Finite dimensional techniques for control of bilinear Schrödinger equations

Thomas Chambrion (Nancy University)

Banff, April 3-8 2011

The state of a quantum system evolving in a space (Ω, μ) can be represented by its *wave function* ψ . Under suitable hypotheses, the dynamics for ψ is given by the Schrödinger equation :

$$i\frac{\partial\psi}{\partial t}(x,t) = -\Delta\psi(x,t) + V(x)\psi(x,t)$$

 Ω : finite dimensional manifold, for instance a bounded domain of $\mathbf{R}^{\mathbf{d}}$, or $\mathbf{R}^{\mathbf{d}}$, or SO(3),... $\psi \in L^{2}(\Omega, \mathbf{C})$: wave function (state of the system) Quantum systems

The state of a quantum system evolving in a space (Ω, μ) can be represented by its *wave function* ψ . Under suitable hypotheses, the dynamics for ψ is given by the Schrödinger equation :

$$i\frac{\partial\psi}{\partial t}(x,t) = -\Delta\psi(x,t) + V(x)\psi(x,t) + u(t)W(x)\psi(x,t)$$

 Ω : finite dimensional manifold, for instance a bounded domain of $R^d,$ or $R^d,$ or SO(3),...

 $\psi \in L^2(\Omega, \mathbf{C})$: wave function (state of the system)

The well-posedness is far from obvious. In a first time, we will assume that there exists a unique weak solution $t \mapsto \Upsilon^u_t \psi_0$ with initial condition ψ_0 .

Energy propagation

Numerical simulations

Controllability

Exact controllability

 ψ_a , ψ_b given. Is it possible to find a control $u : [0, T] \rightarrow \mathbb{R}$ such that $\Upsilon^u_T(\psi_a) = \psi_b$?

Approximate controllability

 $\epsilon > 0$, ψ_a , ψ_b given. Is it possible to find a control $u : [0, T] \to \mathbb{R}$ such that $\|\Upsilon^u_T(\psi_a) - \psi_b\| < \epsilon$?

Simultaneous approximate controllability

Let $\epsilon > 0$, $\psi_1, \psi_2, \dots, \psi_p$ in H and $\Psi \in U(H)$ be given. Is it possible to find a control $u : [0, T] \to \mathbb{R}$ such that $\|\Upsilon^u_T(\psi_j) - \Psi\psi_j\| < \epsilon$ for every $j \le p$?

Controllability results

Energy propagation

Numerical simulations

A negative result

Theorem (Ball-Marsden-Slemrod, 1982 and Turinici, 2000)

If $\psi \mapsto W\psi$ is bounded, then the reachable set from any point (with L^{1+r} controls) of the control system :

$$i \frac{\partial \psi}{\partial t}(x,t) = -\Delta \psi(x,t) + V(x)\psi(x,t) + u(t)W(x)\psi(x,t)$$

has dense complement in the unit sphere.

Controllability results

Energy propagation

Numerical simulations

Non controllability of the harmonic oscillator (I)

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2}\frac{\partial^2\psi}{\partial x^2} + \frac{1}{2}x^2\psi - u(t)x\psi$$

with $\psi \in L^2(\mathbf{R}, \mathbf{C})$.

Theorem (Mirrahimi-Rouchon, 2004)

The quantum harmonic oscillator is not controllable.

(see also Illner-Lange-Teismann 2005 and Bloch-Brockett-Rangan 2006)

Non controllability of the harmonic oscillator (II)

The Galerkin approximation of order n is controllable (in U(n)) :

$$A = -\frac{i}{2} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 2n+1 \end{pmatrix}$$
$$B = -i \begin{pmatrix} 0 & 1 & 0 & \cdots & \cdots & 0 \\ 1 & 0 & \sqrt{2} & \ddots & \cdots & 0 \\ 1 & 0 & \sqrt{2} & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 & \sqrt{n+1} \\ 0 & \cdots & \cdots & 0 & \sqrt{n+1} & 0 \end{pmatrix}$$

Controllability results

Energy propagation

Numerical simulations

Exact controllability for the potential well

$$\Omega = (-1/2, 1/2)$$

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2}\frac{\partial^2\psi}{\partial x^2} - u(t)x\psi$$

Theorem (Beauchard-Coron, 2005)

The system is exactly controllable in the intersection of the unit sphere of L^2 with $H^7_{(0)}$.

Controllability results

Energy propagation

Numerical simulations

Lyapounov techniques

$$i\frac{\partial\psi}{\partial t}(x,t) = -\Delta\psi(x,t) + V(x)\psi(x,t) + u(t)W(x)\psi(x,t)$$

Ω is a bounded domain of $R^d,$ with smooth boundary.

Theorem (Nersesyan, 2009)

•
$$\int_{\Omega} \overline{\phi_1} W \phi_j \neq 0$$
 for every $j \ge 1$ and

• $|\lambda_1 - \lambda_j| \neq |\lambda_k - \lambda_l|$ for every j > 1, $\{1, j\} \neq \{k, l\}$

then the control system is approximately controllable on the unit sphere for H^s norms.

Controllability results

Energy propagation

Numerical simulations

Fixed point theorem

$$\Omega = (0,1)$$

$$i\frac{\partial\psi}{\partial t}(x,t) = -\Delta\psi(x,t) + u(t)W(x)\psi(x,t)$$

Theorem (Beauchard-Laurent, 2009)

If there exists C > 0 such that for every $j \in N$,

$$|b_{1,j}| > \frac{C}{j^3}$$

then the system is exactly controllable in the intersection of the unit sphere with $H^3_{(0)}$.

Controllability results

Energy propagation

Numerical simulations

Finite dimensional case

If $H = \mathbf{C}^n$, then

$$\dot{x} = (A + u(t)B)x$$
 (Σ)

can be lifted in U(n) (the set of unitary matrices).

Theorem

(Σ) is exactly controllable in U(n) if and only of Lie(A, B) = $\mathfrak{u}(n) = \{M | \overline{M}^T = -M\}.$

Theorem

If (Σ) is controllable in U(n), the time diameter of U(n) for (Σ) with L^{∞} controls is non zero and finite.

Controllability results

Energy propagation

Numerical simulations

Abstract form (rough version)

$$\frac{d\psi}{dt} = A(\psi) + uB(\psi), \qquad u \in U \qquad (A, B, U)$$

with the assumptions

- *H* complex Hilbert space;
- $U \subset \mathbf{R}$;

$$\frac{d\psi}{dt} = A(\psi) + uB(\psi), \qquad u \in U \qquad (A, B, U)$$

with the assumptions

- *H* complex Hilbert space;
- $U \subset \mathbf{R}$;
- A, B skew-adjoint operators on H (not necessarily bounded);
- $(\phi_n)_{n \in \mathbf{N}}$ orthonormal basis of H made from eigenvectors of A;
- $\phi_n \in D(B)$ for every $n \in \mathbb{N}$.

$$\frac{d\psi}{dt} = A(\psi) + uB(\psi), \qquad u \in U \qquad (A, B, U)$$

with the assumptions

- *H* complex Hilbert space;
- $U \subset \mathbf{R}$;
- A, B skew-adjoint operators on H (not necessarily bounded);
- $(\phi_n)_{n \in \mathbf{N}}$ orthonormal basis of H made from eigenvectors of A;
- $\phi_n \in D(B)$ for every $n \in \mathbb{N}$.
- for every u in U, A + uB has a unique self-adjoint extension

$$\frac{d\psi}{dt} = A(\psi) + uB(\psi), \qquad u \in U \qquad (A, B, U)$$

with the assumptions

- *H* complex Hilbert space;
- $U \subset \mathbf{R}$;
- A, B skew-adjoint operators on H (not necessarily bounded);
- $(\phi_n)_{n \in \mathbb{N}}$ orthonormal basis of H made from eigenvectors of A;

•
$$\phi_n \in D(B)$$
 for every $n \in \mathbb{N}$.

• for every u in U, A + uB has a unique self-adjoint extension Under these assumptions

 $\forall u \in U, \exists \ e^{t(A+uB)} : H \rightarrow H$ group of unitary transformations

Controllability results

Energy propagation

Numerical simulations

Definition of solutions

$$i\frac{\partial\psi}{\partial t}(x,t) = -\Delta\psi(x,t) + V(x)\psi(x,t) + u(t)W(x)\psi(x,t)$$

We choose piecewise constant controls

Definition

We call $\Upsilon^{u}_{T}(\psi_{0}) = e^{t_{k}(A+u_{k}B)} \circ \cdots \circ e^{t_{1}(A+u_{1}B)}(\psi_{0})$ the solution of the system starting from ψ_{0} associated to the piecewise constant control $u_{1}\chi_{[0,t_{1}]} + u_{2}\chi_{[t_{1},t_{1}+t_{2}]} + \cdots$.

Energy propagation

Numerical simulations

Generic controllability results via geometric methods

Definition

 $S \subset \mathbf{N}^2$ is a non resonant chain of connectedness of (A, B) if

• for every $j \leq k$ in N, there exists a sequence $(s_1^1, s_2^1), \ldots, (s_1^p, s_2^p)$ in $S \cap \{1, \ldots, k\}$ such that $s_1^1 = j, s_2^p = k, s_2^l = s_1^{l+1}$;

•
$$b_{s_1,s_2}
eq 0$$
 for every $(s_1,s_2) \in S$

• for every (j, k) in \mathbb{N}^2 , $(s_1, s_2) \in S$, $\{s_1, s_2\} \neq \{j, k\}$ and $|\lambda_{s_1} - \lambda_{s_2}| \neq |\lambda_j - \lambda_k| \Rightarrow b_{j,k} = 0$.

Theorem (Boscain-Caponigro-Chambrion-Sigalotti, 2011)

If A has simple spectrum and (A, B) admits a non resonant chain of connectedness, then, for every $\delta > 0$, (A, B) is approximately simultaneously controllable by means of controls in $[0, \delta]$.

Energy propagation

Numerical simulations

Non simple spectrum

The result applies also (in a slighty more technical form : there should be no internal coupling inside the degenerate eigenspaces) to operators with non simple spectrum.

$$A = i \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} B = i \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Controllability results

Energy propagation

Numerical simulations

Estimates of the control

Define
$$\nu = \prod_{k=2}^{+\infty} \cos\left(\frac{\pi}{2k}\right) \approx 0.43.$$

Theorem (Boscain-Caponigro-Chambrion-Sigalotti)

If A has simple spectrum and (A, B) admits a non resonant chain of connectedness containing (1, 2), then, for every $\delta > 0$, for every $\epsilon > 0$, there exists a piecewise constant control $u : [0, T] \rightarrow [0, \delta]$ such that

$$\|\Upsilon^u_T(\phi_1) - \phi_2\| < \epsilon \text{ and } \|u\|_{L^1} \leq rac{\pi}{2
u|\langle \phi_1, B\phi_2
angle}$$

Notice that the bound of the L^1 norm of u does not depend on ϵ .

- **(**) A is skew adjoint with purely discrete spectrum $(i\lambda_n)_{n\in\mathbb{N}}$;
- ② the sequence $(\lambda_n)_{n \in \mathbb{N}}$ takes value in $(0, +\infty)$, is non-decreasing and its only accumulation point is $+\infty$;
- **3** there exists an Hilbert basis $(\phi_k)_{k \in \mathbb{N}}$ of H such that

 $A\phi_k = \lambda_k \phi_k$ for every k in **N**;

 Schrödinger Equation
 Controllability results
 Energy propagation
 Numerical simulations

 oo
 Abstract frame work (refined version)

- **(**) A is skew adjoint with purely discrete spectrum $(i\lambda_n)_{n\in\mathbb{N}}$;
- ② the sequence $(\lambda_n)_{n \in \mathbb{N}}$ takes value in $(0, +\infty)$, is non-decreasing and its only accumulation point is $+\infty$;
- So there exists an Hilbert basis $(\phi_k)_{k \in \mathbb{N}}$ of *H* such that *A* $\phi_k = \lambda_k \phi_k$ for every *k* in N;
- for every ψ in D(A), ψ belongs to D(B) and there exists $s_{A,B} < 1/2$ such that $||B\psi|| \le ||(iA)^{s_{A,B}}\psi||$;
- for every u in R, A + uB is skew-adjoint, D(A + uB) = D(A)and $D((A + uB)^2) = D(A^2)$;
- So For every interval *I* containing 0, for every Radon measure *u* on *I*, t → A(t) := e^{u([0,t))B}Ae^{-u([0,t))B} is a family of skew-adjoint operators with common domain D = D(A) and A is continuous with bounded variation from *I* to B(D, H);
 For every Radon measure *u*, sup_{t∈I} ||A(t)⁻¹||_{B(H,D(A))} < +∞;

- **(**) A is skew adjoint with purely discrete spectrum $(i\lambda_n)_{n\in\mathbb{N}}$;
- ② the sequence $(\lambda_n)_{n \in \mathbb{N}}$ takes value in $(0, +\infty)$, is non-decreasing and its only accumulation point is $+\infty$;
- So there exists an Hilbert basis $(\phi_k)_{k \in \mathbb{N}}$ of *H* such that *A* $\phi_k = \lambda_k \phi_k$ for every *k* in N;
- for every ψ in D(A), ψ belongs to D(B) and there exists $s_{A,B} < 1/2$ such that $||B\psi|| \le ||(iA)^{s_{A,B}}\psi||$;
- for every u in R, A + uB is skew-adjoint, D(A + uB) = D(A)and $D((A + uB)^2) = D(A^2)$;
- For every interval *I* containing 0, for every Radon measure *u* on *I*, t → A(t) := e^{u([0,t))B} Ae^{-u([0,t))B} is a family of skew-adjoint operators with common domain D = D(A) and A is continuous with bounded variation from *I* to B(D, H);
- For every Radon measure u, $\sup_{t \in I} \|\mathcal{A}(t)^{-1}\|_{B(H,D(A))} < +\infty$;
- there exists $C_{A,B} > 0$ such that $|\Im\langle A\psi, B\psi\rangle| \le C_{A,B}|\langle A\psi, \psi\rangle|$ for every ψ in D(A).

Schrödinger Equation	Controllability results	Energy propagation ○●○○○○○○	Numerical simulations
Examples			

Most of the academic examples fits within this abstract framework.

• Rotation of a planar molecule, $\Omega={\cal S}^1$

$$\mathrm{i}rac{\partial\psi}{\partial t}=-\Delta\psi+u(t)\cos\theta\psi$$

• (with some work) Harmonic oscillator, $\Omega=\textbf{R}$

$$\mathrm{i}\frac{\partial\psi}{\partial t} = -\Delta\psi + x^2\psi + u(t)x\psi$$

• Infinite square potential well, $\Omega=(-1,1)$

$$\mathrm{i}\frac{\partial\psi}{\partial t} = -\Delta\psi + u(t)x\psi$$

Energy propagation

Numerical simulations

Definition of solutions

With these hypotheses, $u \mapsto \Upsilon^u \psi_0$ is defined for every piecewise constant function u. The mapping $u \mapsto \Upsilon^u \psi_0$ admits a unique continuous extension to the set of Radon measures (that includes Dirac masses), endowed with the distance of total variation.

Recall that every L^1_{loc} function u can be associated to a Radon measure μ_u

$$\mu_u(I) = \int_I u(s) \mathrm{d}s = \int_I \mathrm{d}u.$$

Controllability results

Energy propagation

Numerical simulations

Energy propagation

Remark (Boussaïd-Caponigro-TC)

For every K > 0, there exists C_K such that for every $T \ge 0$ and for every control u for which $||u||_{L^1} < K$, one has

 $|\langle A\Upsilon^u_T(\phi_1),\Upsilon^u_T(\phi_1)\rangle| < C_{\mathcal{K}}.$

Controllability results

Energy propagation

Numerical simulations

Good Galerkyn approximation

$$\dot{x} = A^{(N)}x + u(t)B^{(N)}x$$

Galerkyn approximation of order *N*, with associated propagator $t \mapsto X_t^{(N),u}$.

Theorem (Good Galerkin Approximation)

For every $\epsilon > 0$, $K \ge 0$, $n \in \mathbb{N}$, there exists $N \in \mathbb{N}$ such that for every $u \in L^1(0, \infty)$

$$\|u\|_{L^1} \leq K \implies \|\Upsilon^u_t(\phi_j) - X^{(N),u}_t\phi_j\| < \epsilon,$$

for every $t \geq 0$ and $i = 1, \ldots, n$.

Controllability results

Energy propagation

Numerical simulations

Periodic excitations

 $(j,k)\in \mathsf{N}^2$ is uniquely resonant if $\langle \phi_j,B\phi_k
angle
eq 0$ and

$$\{l, m\} \neq \{j, k\} \Rightarrow \frac{|\lambda_j - \lambda_k|}{|\lambda_l - \lambda_m|} \notin \mathbf{Z}$$

Theorem

Let $u^* : \mathbf{R}^+ \to \mathbf{R}$ be a locally integrable function. Assume that u^* is periodic with smallest period $T = \frac{2\pi}{|\lambda_j - \lambda_k|}$ for some uniquely resonant (j, k). If

$$\int_0^{\tau} u^*(\tau) e^{\mathrm{i}(\lambda_j - \lambda_k)\tau} \mathrm{d}\tau \neq 0,$$

then there exists $T^* > 0$ such that the sequence $\left(\left| \langle \phi_k, \Upsilon_{nT^*}^{\frac{u^*}{n}}(\phi_j) \rangle \right| \right)_{n \in \mathbb{N}}$ tends to 1 as n tends to infinity.

Controllability results

Energy propagation

Numerical simulations

Time estimates

$$\lim_{n\to\infty} \left(\left| \langle \phi_k, \Upsilon_{nT^*}^{\frac{u^*}{n}}(\phi_j) \rangle \right| \right)_{n\in \mathbf{N}} = 1$$

with

$$T^* = \frac{\pi T}{2|b_{j,k}| \left| \int_0^T u^*(\tau) e^{i(\lambda_{l_1} - \lambda_{l_2})\tau} d\tau \right|}$$

Controllability results

Energy propagation

Numerical simulations

Efficiency

L^1 norm needed for the transfer :

Efficiency for the transition (j, k):

$$0 \leq \frac{\left|\int_{0}^{\tau} u^{*}(\tau) e^{\mathrm{i}(\lambda_{j} - \lambda_{k})\tau} \mathrm{d}\tau\right|}{\int_{0}^{\tau} |u^{*}(\tau)| \mathrm{d}\tau} \leq 1$$

Controllability results

Energy propagation

Numerical simulations

The planar molecule

Let us consider a 2D-planar molecule submitted to a laser

$$irac{\partial\psi}{\partial t}(heta,t)=-rac{1}{2}\partial_{ heta}^{2}\psi(heta,t)+u(t)\cos(heta)\psi(heta,t)\qquad heta\in\mathsf{R}/2\pi$$

- The parity of ψ cannot change \Rightarrow no global controllability
- We first look at the odd part
- We try to steer the system from the first odd eigenstate to the second odd eigenstate

Controllability results

Energy propagation

Numerical simulations

Galerkin approximation

$$A = i \begin{pmatrix} 1 & 0 & \dots & \\ 0 & 4 & 0 & \ddots \\ \vdots & \ddots & 9 & \ddots \\ & \vdots & \ddots & 16 \end{pmatrix} B = i \begin{pmatrix} 0 & 1/2 & 0 & \dots \\ 1/2 & 0 & 1/2 & \ddots \\ 0 & 1/2 & 0 & 1/2 \\ \vdots & \ddots & 1/2 & 0 \end{pmatrix}$$

 $\{(k, k \pm 1); k \in \mathbb{N}\}$ is a non-resonant chain of connectedness. 9 - 4 = 5 is not a multiple of 4 - 1 = 3 (but 25 - 16 = 9 is).

Controllability results

Energy propagation

Numerical simulations

Numerical simulations

Good Galerkyn approximation

The error done when replacing the original system by its Galerkyn approximation of order 22 is smaller than $\epsilon = 10^{-7}$ when $\|u\|_{L_1} \leq 13/3$ and initial condition is ϕ_1 .

Controllability results

Energy propagation

Numerical simulations

Evolution of the modulus of the second coordinate when applying the control $t \mapsto \cos^3(3t)/30$ on the planar molecule (odd subspace) with initial condition ϕ_1 (*Eff*_{1→2} $\approx 88\%$).

Schrödinger Equation 00 Results (11) Controllability results

Energy propagation

Numerical simulations

Evolution of the modulus of the second coordinate when applying the control : $t \mapsto \cos^2(3t)/30$ on the planar molecule (odd subspace) with initial condition ϕ_1 (*Eff*_{1→2} = 0).

Controllability results

Energy propagation

Numerical simulations

Efficiencies

Control <i>u</i> *	n	Time t [†]	Precision	Numerical
(Efficiency)			$1-p^{\dagger}$	Efficiency
	n = 1	6.8	2.10^{-2}	73%
$t\mapsto \cos(3t)$	<i>n</i> = 10	63	4.10^{-4}	78%
$\pi/4pprox 79\%$	<i>n</i> = 30	189	3.10^{-5}	78%
	<i>n</i> = 1	8.9	2.10^{-2}	83%
$t\mapsto \cos(3t)^3$	<i>n</i> = 10	84	2.10 ⁻⁴	88%
$9\pi/32pprox 88\%$	<i>n</i> = 30	252	2.10 ⁻⁵	88%
	<i>n</i> = 1	10	7.10^{-3}	93%
$t\mapsto \cos(3t)^5$	<i>n</i> = 10	101	2.10^{-4}	92%
$75\pi/256pprox 92\%$	<i>n</i> = 30	302	2.10^{-5}	92%

Asymptotically, precision is $\sim \frac{K}{n}$. (Numerically, much better for small n.)

Controllability results

Energy propagation

Numerical simulations

Even eigenstates

We consider next the Hilbert space of even functions on the torus.

$$A = i \begin{pmatrix} 0 & 0 & \dots & \\ 0 & 1 & 0 & \ddots \\ \vdots & \ddots & 4 & \ddots \\ \vdots & \ddots & 9 \end{pmatrix} B = i \begin{pmatrix} 0 & 1/\sqrt{2} & 0 & \dots \\ 1/\sqrt{2} & 0 & 1/2 & \ddots \\ 0 & 1/2 & 0 & 1/2 \\ \vdots & \ddots & 1/2 & 0 \end{pmatrix}$$

 $\{(k, k \pm 1); k \in \mathbb{N}\}$ is a non-resonant chain of connectedness. 4 - 1 = 3 is a multiple of 1 - 0 = 1.

Controllability results

Energy propagation

Numerical simulations

Control via periodic excitations

$$Eff_{(j,k)}(u^*) = \frac{\left|\int_0^{\frac{2\pi}{|\lambda_j - \lambda_k|}} u^*(\tau)e^{i(\lambda_j - \lambda_k)\tau} \mathrm{d}\tau\right|}{\int_0^{\frac{2\pi}{|\lambda_j - \lambda_k|}} |u^*(\tau)| \mathrm{d}\tau}$$

We have to find a 1-periodic shape such that

- the efficiency for the transition (1,2) is as large as possible
- the efficiency for the transition (2,3) is zero

The control given explicitly by Boscain, Caponigro, TC, Sigalotti has efficiencies $\frac{\sqrt{3}}{2}$ and 0.

Controllability results

Energy propagation

Numerical simulations

Multiple resonant transitions

To kill the transition (2, 3), one had to multiply the efficiciency of the transition to be kept by $\cos(\pi/6)$.

Controllability results

Energy propagation

Numerical simulations

Multiple resonant transitions

To kill the transition (2, 3), one had to multiply the efficiciency of the transition to be kept by $\cos(\pi/6)$. Remember ν ?

$$\nu = \prod_{k=2}^{+\infty} \cos\left(\frac{\pi}{2k}\right) \approx 0.43$$

Controllability results

Energy propagation

Numerical simulations

Concluding remarks

Geometric control theory provides effective methods

- to investigate various notions (including density matrices) of approximate controllability of a bilinear system with discrete spectrum;
- to design efficient control;
- to provide precise estimates for the analysis/simulations.
- But it is unable (up to now)
 - to provide *exact* controllability results of bilinear system with discrete spectrum;
 - to provide controllability results for the propagator.

Controllability results

Energy propagation

Numerical simulations

Future directions

• Time estimates with large controls

Controllability results

Energy propagation

Numerical simulations

Future directions

- Time estimates with large controls
- Continuous spectrum

Controllability results

Energy propagation

Numerical simulations

Future directions

- Time estimates with large controls
- Continuous spectrum
- Non linear equations

Questions

- Does it really make sense? (allowable shapes, time scale, ...)
- What is the physical meaning of $||u||_{L_1} = \int |u|$?
- Do you know examples of bilinear systems with discrete spectrum ?