Finite dimensional techniques for control of bilinear Schrödinger equations

Thomas Chambrion (Nancy University)

Banff, April 3-8 2011

Quantum systems

The state of a quantum system evolving in a space (Ω, μ) can be represented by its wave function ψ. Under suitable hypotheses, the dynamics for ψ is given by the Schrödinger equation :

$$
i \frac{\partial \psi}{\partial t}(x, t)=-\Delta \psi(x, t)+V(x) \psi(x, t)
$$

Ω : finite dimensional manifold, for instance a bounded domain of $\mathbf{R}^{\mathbf{d}}$, or $\mathbf{R}^{\mathbf{d}}$, or $S O(3), \ldots$
$\psi \in L^{2}(\Omega, \mathbf{C})$: wave function (state of the system)

Quantum systems

The state of a quantum system evolving in a space (Ω, μ) can be represented by its wave function ψ. Under suitable hypotheses, the dynamics for ψ is given by the Schrödinger equation:

$$
i \frac{\partial \psi}{\partial t}(x, t)=-\Delta \psi(x, t)+V(x) \psi(x, t)+u(t) W(x) \psi(x, t)
$$

Ω : finite dimensional manifold, for instance a bounded domain of $\mathbf{R}^{\mathbf{d}}$, or $\mathbf{R}^{\mathbf{d}}$, or $S O(3), \ldots$
$\psi \in L^{2}(\Omega, \mathbf{C})$: wave function (state of the system)
The well-posedness is far from obvious. In a first time, we will assume that there exists a unique weak solution $t \mapsto \Upsilon_{t}^{\mu} \psi_{0}$ with initial condition ψ_{0}.

Controllability

Exact controllability

ψ_{a}, ψ_{b} given. Is it possible to find a control $u:[0, T] \rightarrow \mathbf{R}$ such that $\Upsilon_{T}^{\mu}\left(\psi_{a}\right)=\psi_{b}$?

Approximate controllability

$\epsilon>0, \psi_{a}, \psi_{b}$ given. Is it possible to find a control $u:[0, T] \rightarrow \mathbf{R}$ such that $\left\|\Upsilon_{T}^{u}\left(\psi_{a}\right)-\psi_{b}\right\|<\epsilon$?

Simultaneous approximate controllability

Let $\epsilon>0, \psi_{1}, \psi_{2}, \ldots, \psi_{p}$ in H and $\psi \in \mathbf{U}(H)$ be given. Is it possible to find a control $u:[0, T] \rightarrow \mathbf{R}$ such that $\left\|\Upsilon_{T}^{u}\left(\psi_{j}\right)-\Psi \psi_{j}\right\|<\epsilon$ for every $j \leq p$?

A negative result

Theorem (Ball-Marsden-Slemrod, 1982 and Turinici, 2000)

If $\psi \mapsto W \psi$ is bounded, then the reachable set from any point (with L^{1+r} controls) of the control system :

$$
i \frac{\partial \psi}{\partial t}(x, t)=-\Delta \psi(x, t)+V(x) \psi(x, t)+u(t) W(x) \psi(x, t)
$$

has dense complement in the unit sphere.

Non controllability of the harmonic oscillator (I)

$$
i \frac{\partial \psi}{\partial t}=-\frac{1}{2} \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{1}{2} x^{2} \psi-u(t) x \psi
$$

with $\psi \in L^{2}(\mathbf{R}, \mathbf{C})$.

Theorem (Mirrahimi-Rouchon, 2004)

The quantum harmonic oscillator is not controllable.
(see also Illner-Lange-Teismann 2005 and Bloch-Brockett-Rangan 2006)

Non controllability of the harmonic oscillator (II)

The Galerkin approximation of order n is controllable (in $U(n)$) :

$$
\begin{gathered}
A=-\frac{i}{2}\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 3 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 2 n+1
\end{array}\right) \\
B=-i\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & \cdots & 0 \\
1 & 0 & \sqrt{2} & \ddots & & \vdots \\
0 & \sqrt{2} & 0 & \sqrt{3} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & 0 & \sqrt{n+1} \\
0 & \cdots & \cdots & 0 & \sqrt{n+1} & 0
\end{array}\right)
\end{gathered}
$$

Exact controllability for the potential well

$$
\Omega=(-1 / 2,1 / 2)
$$

$$
i \frac{\partial \psi}{\partial t}=-\frac{1}{2} \frac{\partial^{2} \psi}{\partial x^{2}}-u(t) x \psi
$$

Theorem (Beauchard-Coron, 2005)

The system is exactly controllable in the intersection of the unit sphere of L^{2} with $H_{(0)}^{7}$.

Lyapounov techniques

$$
i \frac{\partial \psi}{\partial t}(x, t)=-\Delta \psi(x, t)+V(x) \psi(x, t)+u(t) W(x) \psi(x, t)
$$

Ω is a bounded domain of R^{d}, with smooth boundary.

Theorem (Nersesyan, 2009)

If

- $\int_{\Omega} \overline{\phi_{1}} W \phi_{j} \neq 0$ for every $j \geq 1$ and
- $\left|\lambda_{1}-\lambda_{j}\right| \neq\left|\lambda_{k}-\lambda_{l}\right|$ for every $j>1,\{1, j\} \neq\{k, /\}$
then the control system is approximately controllable on the unit sphere for H^{5} norms.

Fixed point theorem

$\Omega=(0,1)$

$$
i \frac{\partial \psi}{\partial t}(x, t)=-\Delta \psi(x, t)+u(t) W(x) \psi(x, t)
$$

Theorem (Beauchard-Laurent, 2009)

If there exists $C>0$ such that for every $j \in \mathbf{N}$,

$$
\left|b_{1, j}\right|>\frac{C}{j^{3}}
$$

then the system is exactly controllable in the intersection of the unit sphere with $H_{(0)}^{3}$.

Finite dimensional case

If $H=\mathbf{C}^{n}$, then

$$
\dot{x}=(A+u(t) B) x
$$

can be lifted in $U(n)$ (the set of unitary matrices).

Theorem

(Σ) is exactly controllable in $U(n)$ if and only of $\operatorname{Lie}(A, B)=\mathfrak{u}(n)=\left\{M \mid \bar{M}^{T}=-M\right\}$.

Theorem

If (Σ) is controllable in $U(n)$, the time diameter of $U(n)$ for (Σ) with L^{∞} controls is non zero and finite.

Abstract form (rough version)

$$
\frac{d \psi}{d t}=A(\psi)+u B(\psi), \quad u \in U
$$

(A, B, U)
with the assumptions

- H complex Hilbert space ;
- $U \subset \mathbf{R}$;

Abstract form (rough version)

$$
\begin{equation*}
\frac{d \psi}{d t}=A(\psi)+u B(\psi), \quad u \in U \tag{A,B,U}
\end{equation*}
$$

with the assumptions

- H complex Hilbert space ;
- $U \subset \mathbf{R}$;
- A, B skew-adjoint operators on H (not necessarily bounded);
- $\left(\phi_{n}\right)_{n \in \mathbf{N}}$ orthonormal basis of H made from eigenvectors of A;
- $\phi_{n} \in D(B)$ for every $n \in \mathbf{N}$.

Abstract form (rough version)

$$
\begin{equation*}
\frac{d \psi}{d t}=A(\psi)+u B(\psi), \quad u \in U \tag{A,B,U}
\end{equation*}
$$

with the assumptions

- H complex Hilbert space ;
- $U \subset \mathbf{R}$;
- A, B skew-adjoint operators on H (not necessarily bounded);
- $\left(\phi_{n}\right)_{n \in \mathbf{N}}$ orthonormal basis of H made from eigenvectors of A;
- $\phi_{n} \in D(B)$ for every $n \in \mathbf{N}$.
- for every u in $U, A+u B$ has a unique self-adjoint extension

Abstract form (rough version)

$$
\begin{equation*}
\frac{d \psi}{d t}=A(\psi)+u B(\psi), \quad u \in U \tag{A,B,U}
\end{equation*}
$$

with the assumptions

- H complex Hilbert space ;
- $U \subset \mathbf{R}$;
- A, B skew-adjoint operators on H (not necessarily bounded);
- $\left(\phi_{n}\right)_{n \in \mathbf{N}}$ orthonormal basis of H made from eigenvectors of A;
- $\phi_{n} \in D(B)$ for every $n \in \mathbf{N}$.
- for every u in $U, A+u B$ has a unique self-adjoint extension

Under these assumptions
$\forall u \in U, \exists e^{t(A+u B)}: H \rightarrow H$ group of unitary transformations

Definition of solutions

$$
i \frac{\partial \psi}{\partial t}(x, t)=-\Delta \psi(x, t)+V(x) \psi(x, t)+u(t) W(x) \psi(x, t)
$$

We choose piecewise constant controls

Definition

We call $\Upsilon_{T}^{u}\left(\psi_{0}\right)=e^{t_{k}\left(A+u_{k} B\right)} \circ \cdots \circ e^{t_{1}\left(A+u_{1} B\right)}\left(\psi_{0}\right)$ the solution of the system starting from ψ_{0} associated to the piecewise constant control $u_{1} \chi_{\left[0, t_{1}\right]}+u_{2} \chi_{\left[t_{1}, t_{1}+t_{2}\right]}+\cdots$.

Generic controllability results via geometric methods

Definition

$S \subset \mathbf{N}^{2}$ is a non resonant chain of connectedness of (A, B) if

- for every $j \leq k$ in \mathbf{N}, there exists a sequence

$$
\begin{aligned}
& \left(s_{1}^{1}, s_{2}^{1}\right), \ldots,\left(s_{1}^{p}, s_{2}^{p}\right) \text { in } S \cap\{1, \ldots, k\} \text { such that } \\
& s_{1}^{1}=j, s_{2}^{p}=k, s_{2}^{\prime}=s_{1}^{I+1} ;
\end{aligned}
$$

- $b_{s_{1}, s_{2}} \neq 0$ for every $\left(s_{1}, s_{2}\right) \in S$
- for every (j, k) in $\mathbf{N}^{2},\left(s_{1}, s_{2}\right) \in S,\left\{s_{1}, s_{2}\right\} \neq\{j, k\}$ and $\left|\lambda_{s_{1}}-\lambda_{s_{2}}\right| \neq\left|\lambda_{j}-\lambda_{k}\right| \Rightarrow b_{j, k}=0$.

Theorem (Boscain-Caponigro-Chambrion-Sigalotti, 2011)

If A has simple spectrum and (A, B) admits a non resonant chain of connectedness, then, for every $\delta>0,(A, B)$ is approximately simultaneously controllable by means of controls in $[0, \delta]$.

Non simple spectrum

The result applies also (in a slighty more technical form : there should be no internal coupling inside the degenerate eigenspaces) to operators with non simple spectrum.

$$
A=\mathrm{i}\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right) B=\mathrm{i}\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Estimates of the control

Define $\nu=\prod_{k=2}^{+\infty} \cos \left(\frac{\pi}{2 k}\right) \approx 0.43$.

Theorem (Boscain-Caponigro-Chambrion-Sigalotti)

If A has simple spectrum and (A, B) admits a non resonant chain of connectedness containing $(1,2)$, then, for every $\delta>0$, for every $\epsilon>0$, there exists a piecewise constant control $u:[0, T] \rightarrow[0, \delta]$ such that

$$
\left\|\Upsilon_{T}^{u}\left(\phi_{1}\right)-\phi_{2}\right\|<\epsilon \text { and }\|u\|_{L^{1}} \leq \frac{\pi}{2 \nu\left|\left\langle\phi_{1}, B \phi_{2}\right\rangle\right|}
$$

Notice that the bound of the L^{1} norm of u does not depend on ϵ.

Abstract frame work (refined version)

Abstract frame work (refined version)

(1) A is skew adjoint with purely discrete spectrum $\left(\mathrm{i} \lambda_{n}\right)_{n \in \mathbf{N}}$;
(2) the sequence $\left(\lambda_{n}\right)_{n \in \mathbf{N}}$ takes value in $(0,+\infty)$, is non-decreasing and its only accumulation point is $+\infty$;
(3) there exists an Hilbert basis $\left(\phi_{k}\right)_{k \in N}$ of H such that $A \phi_{k}=\lambda_{k} \phi_{k}$ for every k in \mathbf{N};

Abstract frame work (refined version)

(1) A is skew adjoint with purely discrete spectrum $\left(\mathrm{i} \lambda_{n}\right)_{n \in \mathbf{N}}$;
(2) the sequence $\left(\lambda_{n}\right)_{n \in \mathbf{N}}$ takes value in $(0,+\infty)$, is non-decreasing and its only accumulation point is $+\infty$;
(3) there exists an Hilbert basis $\left(\phi_{k}\right)_{k \in N}$ of H such that $A \phi_{k}=\lambda_{k} \phi_{k}$ for every k in \mathbf{N};
(4) for every ψ in $D(A), \psi$ belongs to $D(B)$ and there exists $s_{A, B}<1 / 2$ such that $\|B \psi\| \leq\left\|(\mathrm{i} A)^{s_{A, B}} \psi\right\|$;
(5) for every u in $\mathrm{R}, A+u B$ is skew-adjoint, $D(A+u B)=D(A)$ and $D\left((A+u B)^{2}\right)=D\left(A^{2}\right)$;
(6) For every interval I containing 0 , for every Radon measure u on $I, t \mapsto \mathcal{A}(t):=e^{u([0, t)) B} A e^{-u([0, t)) B}$ is a family of skew-adjoint operators with common domain $\mathcal{D}=D(A)$ and \mathcal{A} is continuous with bounded variation from $/$ to $\mathcal{B}(\mathcal{D}, H)$;
(1) For every Radon measure u, $\sup _{t \in I}\left\|\mathcal{A}(t)^{-1}\right\|_{B(H, D(A))}<+\infty$;

Abstract frame work (refined version)

(1) A is skew adjoint with purely discrete spectrum $\left(\mathrm{i} \lambda_{n}\right)_{n \in \mathbf{N}}$;
(2) the sequence $\left(\lambda_{n}\right)_{n \in \mathbf{N}}$ takes value in $(0,+\infty)$, is non-decreasing and its only accumulation point is $+\infty$;
(3) there exists an Hilbert basis $\left(\phi_{k}\right)_{k \in \mathbf{N}}$ of H such that $A \phi_{k}=\lambda_{k} \phi_{k}$ for every k in \mathbf{N};
(4) for every ψ in $D(A), \psi$ belongs to $D(B)$ and there exists $s_{A, B}<1 / 2$ such that $\|B \psi\| \leq\left\|(\mathrm{i} A)^{s_{A, B}} \psi\right\|$;
(5) for every u in $\mathrm{R}, A+u B$ is skew-adjoint, $D(A+u B)=D(A)$ and $D\left((A+u B)^{2}\right)=D\left(A^{2}\right)$;
(0) For every interval I containing 0 , for every Radon measure u on $I, t \mapsto \mathcal{A}(t):=e^{u([0, t)) B} A e^{-u([0, t)) B}$ is a family of skew-adjoint operators with common domain $\mathcal{D}=D(A)$ and \mathcal{A} is continuous with bounded variation from $/$ to $\mathcal{B}(\mathcal{D}, H)$;
(1) For every Radon measure u, $\sup _{t \in I}\left\|\mathcal{A}(t)^{-1}\right\|_{B(H, D(A))}<+\infty$;
(8) there exists $C_{A, B}>0$ such that $|\Im\langle A \psi, B \psi\rangle| \leq C_{A, B}|\langle A \psi, \psi\rangle|$ for every ψ in $D(A)$.

Examples

Most of the academic examples fits within this abstract framework.

- Rotation of a planar molecule, $\Omega=S^{1}$

$$
\mathrm{i} \frac{\partial \psi}{\partial t}=-\Delta \psi+u(t) \cos \theta \psi
$$

- (with some work) Harmonic oscillator, $\Omega=\mathrm{R}$

$$
\mathrm{i} \frac{\partial \psi}{\partial t}=-\Delta \psi+x^{2} \psi+u(t) x \psi
$$

- Infinite square potential well, $\Omega=(-1,1)$

$$
\mathrm{i} \frac{\partial \psi}{\partial t}=-\Delta \psi+u(t) x \psi
$$

Definition of solutions

With these hypotheses, $u \mapsto \Upsilon^{u} \psi_{0}$ is defined for every piecewise constant function u. The mapping $u \mapsto \Upsilon^{u} \psi_{0}$ admits a unique continuous extension to the set of Radon measures (that includes Dirac masses), endowed with the distance of total variation.

Recall that every $L_{\text {loc }}^{1}$ function u can be associated to a Radon measure μ_{u}

$$
\mu_{u}(I)=\int_{I} u(s) \mathrm{d} s=\int_{I} \mathrm{~d} u .
$$

Energy propagation

Remark (Boussaïd-Caponigro-TC)

For every $K>0$, there exists C_{K} such that for every $T \geq 0$ and for every control u for which $\|u\|_{L^{1}}<K$, one has

$$
\left|\left\langle A \Upsilon_{T}^{\mu}\left(\phi_{1}\right), \Upsilon_{T}^{\mu}\left(\phi_{1}\right)\right\rangle\right|<C_{K} .
$$

Good Galerkyn approximation

$$
\dot{x}=A^{(N)} x+u(t) B^{(N)}{ }_{x}
$$

Galerkyn approximation of order N, with associated propagator $t \mapsto X_{t}^{(N), u}$.

Theorem (Good Galerkin Approximation)

For every $\epsilon>0, K \geq 0, n \in \mathbf{N}$, there exists $N \in \mathbf{N}$ such that for every $u \in L^{1}(0, \infty)$

$$
\|u\|_{L^{1}} \leq K \Longrightarrow\left\|\Upsilon_{t}^{u}\left(\phi_{j}\right)-X_{t}^{(N), u} \phi_{j}\right\|<\epsilon
$$

for every $t \geq 0$ and $i=1, \ldots, n$.

Periodic excitations

$(j, k) \in \mathbf{N}^{2}$ is uniquely resonant if $\left\langle\phi_{j}, B \phi_{k}\right\rangle \neq 0$ and

$$
\{I, m\} \neq\{j, k\} \Rightarrow \frac{\left|\lambda_{j}-\lambda_{k}\right|}{\left|\lambda_{I}-\lambda_{m}\right|} \notin \mathbf{Z}
$$

Theorem

Let $u^{*}: \mathbf{R}^{+} \rightarrow \mathbf{R}$ be a locally integrable function. Assume that u^{*} is periodic with smallest period $T=\frac{2 \pi}{\left|\lambda_{j}-\lambda_{k}\right|}$ for some uniquely resonant (j, k). If

$$
\int_{0}^{T} u^{*}(\tau) e^{\mathrm{i}\left(\lambda_{j}-\lambda_{k}\right) \tau} \mathrm{d} \tau \neq 0
$$

then there exists $T^{*}>0$ such that the sequence $\left(\left|\left\langle\phi_{k}, \Upsilon_{n T^{*}}^{\frac{u^{*}}{n}}\left(\phi_{j}\right)\right\rangle\right|\right)_{n \in \mathbf{N}}$ tends to 1 as n tends to infinity.

Time estimates

$$
\lim _{n \rightarrow \infty}\left(\left|\left\langle\phi_{k}, \Upsilon_{n T^{*}}^{\frac{u^{*}}{n}}\left(\phi_{j}\right)\right\rangle\right|\right)_{n \in \mathbf{N}}=1
$$

with

$$
T^{*}=\frac{\pi T}{2\left|b_{j, k}\right|\left|\int_{0}^{T} u^{*}(\tau) e^{\mathrm{i}\left(\lambda_{l_{1}}-\lambda_{2}\right) \tau} \mathrm{d} \tau\right|}
$$

Efficiency

L^{1} norm needed for the transfer :

Efficiency for the transition (j, k) :

$$
0 \leq \frac{\left|\int_{0}^{T} u^{*}(\tau) e^{\mathrm{i}\left(\lambda_{j}-\lambda_{k}\right) \tau} \mathrm{d} \tau\right|}{\int_{0}^{T}\left|u^{*}(\tau)\right| \mathrm{d} \tau} \leq 1
$$

The planar molecule

Let us consider a 2D-planar molecule submitted to a laser

$$
i \frac{\partial \psi}{\partial t}(\theta, t)=-\frac{1}{2} \partial_{\theta}^{2} \psi(\theta, t)+u(t) \cos (\theta) \psi(\theta, t) \quad \theta \in \mathbf{R} / 2 \pi
$$

- The parity of ψ cannot change \Rightarrow no global controllability
- We first look at the odd part
- We try to steer the system from the first odd eigenstate to the second odd eigenstate

Galerkin approximation

$$
A=i\left(\begin{array}{cccc}
1 & 0 & \ldots & \\
0 & 4 & 0 & \ddots \\
\vdots & \ddots & 9 & \ddots \\
& \vdots & \ddots & 16
\end{array}\right) B=i\left(\begin{array}{cccc}
0 & 1 / 2 & 0 & \ldots \\
1 / 2 & 0 & 1 / 2 & \ddots \\
0 & 1 / 2 & 0 & 1 / 2 \\
\vdots & \ddots & 1 / 2 & 0
\end{array}\right)
$$

$\{(k, k \pm 1) ; k \in \mathbf{N}\}$ is a non-resonant chain of connectedness. $9-4=5$ is not a multiple of $4-1=3$ (but $25-16=9$ is).

Numerical simulations

Good Galerkyn approximation

The error done when replacing the original system by its Galerkyn approximation of order 22 is smaller than $\epsilon=10^{-7}$ when $\|u\|_{L_{1}} \leq 13 / 3$ and initial condition is ϕ_{1}.

Results (I)

Evolution of the modulus of the second coordinate when applying the control $t \mapsto \cos ^{3}(3 t) / 30$ on the planar molecule (odd subspace) with initial condition $\phi_{1}\left(E f f_{1 \rightarrow 2} \approx 88 \%\right)$.

Results (II)

Evolution of the modulus of the second coordinate when applying the control : $t \mapsto \cos ^{2}(3 t) / 30$ on the planar molecule (odd subspace) with initial condition $\phi_{1}\left(E f f_{1 \rightarrow 2}=0\right)$.

Efficiencies

Control u^{*} (Efficiency)	n	Time t^{\dagger}	Precision $1-p^{\dagger}$	Numerical Efficiency
$t \mapsto \cos (3 t)$	$n=1$	6.8	2.10^{-2}	73%
	$n=10$	63	4.10^{-4}	78%
	$n=30$	189	3.10^{-5}	78%
$t \mapsto \cos (3 t)^{3}$	$n=1$	8.9	2.10^{-2}	83%
	$n=10$	84	2.10^{-4}	88%
	$n=30$	252	2.10^{-5}	88%
	$n=1$	10	7.10^{-3}	93%
$t \mapsto \cos (3 t)^{5}$	$n=10$	101	2.10^{-4}	92%
$75 \pi / 256 \approx 92 \%$	$n=30$	302	2.10^{-5}	92%

Asymptotically, precision is $\sim \frac{K}{n}$. (Numerically, much better for small n.)

Even eigenstates

We consider next the Hilbert space of even functions on the torus.

$$
A=i\left(\begin{array}{cccc}
0 & 0 & \ldots & \\
0 & 1 & 0 & \ddots \\
\vdots & \ddots & 4 & \ddots \\
& \vdots & \ddots & 9
\end{array}\right) B=i\left(\begin{array}{cccc}
0 & 1 / \sqrt{2} & 0 & \ldots \\
1 / \sqrt{2} & 0 & 1 / 2 & \ddots \\
0 & 1 / 2 & 0 & 1 / 2 \\
\vdots & \ddots & 1 / 2 & 0
\end{array}\right)
$$

$\{(k, k \pm 1) ; k \in \mathbf{N}\}$ is a non-resonant chain of connectedness.
$4-1=3$ is a multiple of $1-0=1$.

Control via periodic excitations

$$
\operatorname{Eff}_{(j, k)}\left(u^{*}\right)=\frac{\left|\int_{0}^{\frac{2 \pi}{\lambda_{j} \lambda_{k} \mid}} u^{*}(\tau) e^{i\left(\lambda_{j}-\lambda_{k}\right) \tau} \mathrm{d} \tau\right|}{\int_{0}^{\frac{2 \pi}{\lambda_{j}-\lambda_{k} \mid}}\left|u^{*}(\tau)\right| \mathrm{d} \tau}
$$

We have to find a 1-periodic shape such that

- the efficiency for the transition $(1,2)$ is as large as possible
- the efficiency for the transition $(2,3)$ is zero

The control given explicitly by Boscain, Caponigro, TC, Sigalotti has efficiencies $\frac{\sqrt{3}}{2}$ and 0 .

Multiple resonant transitions

To kill the transition $(2,3)$, one had to multiply the efficiciency of the transition to be kept by $\cos (\pi / 6)$.

Multiple resonant transitions

To kill the transition $(2,3)$, one had to multiply the efficiciency of the transition to be kept by $\cos (\pi / 6)$.
Remember ν ?

$$
\nu=\prod_{k=2}^{+\infty} \cos \left(\frac{\pi}{2 k}\right) \approx 0.43
$$

Result

Figure: Modulus of the second coordinate with control
$u^{*}: t \mapsto \frac{1}{20}\left(2 \cos ^{2}\left(\frac{t}{2}\right)+\cos ^{2}\left(\frac{t-\pi / 3}{2}\right)+\cos ^{2}\left(\frac{t+\pi / 3}{2}\right)\right)$. Theoretical efficiencies for transition $(1,2)$ and $(2,3)$ are $3 / 8=37.5 \%$ and 0 . Numerical efficiencies are 38% and 5.10^{-4}.

Concluding remarks

Geometric control theory provides effective methods

- to investigate various notions (including density matrices) of approximate controllability of a bilinear system with discrete spectrum ;
- to design efficient control ;
- to provide precise estimates for the analysis/simulations.

But it is unable (up to now)

- to provide exact controllability results of bilinear system with discrete spectrum ;
- to provide controllability results for the propagator.

Future directions

- Time estimates with large controls

Future directions

- Time estimates with large controls
- Continuous spectrum

Future directions

- Time estimates with large controls
- Continuous spectrum
- Non linear equations

Questions

- Does it really make sense? (allowable shapes, time scale, ...)
- What is the physical meaning of $\|u\|_{L_{1}}=\int|u|$?
- Do you know examples of bilinear systems with discrete spectrum?

