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The key QOCT equations

Ĥ[u](t) = Ĥ + ε[u](t)V̂

d
dt

ρ̂[u](t) = −i
ˆ
Ĥ[u](t), ρ̂[u](t)

˜

ρ̂[u](t0) = ρ̂0

Problem: find the maximum of G[u] = Tr
“
ρ̂[u](T)Â

”
.

∂G
∂u

[u] = −i
Z T

t0

dτ
∂ε
∂u

[u](τ)Tr
ˆ
ρ̂[u](τ)

ˆ
χ̂[u](τ), V̂

˜˜
.

d
dt

χ̂[u](t) = −i
ˆ
Ĥ[u](t), χ̂[u](t)

˜

χ̂[u](T) = Â
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Non-equilibrium linear response

Kubo’s formula:
Ĥ(t) = Ĥ0 − f (t)V̂

δA(t) = Tr
h
ρ(T)Â

i
− Tr

h
ρ(0)(T)Â

i

δA(T) =

Z ∞

−∞
dτ f (τ)χ(T, τ)

χ(T, τ) =
i
! θ(T − τ)Tr

h
ρ̂(t0)

h
ÂI(T), V̂I(τ)

ii

for
X̂I(t) = ei(t−t0)Ĥ0 X̂e−i(t−t0)Ĥ0
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“Generalized” non-equilibrium linear response

Kubo’s formula:
Ĥ(t) = Ĥ0(t)− f (t)V̂

δA(t) = Tr
h
ρ(T)Â

i
− Tr

h
ρ0(T)Â

i

δA(T) =

Z ∞

−∞
dτ f (τ)χ(T, τ)

χ(T, τ) =
i
! θ(T − τ)Tr

h
ρ̂(t0)

h
ÂI(T), V̂I(τ)

ii

for
X̂I(t) = Û†

0 (t, t0)X̂Û(t, t0) .
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QOCT equations in the language of LRT

We can identify
G[u + ∆u]− G[u] = δA(T) ,

for

Ĥ0(t) = H + ε[u](t)V̂ = Ĥ[u](t)

−f (t)V̂ = ∆u
∂ε
∂u

[u]V̂

And Kubo’s formula gives:

∂G
∂u

[u] = −i
Z T

t0

dτ
∂ε
∂u

[u](τ)Tr
ˆ
ρ̂[u](τ)

ˆ
χ̂[u](τ), V̂

˜˜
.

d
dt

χ̂[u](t) = −i
ˆ
Ĥ[u](t), χ̂[u](t)

˜

χ̂[u](T) = Â
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QOCT equations in the language of LRT

For pure systems:

∂G
∂u

[u] = 2Im
Z T

t0

dτ
∂ε
∂u

[u](τ)〈χ[u](τ)|V̂|Ψ[u](τ)〉 .

d
dt
|χ[u](t)〉 = −iĤ[u](t)|χ[u](t)〉 ,

|χ[u](T)〉 = Â|Ψ[u](T)〉 ,
d
dt
|Ψ[u](t)〉 = −i|Ĥ[u](t)|Ψ[u](t)〉 ,

|Ψ[u](t0)〉 = |Ψ0〉 .

If Ĥ(t) = H + ε(t)V̂,

δG
δε(t)

= 2Im〈χ[ε](t)|V̂|Ψ[ε](t)〉 .
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Non-relativistic many-electron problem

Ĥ|Φ〉 = E|Φ〉

Ĥ =
NX

i=1

t̂i +
NX

i=1

vext()̂ri) +
NX

i<j

1
|̂)ri − )̂rj|

,

vext()r) =
NnucleiX

α=1

Zα

|)r − )Rα|
.

In fact, what we really want are the values of the observables, and
perhaps of matrix elements:

O[Φ] = 〈Φ|Ô|Φ〉 .

For example, Ô = Ĥ, and we have the energy:

E = 〈Φ|H|Φ〉 .
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The Variational Principle and the wave function approaches

The variational equation is equivalent to Schrödinger’s equation:

δ
δΦ

{〈Φ|Ĥ|Φ〉 − E〈Φ|Φ〉} = 0 ,

where the variational search is done over all antisymmetric N-electron
wave functions.
Fully unconstrained search is not possible in general. The wave function
based approaches assume a certain form for the wave function: The
Rayleigh-Ritz method finds the extrma in a restricted space of wave
functions.
The wave function is too big, and perhaps an unnecessary object.
(“Inadmissible”, W. Kohn). This is the key reasoning behind
density-matrix functional theories, in particular density functional theory.
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Density Matrices

Density matrix:

ρ(x′1, . . . , x′N |x1, . . . , xN) = Φ∗(x′1, . . . , x′N)Φ(x1, . . . , xN)

Reduced density matrices:

Γ(k)(x′1, . . . , x′k|x1, . . . , xk) =
 

N
k

!Z
dxk+1 . . . dxNΦ∗(x′1, . . . , x′k, xk+1, . . . , xN)Φ(x1, . . . , xk, xk+1, . . . , xN) .

Expectation values of k-body operator:

〈Φ|Ôk|Φ〉 =

Z
dx1 . . . dxkÔk[Γ(k)(x′1, . . . , x′k|x1, . . . , xk)] .

And most operators of interest are either one or two body operators:

Γ(1)(x′1|x1) = N
Z

dx2 . . . dxNΦ∗(x′1, x2, . . . , xN)Φ(x1, x2, . . . , xN) .

Γ(2)(x′1, x′2|x1, x2) =

 
N
2

!Z
dx3 . . . dxNΦ∗(x′1, x′2, x3, . . . , xN)Φ(x1, x2, x3 . . . , xN) .

QOCT with TDDFT



Preamble
TDDFT

QOCT + TDDFT
Other (single electron) work

Density Matrices, Density Functionals
TDDFT: theoretical foundations
Some applications
Computational aspects

Density Matrices

Density matrix:

ρ(x′1, . . . , x′N |x1, . . . , xN) = Φ∗(x′1, . . . , x′N)Φ(x1, . . . , xN)

Reduced density matrices:

Γ(k)(x′1, . . . , x′k|x1, . . . , xk) =
 

N
k

!Z
dxk+1 . . . dxNΦ∗(x′1, . . . , x′k, xk+1, . . . , xN)Φ(x1, . . . , xk, xk+1, . . . , xN) .

Expectation values of k-body operator:
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The Energy as a functional of Γ(2).

The energy is an exact functional of the second order density matrix:

E[Γ(2)] =

Z
dx
»

1
2
∇2Γ(1)(x|x′)

–

x′=x
+

Z
dxvext()x)γ(1)(x)+

Z
dx
Z

dx′
1

|)r −)r′|γ
(2)(x, x′) .

γ(1)(x) = Γ(1)(x|x) .

γ(2)(x, x′) = Γ(2)(x, x′|x, x′) .

Summing over spin in γ(1) one obtains the electronic density:

n()r) =
X

σ

γ(1)()rσ) .

QOCT with TDDFT



Preamble
TDDFT

QOCT + TDDFT
Other (single electron) work

Density Matrices, Density Functionals
TDDFT: theoretical foundations
Some applications
Computational aspects

The Variational Principle and the representability problem

If E = E[Γ(k)] is exact (or is a suitable approximation), then:

δE
δΓ(k) = 0 .

solves the many-electron problem. Since we have an exact functional for
k = 2, we have an exact variational approach for two-point functions,
instead of for the N-point wave function!!
But... we must perform a constrained search: Γ(k) must be
N-representable:
Γ(k) is N-representable if it stems from a N-particle wavefunction.
And the N-representability conditions for k = 2 are horribly difficult.
The lower k, the easier the computational problem. Ideally, we would like
to do a variational search over one-point functions, i.e. use a functional
of the density:

E = E[n] .
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Ground state density-functional theory

First Hohenberg-Kohn theorem: there exists a one-to-one
correspondence between electronic densities and external potentials.
Therefore, the density determines the external potential, and for every
observable there exists a functional of the density.
Second Hohenberg-Konh theorem: there is an enery functional,
E = E[n], such that

E[n] ≥ E[n0],

for n0 the ground state density, and such that

E[n0] = E0,

for E0 the ground state energy.

QOCT with TDDFT



Preamble
TDDFT

QOCT + TDDFT
Other (single electron) work

Density Matrices, Density Functionals
TDDFT: theoretical foundations
Some applications
Computational aspects

Ground state density-functional theory

First Hohenberg-Kohn theorem: there exists a one-to-one
correspondence between electronic densities and external potentials.
Therefore, the density determines the external potential, and for every
observable there exists a functional of the density.
Second Hohenberg-Konh theorem: there is an enery functional,
E = E[n], such that

E[n] ≥ E[n0],

for n0 the ground state density, and such that

E[n0] = E0,

for E0 the ground state energy.

QOCT with TDDFT



Preamble
TDDFT

QOCT + TDDFT
Other (single electron) work

Density Matrices, Density Functionals
TDDFT: theoretical foundations
Some applications
Computational aspects

Outline

1 Preamble

2 TDDFT
Density Matrices, Density Functionals
TDDFT: theoretical foundations
Some applications
Computational aspects

3 QOCT + TDDFT
Optimization for the TDKS system
Charge transfer in a 2D quantum dot system
Population of excited states to trigger isomerization
Mixed quantum-classical systems

4 Other (single electron) work

QOCT with TDDFT



Preamble
TDDFT

QOCT + TDDFT
Other (single electron) work

Density Matrices, Density Functionals
TDDFT: theoretical foundations
Some applications
Computational aspects

The time-dependent one-to-one mapping

System S: Ĥ = T̂ + Ŵ + V̂(t)

Ŵ = 1
2

P
i %=j

1
r̂ij

is the electronic interaction.

V̂(t) =
P

i v(r̂i, t) is the external field seen by the electrons.

|Φ(t = 0)〉 = |Φ0〉 ⇒ n(!r, t) = 〈Φ(t)|n̂(!r)|Φ(t)〉 .

System S ′: Ĥ′ = T̂ + Ŵ′ + V̂ ′(t)

Question: Given Ŵ′, is there any v′(!r, t) such that:

n′(!r, t) = 〈Φ′(t)|n̂(!r)|Φ′(t)〉 = n(!r, t) ?

Answer: Yes, and it is unique.

[R. van Leeuwen, Phys. Rev. Lett. 82 3863 (1999).]
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Question: Given Ŵ′, is there any v′(!r, t) such that:

n′(!r, t) = 〈Φ′(t)|n̂(!r)|Φ′(t)〉 = n(!r, t) ?

Answer: Yes, and it is unique.

[R. van Leeuwen, Phys. Rev. Lett. 82 3863 (1999).]

QOCT with TDDFT



Preamble
TDDFT

QOCT + TDDFT
Other (single electron) work

Density Matrices, Density Functionals
TDDFT: theoretical foundations
Some applications
Computational aspects

The time-dependent one-to-one mapping
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The Runge-Gross theorem, and the TDKS system

Now assume that W′=W.
v′()r, t) = v()r, t) obviously, but the theorem also tells us that it is unique:
There exists a unique relationship between time-dependent densities
and external potentials.
E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
And now assume that W′=0. I.e., we have a non-interacting system.

There exists a potential v′()r, t) for this non-interacting system such that it
reproduces the density of the interacting system.

This is the so-called time-dependent Kohn-Sham potential, vKS()r, t). The
evolution of the non-interacting system may be easily obtained by
propagating single-particle equations (i.e. Runge-Gross or td
Kohn-Sham equations):

i
∂
∂t

ϕi()r, t) = −1
2
∇2ϕi()r, t) + vKS()r, t)ϕi()r, t) .
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Retrieval of observables in TDDFT

The density of the real, interacting system, may be retrieved from the
single-particle orbitals that solve the auxiliary, non-interacting system:

n()r, t) =
NX

i=1

|ϕi()r, t)|2 .

The expectation value of any observable is a unique functional of the
time-dependent density by virtue of the Runge-Gross theorem.
Conclusion:

!!!!!!!!!
i

d
dt
|Ψ(t)〉 = Ĥ(t)|Ψ(t)

i
∂
∂t

ϕi()r, t) = −1
2
∇2ϕi()r, t) + vKS()r, t)ϕi()r, t)
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But...

RG is an existence theorem that is non-constructive: we do not know vKS.
As in gs DFT, a smaller unknown part may be isolated:

vKS()r, t) = v()r, t) + uHartree[n]()r, t)+vxc[n]()r, t) ,

Four decades of work on the development of ground state functionals
have led to a reasonable success. For the time-dependent case, the
adiabatic approximation is used, in which the ground-state functionals
are used at each time. However, the true functional should have memory
effects, and perhaps be relevant in the highly non-linear regime.
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1. Optical absorption spectra (I)

Aequorea Victoria

Problem: characterize
the optical response of
large nanosystems,
such as proteins.

Optical properties of
the chromophore
protected by the barrel
structure.

A small portion of the
system exhibits
“quantum” behaviour;
the rest is classical.
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1. Optical absorption spectra (II)

We “kick” an atom/molecule with a sudden electric perturbation:

E(t) = E0δ(t)ẑ ⇒ E(ω) = E0ẑ
If we calculate the evolution of the variation of the dipole moment, and
obtain its Fourier transform, δZ(ω), we can easily obtain the dynamical
polarizability:

αzz(ω) =
δZ(ω)

E0
.

The effect of this perturbation on the Kohn-Sham system is a phase shift
at time zero: ϕi()r, t = 0+) = eiE0zϕGS

i ()r).
The evolution is then followed by propagating the TDKS equations:

i
∂
∂t

ϕi()r, t) = −1
2
∇2ϕi()r, t) + vKS()r, t)ϕi()r, t) .

n()r, t) =
NX

i=1

|ϕi()r, t)|2 .

δZ(t) =

Z
d3rn()r, t)z− Z0 ; δZ(ω) =

Z
dteiωtδZ(t) .
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E(t) = E0δ(t)ẑ ⇒ E(ω) = E0ẑ
If we calculate the evolution of the variation of the dipole moment, and
obtain its Fourier transform, δZ(ω), we can easily obtain the dynamical
polarizability:

αzz(ω) =
δZ(ω)

E0
.

The effect of this perturbation on the Kohn-Sham system is a phase shift
at time zero: ϕi()r, t = 0+) = eiE0zϕGS

i ()r).
The evolution is then followed by propagating the TDKS equations:

i
∂
∂t

ϕi()r, t) = −1
2
∇2ϕi()r, t) + vKS()r, t)ϕi()r, t) .

n()r, t) =
NX

i=1

|ϕi()r, t)|2 .

δZ(t) =

Z
d3rn()r, t)z− Z0 ; δZ(ω) =

Z
dteiωtδZ(t) .

QOCT with TDDFT



Preamble
TDDFT

QOCT + TDDFT
Other (single electron) work

Density Matrices, Density Functionals
TDDFT: theoretical foundations
Some applications
Computational aspects

1. Optical absorption spectra (II)

We “kick” an atom/molecule with a sudden electric perturbation:

E(t) = E0δ(t)ẑ ⇒ E(ω) = E0ẑ
If we calculate the evolution of the variation of the dipole moment, and
obtain its Fourier transform, δZ(ω), we can easily obtain the dynamical
polarizability:

αzz(ω) =
δZ(ω)

E0
.

The effect of this perturbation on the Kohn-Sham system is a phase shift
at time zero: ϕi()r, t = 0+) = eiE0zϕGS

i ()r).
The evolution is then followed by propagating the TDKS equations:

i
∂
∂t

ϕi()r, t) = −1
2
∇2ϕi()r, t) + vKS()r, t)ϕi()r, t) .

n()r, t) =
NX

i=1

|ϕi()r, t)|2 .

δZ(t) =

Z
d3rn()r, t)z− Z0 ; δZ(ω) =

Z
dteiωtδZ(t) .

QOCT with TDDFT



Preamble
TDDFT

QOCT + TDDFT
Other (single electron) work

Density Matrices, Density Functionals
TDDFT: theoretical foundations
Some applications
Computational aspects

1. Optical absorption spectra (II)

We “kick” an atom/molecule with a sudden electric perturbation:

E(t) = E0δ(t)ẑ ⇒ E(ω) = E0ẑ
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1. Optical absorption spectra (III)

Phys. Rev. Lett. 90, 258101 (2003).

Experimental data are affected by
solvent effects, and temperature; the
key elements are the position of the
peaks, and their relative strengths.

Experimentally, both neutral and
anionic configurations are present,
probably at a 4:1 ration.

Average over three spatial directions
(the information about anisotropy is
also accessible).

TDLDA, for these molecules, and for
this energy range, usually gives an
error in the energies of about 0.1 - 0.2
eV.
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2. Mixed quantum-classical: non-adiabatic dynamics (I)

Many flavours of ab initio Molecular Dynamics (MD) based on
(time-dependent) DFT.

“Traditional” Born-Oppenheimer MD.
Car-Parrinello Molecular Dynamics.
TDDFT Ehrenfest dynamics for the ground-state, possibly for excited
states (J. L. Alonso, X. Andrade, P. Echenique, F. Falceto, D.
Prada-Gracia, A. Rubio, 2008).
Dynamics on excited potential energy surfaces: forces obtained through
TDDFT linear response calculations
Non-adiabatic couplings and transitions: surface hopping.
Ehrenfest-path dynamics based on TDDFT: “mean field” or “most
probable path” approach. Probes excited states, permits to study the
effect of external laser fields.
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2. Mixed quantum-classical: non-adiabatic dynamics (II)

Li4 + p

http://arxiv.org/abs/1103.5306
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2. Mixed quantum-classical: non-adiabatic dynamics (III)

The so-called time-dependent electron localisation function can be used to monitor
chemical bonds during chemical reactions.
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3. High harmonic generation

For large external perturbations (non-linear, or non-perturbative regime), one
can directly propagate in time the TDKS equations. This permits, to obtain,
e.g., harmonic spectra:

σemission ∝ |
Z

dteiωt d
dt2 d[n](t)|2 ,

where d[n](t) is the system dipole moment: d[n](t) =
R

d3rn()r)(t)x .

Harmonic spectrum for He at λ =
616 nm and I = 3.5 1014 W/cm2.
Calculations at the exact-exchange
(within the KLI approximation) level
of theory. [C. A. Ullrich, S. Erhard
and E. K. U. Gross, 1996)]
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Computational

www.tddft.org/programs/octopus/
A. Castro et al, phys. stat. sol. (b) 243, 2465 (2006).
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ETSF

The octopus code is a member of the European Theoretical
Spectroscopy Facility (ETSF, http://www.etsf.eu), which develops other
platforms: abinit, yambo, exc, DP, etc.
The targets of octopus are:

optical absorption spectra of molecules, clusters, nanostructures.
response to lasers (non-perturbative response to high intensity fields).
dichroism spectra, and other mixed (electric-magnetic) response.
adiabatic and non-adiabatic Molecular Dynamics (for e.g., infrared and
vibrational spectra, photo-chemical reactions).
Quantum Optimal Control Theory.
. . .
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Optimization for the TDKS system

The optimization problem is first formulated for the real system of
interacting electrons.
Then, this optimization is substituted by an optimization for the fictitious
system of Kohn-Sham electrons. This is exact if the target functional,
initially a functional of the wave function of the real system, can be
written exactly as a functional of the density.

F[Ψ] = F̃[n[Ψ]]
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Optimization for the TDKS system

i
∂ϕi

∂t
()rσ, t) = −1

2
∇2ϕi()rσ, t) + v0()r)ϕi()rσ, t) +

Z
d3r′

n()r′, t)
|)r′ −)r| ϕi()rσ, t)

+
X

τ

vστ
xc [nαβ]ϕi()rτ, t) + vext()r, u, t)ϕi()rσ, t) ,

y =

2

4
ϕ1

. . .
ϕN

3

5 ,

f [y(t), u, t] = −i

2

664

Ĥ[nαβ(t), u, t] 0 . . . 0
0 Ĥ[nαβ(t), u, t] . . . 0

. . . . . . . . . . . .
0 0 . . . Ĥ[nαβ(t), u, t]

3

775

2

664

ϕ1(t)
ϕ2(t)
. . .

ϕN(t)

3

775

In condensed form:
ϕ̇(t) = −iĤ[n(t), u, t]ϕ(t) .
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Optimization for the TDKS system (II)

Definition of a target in terms of the Kohn-Sham orbitals:

F = F[ϕ, u] ⇒ G[u] = F[ϕ[u], u]

In usual cases, the target dependes only on the system at time T:

F[ϕ[u], u] = J1[ϕ[u]] + J2[u] = 〈ϕ[u](T)|Ô|ϕ[u](T)〉+ J2[u] .

Optimal control theory equations for this case:

∇uG[u] = ∇uF[ϕ[u], u] + 2Im

"
NX

i=1

Z T

0
dt 〈λi[u](t)|∇uĤ[n[u](t), u, t]|ϕi[u](t)〉

#

ϕ̇[u](t) = −iĤ[n(t), u, t]ϕ[u](t) ,

ϕ
u
(0) = ϕ

0
,

λ̇[u](t) = −i
h
Ĥ[n(t), u, t] + K̂[ϕ[u](t)]

i
λ[u](t) ,

λ[u](T) =
δF
δϕ∗

[ϕ[u](T), u] .
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Optimization for the TDKS system (III)

λ̇[u](t)=−i
h
Ĥ†

[n[u](t), u, t] + K̂[ϕ[u](t)]
i
λ[u](t) ,

λ̇i[u](t) = −iĤ†[n[u](t), u, t]λi[u](t)− i
NX

j=1

K̂ij[ϕ[u](t)]λj[u](t)

〈)r|K̂ij[ϕ[u](t)]|λj[u](t)〉 = −2iϕi[u]()r, t)Im
»Z

d3r′λj[u]∗()r′, t)fHxc[n[u](t)]()r,)r′)ϕj[u]()r′, t)
–

fHxc[n[u](t)]()r,)r′) =
1

|)r −)r′| + fxc[n[u](t)]()r,)r′)
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Optimization for the TDKS system (III)
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Charge transfer in a 2D quantum dot system

System: double quantum dot, formed in a 2D electronic gas trapped in a
semiconductor heterostructure.

V(x, y) =
1

64
x4 − 1

4
x2 +

1
32

x3 +
1
2

y2
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Charge transfer in a 2D quantum dot system (II)

Two electrons in a single orbital; LDA parameterisation of Attacalite et al
[Attacalite et al,Phys. Rev. Lett. 88, 256601 (2002)].
Control: Electric field, expanded in a Fourier series:

ε(t) =
N/2X

n=1

an

r
2
T

cos(
2π
T

nt) + bn

r
2
T

sin(
2π
T

nt)

Target: transfer from one potential well to the other:

F[ϕ, u = {a, b}] = J1[ϕ] + J2({a, b}) ,

J1[ϕ] =

Z

x>0
d2r n()r, T) ,

J2({a, b}) = −α

N/2X

n=1

(a2
n + b2

n)
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Charge transfer in a 2D quantum dot system (III)
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Isomerization

System: formaldimine molecule, prototype of double bond rotation.

[Hirai and Sugino, PCCP 11, 4421 (2009)]
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Isomerization (II)

Potential energy surfaces (PBE / LDA kernel):
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Isomerization (III)

Target: population of the first excited state. The obvious choice would be
to use the projection operator onto that state, but in TDDFT we do not
have the state.
Approximation of the target as a linear combination of Slater
determinants:

|ΦI〉 =
X

iaσ

ciaσ â†aσ âiσ|Φ0〉

where:
|Φ0〉 is the ground state Kohn-Sham determinant.
{caiσ} are the coefficients that result of the linear-response TDDFT
computation for the I-th excitation:

〈Ψ0|X̂|ΨI〉 = 〈Φ0|X̂|ΦI〉 =
X

aiσ

ciaσ〈φ0
iσ |x̂|φ0

aσ〉 .
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Isomerization (IV)

If the excitation is almost a pure HOMO-LUMO transition from a singlet spin
unpolarized ground state:

" #
−→ 1√

2 "
# +

1√
2

"

# HOMO

LUMO

The maximum possible population of this state is 1
2

!
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Optimization for a MQCS

q̇i(t) = 〈Ψ(t)|∂Ĥ
∂pi

(q, p, u, t)|Ψ(t)〉 ,

ṗi(t) = −〈Ψ(t)|∂Ĥ
∂qi

(q, p, u, t)|Ψ(t)〉 .

|Ψ̇(t)〉 = −iĤ(q, p, u, t)|Ψ(t)〉 .

Ĥ(q, p, u, t) = T̂Q + TC(p) + V̂(q, u, t) .

F[q, p, Ψ, u] = J1[q(T), p(T), Ψ(T)] + J2[u] .
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Optimization for a MQCS

∂G
∂um

[u] =
∂J2

∂um
[u] +

Z T

0
dt 〈Ψ[u](t)|D(q̃[u](t), p̃[u](t))

∂Ĥ
∂um

[q[u](t), p[u](t), u, t]|Ψ[u](t)〉

+2Im
Z T

0
dt 〈χ(t)| ∂Ĥ

∂um
[q[u](t), p[u](t), u, t]|Ψ[u](t)〉 .

˙̃qi(t) = D(q̃(t), p̃(t))〈Ψ(t)|
∂Ĥ
∂pi

[q(t), p(t), u, t]|Ψ(t)〉 − 2Rei〈χ(t)|
∂Ĥ
∂pi

[q(t), p(t), u, t]|Ψ(t)〉 ,

˙̃pi(t) = −D(q̃(t), p̃(t))〈Ψ(t)|
∂Ĥ
∂qi

[q(t), p(t), u, t]|Ψ(t)〉 + 2Rei〈χ(t)|
∂Ĥ
∂qi

[q(t), p(t), u, t]|Ψ(t)〉 ,

|χ̇(t)〉 = −iĤ†[q(t), p(t), u, t]|χ(t)〉 + D(q̃(t), p̃(t))Ĥ[q(t), p(t), u, t]|Ψ(t)〉 .

q̃i(T) = −
∂J1

∂pi
[q(T), p(T), Ψ(T)] ,

p̃i(T) =
∂J1

∂qi
[q(T), p(T), Ψ(T)] ,

|χ(x, T)〉 =
δJ1

δΨ∗(x, T)
,
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Design of bond-breaking laser pulses

!
!
!
!!
""""" #

#
#

##

$
$

$$%
&

&&'

!FB

!FA

!
! !

!

C

A

B

D

!rBA
""""""(

If the AB bond is breaking,

)rBA · )FB > 0
)rBA · )FA < 0

⇒

)rBA · )FB −)rBA · )FA > 0 ⇒
)rBA · )FBA > 0

()FBA = )FB − )FA)
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Design of bond-breaking laser pulses (III)

Bond-breaking target:

J1[Ψ] =
1

tf − t0

Z tf

t0

dt〈Ψ(t)||)rBA||)̂FBA(t)|
“

1 +)rBA · )̂FBA(t)
”
|Ψ(t)〉 .

Within TDDFT, )̂FA is a local density operator: the necessary expectation
values can be written as simple density integrals.

)̂FA(t) =

Z
d3r n̂(r)∇&rA vKS(r, t) .
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Cleaving a NH bond

F = n · (v1 − v2)− 10
P6

i=1 |vi − v2|

Krieger et al., http://arxiv.org/abs/1102.3128.
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Control of currents in quantum rings

E. Räsänen, AC, J. Werschnik, A. Rubio, and E. K. U. Gross, Phys. Rev. Lett.
98, 157404 (2007).
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Control of double quantum dots

E. Räsänen, AC, J. Werschnik, A. Rubio, and E. K. U. Gross, Phys. Rev. B
77, 085324 (2008).
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Acceleration of QOCT algorithms with mixing strategies

AC and E. K. U. Gross, Phys. Rev. E 79, 056704 (2009).
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Ionization enhancement

AC, E. Räsänen, A. Rubio, and E. K. U. Gross, EPL 87, 53001 (2009).
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Conclusions

TDDFT can be combined with QOCT, and the resulting equations are
numerically tractable.
This provides a scheme to perform QOCT calculations from first
principles, in order to obtain tailored function-specific laser pulses
capable of controlling the electronic state.
Most of the previous applications of QOCT were targeted to control, with
femto-second pulses, the motion of the nuclear wave packet on one or
few potential energy surfaces, (scale of hundreds of femtoseconds). The
approach presented here, on the other hand, controls the motion of the
electronic degrees of freedom (sub-femto-second scale)
Possibilities: shaping of the high harmonic generation spectrum,
selective excitation of electronic excited states, control of the electronic
current in molecular junctions, selective photo-chemistry, etc.
arXiv:1009.2241v1 [physics.atm-clus]
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