p

Step 4.c. Set pp,n 1= —
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Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data (Up°, Up") = (DS UlG) € VA, for

example the trivial one. This step yields the solution Ug’o(t).
Step 2. Compute the first gradient (G0, G1g) 1= V3A(UP0, UN'G) by solving (13) with initial

p,0?
data (YZ:g,YZ:é) and Og(t) = UZ,O(t)' This produces the solution ngo(t). Then
h,0 Z h1
G = —(5h) 1M,’;Yg,07t(T) and G = Ygﬂo(T).

Step 3. If (HGZ:8||%,1,p + ||ngé||i’0,p)l/2 > €, compute the first descent direction
B0 h,1 h0 ~h,1
(Dpyoz Dpyo) = 7(Gp,ov pro)-
Step 4. Given (U,’;;(,),, UZ:,I,)7 (ng(,),, Gg:},) and (Dg:?,, DZ:,{ in Vf,, compute them n + 1:
Step 4.a. Solve (9) with data (UZ’O, Ug’l) = (Dgi?,, DZ’},) and denote the solution by Dg’n(t).

Step 4.b. Solve (13) with trivial initial data and Ug(t) = Df,,,,(t) and denote the solution by

h,0 _ _ hl _
Yh o (b). Take Zph = —(SH)"IMAYh L (T)and Zpn =Yh (7).

h,0(,2 h,1()2
Gp:nllh,1.pH1Gpinl 1,0,
h,0 h,0 h,1 h,1 .
(Zp27:Dp)n)h,1,pH(Zp)nsDpln)k,0,p

h,0 h,1 . h,0 yyh,1 h,0 ~h,1
Step 4.d. (Up,n+17 Up,n+1) = (Upn, Upin) + pp,n(Dp)n, Dpln)-

Step 4.c. Set pp,n 1= —
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Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data (Up°, Up") = (DS UlG) € VA, for

example the trivial one. This step yields the solution Ug’o(t).
Step 2. Compute the first gradient (G0, G1g) 1= V3A(UP0, UN'G) by solving (13) with initial

p,0?
data (YZ:g,YZ:é) and Og(t) = UZ,O(t)' This produces the solution ngo(t). Then
h,0 Z h1
G = —(5h) 1M,’;Yg,07t(T) and G = Ygﬂo(T).

Step 3. If (HGZ:8||%,1,p + ||ngé||i’0,p)l/2 > €, compute the first descent direction
B0 h,1 h0 ~h,1
(Dpyoz Dpyo) = 7(Gp,ov pro)-
Step 4. Given (U,’;;(,),, UZ:,I,)7 (ng(,),, Gg:},) and (Dg:?,, DZ:,{ in Vf,, compute them n + 1:
Step 4.a. Solve (9) with data (UZ’O, Ug’l) = (Dgi?,, DZ’},) and denote the solution by Dg’n(t).

Step 4.b. Solve (13) with trivial initial data and Ug(t) = Df,,,,(t) and denote the solution by

h,0 _ _ hl _
Yh o (b). Take Zph = —(SH)"IMAYh L (T)and Zpn =Yh (7).

116501 3.1.p7 11655 3,00

7.0 A0 Al oAl .
(Zp27:Dp)n)h,1,pH(Zp)nsDpln)k,0,p
50 Bl N . (yh0 (bl B0 ~hl
Step 4.d. (U"2,, UL ) i= (UAD, UBA) + pp.n(DAS, DAL).

5,0 A1y . h0 ~h1 h0 5h,1
Step d.e. (G, 11,G, 1) = (Gpn, Gpln) + pp,n(Zpin, Zp)n)-

Step 4.c. Set pp,n 1= —
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Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data (Up°, Up") = (DS UlG) € VA, for

example the trivial one. This step yields the solution Ug’o(t).
Step 2. Compute the first gradient (G0, G1g) 1= V3A(UP0, UN'G) by solving (13) with initial

p,0?
data (YZ:g,YZ:é) and Og(t) = Ug,o(t)- This produces the solution ngo(t). Then
h,0 Z h1
G = —(5h) 1M,’;Yg’07t(T) and G = YZﬂO(T).

Step 3. If (HGZ:8||%,1,p + ||ngé||i’0’p)l/2 > €, compute the first descent direction
B0 h,1 h0 ~h,1
(Dpyoz Dpyo) = 7(Gp,ov pro)-
Step 4. Given (U,’;’,(,),7 UZ:,I,)7 (ng(,),, Gg:},) and (Dg:?,, DZ:,{ in Vf,, compute them n + 1:
Step 4.a. Solve (9) with data (Uf,’o, Ug’l) = (Dgi?,, DZ’},) and denote the solution by Dg’n(t).

Step 4.b. Solve (13) with trivial initial data and Ug(t) = Df,,,,(t) and denote the solution by

h,0 _ _ hl _
Yh o (b). Take Zph = —(SH)"IMAYh L (T)and Zpn =Yh (7).

h,0(,2 h,1()2
Gp:nllh,1.pH1Gpinl 1,0,

7.0 A0 Al oAl .
(Zp27:Dp)n)h,1,pH(Zp)nsDpln)k,0,p

h,0 h,1 . h,0 yyh,1 h,0 ~h,1
Step 4.d. (Up,n+17 Up,n+1) = (Upn, Upin) + pp,n(Dp)n, Dpln)-

5,0 A1y . h0 ~h1 h0 5h,1
Step d.e. (G, 11,G, 1) = (Gpn, Gpln) + pp,n(Zpin, Zp)n)-

Step 4.c. Set pp,n 1= —

Step 4.£(D"0 . DML )= (M0 Ghl )+ 1Gh0 1113 1,16 41130
RALE p,n+1> Zp,n+1/ p,n+1> “p,n+1 HG’P"%H% . +HG£’}1H% 0
nllh,1,p »nllh,0,p

2 (0 Mhil
(Dp’n, Dpln)-
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Numerical results (1)

x=1 t=0

- h,0 _ 4k h,1 _
(a) Solution for Y{"~ = H{, Y{"" =0

x=1 =0

(c) Solution for Yf’o = H;’,Io' Yf’l =0

2.5 s
-
0 .

x=1 =0

(e) Solution for Y{”O = Hlf,h,'v Y;’yl —0

Aurora Marica (BCAM)

3

Py-FEM approxir

[29) t=2

h,0 _ 4k h,1 _
(b) Control for Y;"" = H{, Y;"" =0

%

=0 =2

(d) Control for Y{"* = Hf . Y["! =0

285 4
(f) Control for Yf’o = vah,'v nyl —0
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x=1 t=0 =0 =2

(a) Solution for Y;”o = Hj, Yg’l =0 (b) Control for Yg’o = HS, Y;‘l =0

x=0

x=1 t=0 =0 =2

(c) Solution for Y2 = HY*  ¥2'' =0 (d) Control for Y3?* = Hp'#, Y]' =0

Figure: Solutions of the controlled problem (13) and the corresponding numerical controls for p = 2 arising by
minimizing Hg over the whole space Vg.
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o .‘\\‘, - Wi

=0 =2

(a) Solution for Yg’o = H;:z’., Yg’l =0 (b) Control for Y;,O _ Hg:;:" Yg’l —0
05« s
5 \
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x=1 =0 x=1 t=0

Figure: Typical solution of the adjoint problem (9) corresponding to the minimizer (ﬂg’o, Ug’l) of 32 over \72
(left) or over (‘BZ X ‘BZ) X VZ (right).
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Implementation of the conjugate gradient with filtering

Modifications on Step 2: Fh 0 — M’“Yé’0 +(T) and Fh ! Mz”Yg,O(T).

The Gateaux derivative of J§ at (U 28, Uh 1) is:

837 (U35, U30) (U3, U3") = (F3°, U2 %), (F U3 )oe = (630, UZ )2+ (635, U Do
First restriction operator MM: (MES); = Eypj, for all 1 < j < (N —1)/2.

When both (U3, U3") and (G}'g, G3g) belong to BS x B}

(G50, U3 h 12 + (G5, U3 )h 00 = (MGEY, MU %)ap 11 + (MGG, MUT )ap01-

The second restriction operator I’
(TE}); = E22j + 3(Ezppjs1y2 + Eappj—1/2)/4 + (B2 i1 + E22j-1)/2 + (B2 2j43/2 + E22j—3/2)/4

(F20 U5 )2 + (F3" UD )2 = ((S2M) MRS, UL )op 11 + (MZM)TITFS Y, MUS Yok 0,1

The two components of the gradient are explicitly given by
Gyo =N~ 'rFL0 and Gyg = N1 (MM ~ITFyY,

where M1 is the inverse of the restriction operator I defined as the linear interpolation on a grid
of size h/2 of a function defined on a grid of size 2h.
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Numerical results (II)
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(e) Solution for Y"* = H¥ . ¥!"! =0 (f) Control for V7%= Hh . YP! =0
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x=1 t=0 =0 =2

(a) Solution for Y;”o = Hj, Yg’l =0 (b) Control for Yg’o = HS, Y;‘l =0

[N
s
x=0

. ‘/‘“

x=1 t=0 =0 =2

(c) Solution for Y2 = HY*  ¥2'' =0 (d) Control for Y3?* = Hp'#, Y]' =0

Figure: Solutions of the controlled problem (13) and the corresponding numerical controls for p = 2 arising by
minimizing Hg over the whole space Vg.
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(a) Solution for Yg’o — Hha
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x=1 =0

(c) Solution for Yh 0 H;

x=1 =0

(e) Solution for Yh 0 HZ
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Conclusions and open problems

In this talk:

o we show numerically the high frequency pathological effects of the P, approximation of the
boundary controllability problem for the 1 — d wave equation we discovered from a
theoretical point of view in [4].

@ we also illustrate the efficiency of our bi-grid filtering algorithm in recovering the
convergence of the numerical controls and compare our numerical results with the ones for
the P; approximation.

@ our conclusion is that after restricting the space over which we minimize the discrete
functionals to the bi-grid one, we obtain more accurate controls for the quadratic
approximation than for the linear one.

@ the same analysis can be done for the DG method in [3].

o the filtering technique can be generalized to higher order finite elements approximation of
waves (p > 3) on uniform meshes, a higher and higher accuracy of the numerical controls
being expected.

Open problems:

o the high frequency effects of the numerical approximations on irregular meshes is a
completely unknown open problem.

o higher-order FEM and DG approximations for other models like the Schrodinger equation.
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Conclusions and open problems

In this talk:

o we show numerically the high frequency pathological effects of the P, approximation of the
boundary controllability problem for the 1 — d wave equation we discovered from a
theoretical point of view in [4].

@ we also illustrate the efficiency of our bi-grid filtering algorithm in recovering the
convergence of the numerical controls and compare our numerical results with the ones for
the P; approximation.

@ our conclusion is that after restricting the space over which we minimize the discrete
functionals to the bi-grid one, we obtain more accurate controls for the quadratic
approximation than for the linear one.

@ the same analysis can be done for the DG method in [3].

o the filtering technique can be generalized to higher order finite elements approximation of
waves (p > 3) on uniform meshes, a higher and higher accuracy of the numerical controls
being expected.

Open problems:

o the high frequency effects of the numerical approximations on irregular meshes is a
completely unknown open problem.

o higher-order FEM and DG approximations for other models like the Schrodinger equation.

Thank you very much for your attention!
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