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Ever present (probably long-term) goal

• CQPT for Control design
Control is ubiquitous in quantum information systems, i.e., every required unitary logic gate
is generated by control. Control is required to implement quantum error correction (QEC),
dynamical decoupling (DD), or any Hamiltonian-based control design.

The efficiency of CQPT suggests an intriguing prospect: to implement a complete “on-line”
quantum control scheme, that takes the results of CQPT as input, and iterates until it finds an
optimal control.
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Quantum estimation/system identification provides a means to

• characterize a quantum process

• verify the performance of a designed quantum device

• aid in the design or action of the device

• assist decoherence prevention/correction & control

Need protocols that

• require the minimum amount of resources
(e.g., measurements, inputs, computations, etc..)

• provide an estimate of precision of the reconstruction

• establish the limit of performance

Convex Optimization can address some of these goals



The following can be cast as convex optimization problems

• quantum state & process tomography

• optimal experiment design

• quantum error correction

• quantum state detection

These are generally not convex optimization problems

• Hamiltonian parameter estimation

• quantum control design

Not every non-convex problem cannot be solved



Emerging Applications of Compressed Sensing for Quantum Estimation

• Compressed Sensing (CS) initially developed to exploit the general nearly
sparse features of natural audio and video signals.

– E. Candes, J. Romberg, T. Tao. Robust uncertainty principles: Exact signal reconstruc-
tion from highly incomplete frequency information. IEEE Trans. on Information Theory,
February 2006

– D. Donoho, Compressed sensing. IEEE Trans. on Information Theory, April 2006

• Applications of compressed sensing have proliferated, though are just
emerging for quantum system estimation:

– extension of CS theory and numerical simulations for QPT

∗ R.L. Kosut. Quantum process tomography via L1-norm minimization. Arxiv preprint
arXiv:0812.4323, 2008.

∗ A. Shabani, R. L. Kosut, and H. Rabitz. Compressed quantum process tomography.
arXiv.org:0910.5498[quant-ph], 2009.

– the first experimental demonstration of CQPT (as discussed here).

∗ A. Shabani, R. L. Kosut, H. Rabitz, A. Fedrizzi, M. Almeida, M. Broome, and A. White.
Exponentially faster measurement of quantum dynamics via compressed sensing. in
preparation, 2010.



more quantum system applications ...

– ghost-imaging

∗ O. Katz, Y. Bromberg, and Y. Silberberg. Compressive ghost imaging. Applied Physics
Letters, 95(13):1110, 2009.

∗ W. Gong and S. Han. Super-resolution ghost imaging via compressive sampling recon-
struction. Arxiv preprint arXiv:0910.4823, 2009.

– quantum state tomography (QST) for low rank density matrices

∗ D. Gross, Y.K. Liu, S.T. Flammia, S. Becker, and J. Eisert. Quantum state tomography
via compressed sensing. Arxiv preprint arXiv:0909.3304, 2009.

approach is based on ideas from Matrix Completion

∗ E. J. Candes and B. Recht. Exact matrix completion via convex optimization. Found.
of Comput. Math., pages 717–772, 2009.



Quantum Process Tomography

The characterization of dynamics of open quantum systems

• a fundamental problem in quantum information science and coherent control

– for verifying the performance of an information-processing device
– for design of decoherence prevention/correction methods



Process Matrix Representation

ρ(t = 0) = ρ ρ(t = T) =
n2∑

α,β=1
XαβBαρB

†
β

ρE(t = 0)

System

Environment

USE
accessible
inaccessible

control: c(t),0 ≤ t ≤ T

• X ∈ Cn2×n2 with X positive semidefinite (written X ≥ 0) characterizes state-to-state map of
any open n-level system where ρ, ρE are uncorrelated at t = 0

• X is not unique, depends on matrix basis set {Bα}, typically orthonormal: Tr(B†
αBβ) = δαβ.

• trace-preserving if
∑

αβ XαβB
†
βBα = In

• unitary system: A(ρ) = UρU † (single unitary OSR element)

• Quantum Process Tomography (QPT) – estimate X



Standard QPT
Repeat experiment Nk times in each configuration k ∈ {1, . . . , ncfg}

ρk ∈ Cn×n −→ X

↑ ↓ ↑ ↓ ↑

−→ Mk

—D
—D...
—D

outcomes
i ∈ {1, . . . , nout}

• form empirical estimate of probability outcomes: pemp
ik = Nik/Nk

— Nik is number of times outcome i occurred in configuration k

• form model probability outcomes: pik(X) = Tr (GikX)
— (Gik)αβ = Tr(Bα ρk B†

β Mik)

• solve for least-squares estimate from:

minimize V (X) =
∑

i,k

( pemp
ik − pik(X) )2

subject to ∑
α,β XαβB†

βBα = In, X ≥ 0

• this is a convex optimization in X ∈ Cn2×n2



Process matrix parameters

• the for process matrix X ∈ Cn2×n2:

X ≥ 0 (positive semidefinite) ⇒ n4 real parameters
∑n2

α,β=1 XαβB†
βBα = In ⇒ n2 linear constraints

• ⇒ n4 − n2 real parameters

• for q qubits n = 2q ⇒ scaling with parameters is exponential in the number of
qubits, e.g.,

q = [1, 2, 3, 4] ⇒ n4 − n2 = [12, 240, 4032, 65280]

• demanding on laboratory resources and computation time.



Sparsity

• Can the process matrix be characterized by a few parameters?

– Many experimental results show a process matrix that is sparse or has a few significant
elements, i.e., almost sparse. This is seen, for example, in experiments with NMR, ion
traps, and linear optics.

– in these cases there are often a small number of sources of errors, or a few dominant
system-environment interactions, or the system is weakly decohering.

– for these reasons a “natural basis” selection is adequate although not as efficient as pos-
sible.

• Can this be generalized?

– For an initially designed quantum system whose dynamics are close to a desired unitary
(a primary goal in quantum information processing) the process matrix in a basis corre-
sponding to the ideal unitary is almost sparse.

– Ideally, with no environmental interactions, the process matrix in the ideal unitary basis
has a single non-zero element in the 11-location equal to n, the dimension of the system.

– Channel fidelity compares the actual channel X with the ideal unitary U ideal. Expressing
X in the basis of the ideal unitary, fchn(X, Uideal) = X11/n



Numerical example:
CQPT of noisy Quantum Fourier Transform (Natural-Basis)
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Numerical example:
CQPT of noisy Quantum Fourier Transform (SVD-Basis)
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Compressed Sensing

• Compressed Sensing methods (%1-norm minimization) have proven to be ex-
tremely effective in significantly reducing resources for estimating sparse or
almost sparse signals.a b

• Outline for this section

– review of standard QPT via least-squares
– review of basic CS theory and algorithm
– numerical example
– experimental demonstration

aE. Candes, J. Romberg, T. Tao. Robust uncertainty principles: Exact signal reconstruction from
highly incomplete frequency information. IEEE Trans. on Information Theory, February 2006

bD. Donoho, Compressed sensing. IEEE Trans. on Information Theory, April 2006



Review of Standard Linear Least-Squares Estimation
(%2-norm minimization)

• standard problem: estimate x0 ∈ RN from noisy linear measurements y ∈ Rm

y = Ax0 + w, ‖w‖%2 ≤ ε (A ∈ Rm×N)

– complete measurements (rank(A) ≥ N ):

minimize‖Ax − y‖%2 =⇒ ‖x' − x0‖%2 = O(ε)

– incomplete measurements (m < N ), result usually meaningless without a
prior, e.g., ‖P−1(x0 − x0)‖%2 ≤ 1



Compressed Sensing

• With incomplete measurements (m < N )

minimize ‖x‖%1 subject to ‖Ax − y‖%2 ≤ ε
⇓

‖x' − x0‖%2 = O(‖x0(s) − x0‖%1) + O(ε)

(x0(s) is the best s-sparse approximation of x0)

• Known conditions:

– the matrix A satisfies the restricted isometry property (RIP):

(1 − δs)‖xs‖2%2 ≤ ‖Axs‖2%2 ≤ (1 + δs)‖xs‖2%2, for all s-sparse xs

– the isometry constant δ2s <
√

2 − 1

– the number of configurations m ≥ C0s log(N/s)

• if x0 is s-sparse and noise-free measurements, ε = 0, these conditions insure
perfect signal recovery with high probability.



Compressed Quantum Process Tomography (CQPT) a b

• Estimate true X0 ∈ Cn2×n2 by solving the %1-norm minimization:

minimize ‖(X‖%1 ≡ ∑
α,β |Xαβ|

subject to ‖(p emp − G (X‖%2 ≤ ε

X ≥ 0,
∑

α,β XαβB†
βBα = In

• If G ∈ Cm×n4 satisfies RIP, and m = O(s log(n4)),
then solution X' satisfies:

‖(X' − (X0‖%2 = O(‖(X0(s) − (X0‖%1) + O(ε)

X0(s) is the best s-sparse process matrix approximation of X0

• for q-qubits, n = 2q ⇒ m = O(sq).

– Heralds a scaling of resources linear in number of qubits!

aA. Shabani, R. Kosut, H. Rabitz. Compressed Quantum Process Tomography.
quant-ph/0910.5498v1, 2009

bR. Kosut. Quantum process tomography via %1-norm minimization. quant-ph/0812.4323, 2008
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• Absolute values of the 256 process matrix elements of X true
qft ∈ C16×16

sorted by relative magnitude (with respect to maximum)
for fchn ∈ {0.95,0.80,0.70}.

• Sparsity approximation value (horizontal axis) where curves cross below 0.01
correlate well with resources to achieve high fidelity estimates.



Experimental set-up: CZ-Gate a
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• Photon pairs are created via spontaneous parametric downconversion in a β-Barium-Borate
crystal pumped with a 76 MHz fs laser at a wavelength of 410 nm. Polarizing beamsplitters,
half- and quarter-wave plates are used to prepare the photons in a specific state. The photons
are detected by single-photon avalanche photo detectors. The probabilistic CZ gate is based
on two-photon interference at a partially polarizing beamsplitter. It was implemented between
two polarization-encoded photons from the same creation event.

• CQPT was tested against standard QPT (via least-squares) by performing both on a range of
decoherence levels engendered by varying the laser pump power.

aA. Fedrizzi, M. Almeida, M. Broome, and A. White, Center for Quantum Computer Technology,
Department of Physics, The University of Queensland, Australia



Experimental results: CQPT of CZ-Gate

All configurations
(m = 576)
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Experimental results: CQPT of CZ-Gate

All configurations
(m = 576)
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(m = 18)
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The high-fidelity estimates obtained by CQPT can be understood by examining the next figure which
shows the absolute value, sorted by relative magnitude, of the full data estimated process matrix
elements. If we take an error range of 0.01 to 0.02, then where the plot crosses that range is a
reasonable guess as the s-sparse approximation levels indicated in the CS theory: s ≈ [20,60]
correlates well with the high value worst-case fidelities seen in the experiment and previous QFT
simulations.
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• Absolute values, sorted by relative magnitude, of the 256 process matrix elements of the
process matrix in the SVD basis of ideal:
– numerical example: noisy QFT for fchn ∈ {0.95,0.80,0.70}.
– experimental result: full (576) configuration estimate; fchn = 0.88

• results are very similar for both simulation and experiment.



The Role of Estimation: Alleviate Havoc & Uncertainty

“ ... and these imperfections may produce
considerable havoc.”

– Richard Feynman
(

“Quantum Mechanical Computers”
Optics News, February 1985

)

Oxford, 1907

“It ain’t what you don’t know
that gets you into trouble.
It’s what you know for sure
that just ain’t so.”
– Mark Twain


