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The key QOCT equations
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Problem: find the maximum of G[u] = Tr (,S[H](T)A).
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The key QOCT equations

Alu(r) = T + e[u]()V

€ plul(e) = i [AL(), pL()]
Plu](t0) = fo
Problem: find the maximum of G[u] = Tr (,S[H](T)A).

%o = ﬂ/m—M )T [pl(7) [$1ad(7). 7]] -

a?([u](t) = —i [Au] (1), R[u)()]

(1) =4
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The key QOCT equations
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The key QOCT equations

H[u)(1) = H + e[u) (n)V

%Iw[u](t» = —iH[u](r) [ [u] (1))
[Wu](10)) = [Wo)
Problem: find the extrema of G[u] = (W[u](T)|A|W[u](T)).

Gl =2im | dr SR 0l P10

S IRL0) = —AT) X0

IX[ul(T)) = AW [u](T))
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Non-equilibrium linear response

Kubo’s formula: . .
H(t)=Ho —f(r)V

SA(r) = Tr [p(T)A] T [p“’)(T)A]
(1) = [ ar fr(r )

(T, 7) = %a(r )T [(a0) [Ar(), 92|

for .

(1) = & (1=10)Ho §ro—ilt=10)

QOCT with TDDFT



Preamble

“Generalized” non-equilibrium linear response

Kubo’s formula: . .
A(r) = Ho(1) — f()V
SA(r) = Tr [p(r)ﬁ] ~Tr [pO(T)A]

e}

sA(1) = [ ar f(ox(T7)

J —oo

(T, 7) = %e(r )T [p(0) [Ai(T), 9(r) |

for

Xi(t) = U8 (1, 10)X 0 (1, 10) .
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Glu + Au] — G[u] = 6A(T),

for
Ho(t) = M+ €e[u](r)V = Alu](r)
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QOCT equations in the language of LRT

We can identify
Glu + Au] — G[u] = 6A(T),

for
Ho(t) = M+ €e[u](r)V = Alu](r)
—f()V = Au% [u]V

And Kubo’s formula gives:
St = = far SR [t (r) (51,9
SR = =1 (A0, K1)

R)(T) =4
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QOCT equations in the language of LRT

For pure systems:

Gl =2tm [ a7 SR () V1)

%IX[M](O) = —iA[u) () x[u)(1)) ,
x[ul(T)) = A[W[u)(T)) ,
%I‘U[u](t» = —i[H[u](r)| V(1)) ,
W[u](20)) = [Wo) -
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QOCT equations in the language of LRT

For pure systems:

Gl =2tm [ a7 SR () V1)

%Ix[u](t» = —ifl[u] (1) | x[u](1)) ,
IX[u)(T)) = AW [u)(T)) ,
%I‘U[u](t» = —i[H[(0)|W[u](1)) ,
(W[u(10)) = |Wo) .
IfA(t) = H + e(r)V,

—— = 2Im{x[€](2)|V|¥[€](x)) .

6G
de(r)
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Density Matrices, Density Functionals
TDDFT: theoretical foundations
Some applications

Computational aspects

Non-relativistic many-electron problem

H|®) = E|®)
N N N 1
ﬂ: Z?f+zvexl(%f)+2ﬁv
i=1 i=1 i<j |ri — 7l
Nnuclei Z.
xt(7) = _—
Ve t( ) ; |?—Ra|
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Non-relativistic many-electron problem

H|®) = E|o)
A N . N 1
H=> 1+ veul®)+ >
i=1 i=1 i<j |ri — 7l
Nauclei Z.
cht(r) = ; ?—ﬁa|

@ In fact, what we really want are the values of the observables, and
perhaps of matrix elements:

O[] = (0|0[d).
For example, ® = ‘H, and we have the energy:

E = (®H|d).
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Density Matrices, Density Functionals
TDDFT: theoretical foundations
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The Variational Principle and the wave function approaches

@ The variational equation is equivalent to Schrédinger’s equation:

) ~
S (@IRI®) — E(@16)} =0,

where the variational search is done over all antisymmetric N-electron
wave functions.
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The Variational Principle and the wave function approaches

@ The variational equation is equivalent to Schrédinger’s equation:

0

S5 LOI1®) — E(@®)} =0,

where the variational search is done over all antisymmetric N-electron
wave functions.

@ Fully unconstrained search is not possible in general. The wave function
based approaches assume a certain form for the wave function: The

Rayleigh-Ritz method finds the extrma in a restricted space of wave
functions.

QOCT with TDDFT



Density Matrices, Density Functionals
TDDFT: theoretical foundations
Some applications

Computational aspects

The Variational Principle and the wave function approaches

@ The variational equation is equivalent to Schrédinger’s equation:

5 N

—{(P|H|P) — E(P|P)} =0

56 LOIR®) — E(@]0)} =0,

where the variational search is done over all antisymmetric N-electron
wave functions.

@ Fully unconstrained search is not possible in general. The wave function
based approaches assume a certain form for the wave function: The
Rayleigh-Ritz method finds the extrma in a restricted space of wave
functions.

@ The wave function is too big, and perhaps an unnecessary object.
(“Inadmissible”, W. Kohn). This is the key reasoning behind
density-matrix functional theories, in particular density functional theory.

QOCT with TDDFT



Density Matrices, Density Functionals
TDDFT: theoretical foundations
Some applications

Computational aspects

Density Matrices

@ Density matrix:

p(xll,...,x,lv Xl ooy XN) = <|>*(x/1,‘..,x,/\,)d)(xl,...,xN)
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Density Matrices

@ Density matrix:
(X1, - x|xn, ) = O (x, x)D(, - aw)
@ Reduced density matrices:

r(k)(xi, XX, ) =

N * ’ /
P gy - AT (X, e X Xty - e XN )P (XL, e Xk X1y - e XN )
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Density Matrices

@ Density matrix:

(X1, - xx, ) = O (x, L, xy) D,

k) -xN)
@ Reduced density matrices:

r(k)(xi, XX, ) =
N * ’ /
k dxk+1~--d-xN¢ (-xlv'~~7xk7-xk+l7-“,xN)d)(-xh'--7xk7xk+l7‘ 7-xN)

@ Expectation values of k-body operator:

(®]0F|b) :/dx] A OO, s x)].
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Density Matrices

@ Density matrix:
(X1, - x|xn, ) = O (x, x)D(, - aw)
@ Reduced density matrices:

r(k)(xi, XX, ) =
N * ’ /
k dxk+1 .. deq) ()Cl7 ooy Xy Xk41y - - - ,xN)¢(x1, ey Xy X414« - - 7.)CN) .
@ Expectation values of k-body operator:
(®|OF|d) = /dx] N A | R A P 7 | B
@ And most operators of interest are either one or two body operators:

I'(l)(xﬂxl):N/dxz...deCD*(x;,xz,...,xN)d)(xl,xz,...,xN).
2yt _ N xe 1/
M (x1, 22 |x1,x02) = N dxz ... dxn®" (xp, X0, %3, . .., xn )P (X1, 02, %3 ..., xN)
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The Energy as a functional of I,

The energy is an exact functional of the second order density matrix:

1 , - 1 ,
B = far |50+ [ ama@ O far for @),

() = (alx) .
'y(z)(x, ¥)= r(z)(x, ¥ |x,x').

Summing over spin in v{!) one obtains the electronic density:

(@) =>_ ().
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The Variational Principle and the representability problem

o If E = E[Ir™] is exact (or is a suitable approximation), then:
0E
orw
solves the many-electron problem. Since we have an exact functional for

k = 2, we have an exact variational approach for two-point functions,
instead of for the N-point wave function!!
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The Variational Principle and the representability problem

o If E = E[Ir™] is exact (or is a suitable approximation), then:
0E
orw
solves the many-electron problem. Since we have an exact functional for

k = 2, we have an exact variational approach for two-point functions,
instead of for the N-point wave function!!

@ But... we must perform a constrained search: I must be
N-representable:
r® is N-representable if it stems from a N-particle wavefunction.
And the N-representability conditions for k = 2 are horribly difficult.
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The Variational Principle and the representability problem

o If E = E[Ir™] is exact (or is a suitable approximation), then:
0E
orw
solves the many-electron problem. Since we have an exact functional for

k = 2, we have an exact variational approach for two-point functions,
instead of for the N-point wave function!!

@ But... we must perform a constrained search: I must be
N-representable:
r® is N-representable if it stems from a N-particle wavefunction.
And the N-representability conditions for k = 2 are horribly difficult.

@ The lower %, the easier the computational problem. Ideally, we would like
to do a variational search over one-point functions, i.e. use a functional
of the density:

E = El[n].
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Ground state density-functional theory

@ First Hohenberg-Kohn theorem: there exists a one-to-one
correspondence between electronic densities and external potentials.
Therefore, the density determines the external potential, and for every
observable there exists a functional of the density.
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Ground state density-functional theory

@ First Hohenberg-Kohn theorem: there exists a one-to-one
correspondence between electronic densities and external potentials.
Therefore, the density determines the external potential, and for every
observable there exists a functional of the density.

@ Second Hohenberg-Konh theorem: there is an enery functional,
E = E[n], such that
E[n] = Efno],

for ny the ground state density, and such that
E[no] = Eo7

for E, the ground state energy.
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The time-dependent one-to-one mapping

@ System S: H=T+W+ V()
o W =133, + isthe electronic interaction.
v
o V(r) = 3, v(#,1) is the external field seen by the electrons.
o [®(1=0)) = [®o) = n(F,1) = (®(1)[A(F)| (1)) -
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The time-dependent one-to-one mapping

@ System S: H=T+W+ V()
o W =133, + isthe electronic interaction.
v
o V(r) = 3, v(#,1) is the external field seen by the electrons.
o [®(1=0)) = [®o) = n(F,1) = (®(1)[A(F)| (1)) -

@ System S’ H=T+W+V()
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The time-dependent one-to-one mapping

@ System S: H=T+W+ V()
o W =133, + isthe electronic interaction.
v
o V(r) = 3, v(#,1) is the external field seen by the electrons.
o [®(1=0)) = [®o) = n(F,1) = (®(1)[A(F)| (1)) -

@ System S’ H=T+W+V()

e Question: Given W/, is there any v/ (7, r) such that:

n'(7,1) = (@ (1)|a(F)|®' (1)) = n(F,1) ?
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The time-dependent one-to-one mapping

@ System S: H=T+W+ V()
o W =133, + isthe electronic interaction.
v
o V(r) = 3, v(#,1) is the external field seen by the electrons.
o [®(1=0)) = [®o) = n(F,1) = (®(1)[A(F)| (1)) -

@ System S’ H=T+W+V()

e Question: Given W/, is there any v/ (7, r) such that:

n'(7,1) = (@ (1)|a(F)|®' (1)) = n(F,1) ?

o Answer: Yes, and it is unique.
[R. van Leeuwen, Phys. Rev. Lett. 82 3863 (1999).]
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The Runge-Gross theorem, and the TDKS system

@ Now assume that W'=W.
V/(7,t) = v(7, t) obviously, but the theorem also tells us that it is unique:
There exists a unique relationship between time-dependent densities
and external potentials.
E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
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The Runge-Gross theorem, and the TDKS system

@ Now assume that W'=W.
V/(7,t) = v(7, t) obviously, but the theorem also tells us that it is unique:
There exists a unique relationship between time-dependent densities
and external potentials.
E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

@ And now assume that W'=0. l.e., we have a non-interacting system.

There exists a potential v'(7, ¢) for this non-interacting system such that it
reproduces the density of the interacting system.

This is the so-called time-dependent Kohn-Sham potential, vks(7, ¢). The
evolution of the non-interacting system may be easily obtained by
propagating single-particle equations (i.e. Runge-Gross or td
Kohn-Sham equations):

.0 1 . o o
1&%‘(”» [) = _Evchi(n Z) + VKS(r7 t)@i(rv t) .
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Retrieval of observables in TDDFT

@ The density of the real, interacting system, may be retrieved from the
single-particle orbitals that solve the auxiliary, non-interacting system:

n(77 t) = Z |<Pi(?7 t)|2 :

i=1
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Retrieval of observables in TDDFT

@ The density of the real, interacting system, may be retrieved from the
single-particle orbitals that solve the auxiliary, non-interacting system:

n(77 t) = Z |<Pi(?7 t)|2 :

i=1

@ The expectation value of any observable is a unique functional of the
time-dependent density by virtue of the Runge-Gross theorem.

@ Conclusion:
i Wy —Amv ()

.0 1o . - S
154,9[(}‘, ) = fév wi(7, 1) + ves(7, 1) pi(7, 1)
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@ RG is an existence theorem that is non-constructive: we do not know vgs.
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@ RG is an existence theorem that is non-constructive: we do not know vks.
@ Asin gs DFT, a smaller unknown part may be isolated:

s (7, 1) = V(1) + e [1](F, )+ vsc ] (7, 1),
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@ RG is an existence theorem that is non-constructive: we do not know vks.
@ Asin gs DFT, a smaller unknown part may be isolated:

VKS(;: t) = V(Fa t) + UHartree [n](?, l‘)“rvm [I’l](?, f) )

@ Four decades of work on the development of ground state functionals
have led to a reasonable success. For the time-dependent case, the
adiabatic approximation is used, in which the ground-state functionals
are used at each time. However, the true functional should have memory
effects, and perhaps be relevant in the highly non-linear regime.
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Preamble Density Matrices, Density Functionals
FT TDDFT: theoretical foundations
Some applications

Computational aspects

@ Problem: characterize
the optical response of
large nanosystems,
such as proteins.

@ Optical properties of
the chromophore
protected by the barrel
structure.

@ A small portion of the
system exhibits
“quantum” behaviour;
the rest is classical.

Aequorea Victoria
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1. Optical absorption spectra (ll)

@ We “kick” an atom/molecule with a sudden electric perturbation:
E(r) = Eyd(t)z2 = E(w) = Eoi
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1. Optical absorption spectra (ll)

@ We “kick” an atom/molecule with a sudden electric perturbation:
E(r) = Eyd(t)z2 = E(w) = Eoi
@ If we calculate the evolution of the variation of the dipole moment, and

obtain its Fourier transform, §Z(w), we can easily obtain the dynamical
polarizability:
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1. Optical absorption spectra (ll)

@ We “kick” an atom/molecule with a sudden electric perturbation:
E(r) = Eyd(t)z2 = E(w) = Eoi
@ If we calculate the evolution of the variation of the dipole moment, and

obtain its Fourier transform, §Z(w), we can easily obtain the dynamical

polarizability:

0Z(w)
Ey

@ The effect of this perturbation on the Kohn-Sham system is a phase shift
at time zero: p;(7,t = 07) = 5035 (7).

a(w) =

QOCT with TDDFT
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1. Optical absorption spectra (ll)

@ We “kick” an atom/molecule with a sudden electric perturbation:
E(r) = Eyd(t)z2 = E(w) = Eoi
@ If we calculate the evolution of the variation of the dipole moment, and

obtain its Fourier transform, §Z(w), we can easily obtain the dynamical
polarizability:
0Z(w)
Ey
@ The effect of this perturbation on the Kohn-Sham system is a phase shift
at time zero: p;(7,t = 07) = 5035 (7).
@ The evolution is then followed by propagating the TDKS equations:

a(w) =

.0 1 . R N
li(pi(rv t) = _7v2§0i(r71)+VKS(r’t)(pi(ra [)'
ot 2
N
n(mn) = Y e oP
i=1
6Z(1) = / Em(Fz—20 ; 6Z(w) = / die''6Z(1) .
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1. Optical absorption spectra (ll1)

@ Experimental data are affected by
solvent effects, and temperature; the
key elements are the position of the
peaks, and their relative strengths.

@ Experimentally, both neutral and
anionic configurations are present,
probably at a 4:1 ration.

@ Average over three spatial directions
(the information about anisotropy is
also accessible).

G (arb. units)

2 3 T
Brergy (V) @ TDLDA, for these molecules, and for
Phys. Rev. Lett. 90, 258101 (2003). this energy range, usually gives an
error in the energies of about 0.1 - 0.2
eV.
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2. Mixed quantum-classical: non-adiabatic dynamics (1)

Many flavours of ab initio Molecular Dynamics (MD) based on
(time-dependent) DFT.

@ “Traditional” Born-Oppenheimer MD.

@ Car-Parrinello Molecular Dynamics.

o TDDFT Ehrenfest dynamics for the ground-state, possibly for excited
states (J. L. Alonso, X. Andrade, P. Echenique, F. Falceto, D.
Prada-Gracia, A. Rubio, 2008).

@ Dynamics on excited potential energy surfaces: forces obtained through
TDDFT linear response calculations

@ Non-adiabatic couplings and transitions: surface hopping.

@ Ehrenfest-path dynamics based on TDDFT: “mean field” or “most
probable path” approach. Probes excited states, permits to study the
effect of external laser fields.

QOCT with TDDFT
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2. Mixed quantum-classical: non-adiabatic dynamics (ll)

http://arxiv.org/abs/1103.5306

QOCT with TDDFT
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2. Mixed quantum-classical: non-adiabatic dynamics (lll)

The so-called time-dependent electron localisation function can be used to monitor
chemical bonds during chemical reactions.

> 4
- e
. %
’{k i’* ;
3 el a2
t=0f t=201 t=380fs =100 fs

2, ™

{ » 2
t =40 fs t=60fs L=1206 b= 140 fs Y
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3. High harmonic generation

For large external perturbations (non-linear, or non-perturbative regime), one
can directly propagate in time the TDKS equations. This permits, to obtain,
e.g., harmonic spectra:

Oemission X |/dteiWI%d[n](t)|2a

where d[n](t) is the system dipole moment: d[n](r) = [ &*m(7)(t)x.

7 Harmonic spectrum for He at A\ =
616 nm and | = 3.5 10" W/cm>.
Calculations at the exact-exchange
(within the KLI approximation) level
of theory. [C. A. Ullrich, S. Erhard
and E. K. U. Gross, 1996)]

| |
10 1020 30 40 50 60
Harmonic Order
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Theoretical Spectroscopy

slow elecirong
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Electronic excitations:

o Optical absorption @ Photoemission
o Electron energy loss o Inverse photoemission
o Inelastic X-ray scattering e ...
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Density Matrices, Density Functionals
TDDFT: theoretical foundations
Some applications

Computational aspects

Computational

Theoretical Spectroscopy

» Goal: First principles (from electronic structure)
theoretical description of the various
spectroscopies (“theoretical beamlines”):

time-resolved

photo-emission

energy loss {ransport

optics
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Role: interpretation of (complex) experimental findings
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Computational

Theoretical Spectroscopy

‘QMC for ground and excited
'state materials properties

Embedded post-HF quantum
chemistry for structures, adsorption,
g

TD-DFT or DFT/GW/BSE for
band gaps and spectra of
conventional semiconductors

DMFT for band gaps and spectra of

DFT + U for same ground state strongly correlated materials

properties as DFT-GGA for
strongly correlated materials

DFT-GGA for structures, thermal, electrical,
and

diffusion and reaction kinetics, surface and
defect energies of most hard materials

Accuracy

Expense




Density Matrices, Density Functionals
TDDFT: theoretical foundations
Some applications

Computational aspects

@ The octopus code is a member of the European Theoretical
Spectroscopy Facility (ETSF, http://www.etsf.eu), which develops other
platforms: abinit, yambo, exc, DP, etc.

@ The targets of octopus are:

o optical absorption spectra of molecules, clusters, nanostructures.

o response to lasers (non-perturbative response to high intensity fields).

e dichroism spectra, and other mixed (electric-magnetic) response.

o adiabatic and non-adiabatic Molecular Dynamics (for e.g., infrared and
vibrational spectra, photo-chemical reactions).

Quantum Optimal Control Theory.
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@ Optimization for the TDKS system
@ Charge transfer in a 2D quantum dot system
@ Population of excited states to trigger isomerization
@ Mixed quantum-classical systems
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Optimization for the TDKS system

Charge transfer in a 2D quantum dot system
QOCT + TDDFT Population of excited states to trigger isomerization

Mixed quantum-classical systems

Optimization for the TDKS system

@ The optimization problem is first formulated for the real system of
interacting electrons.

@ Then, this optimization is substituted by an optimization for the fictitious
system of Kohn-Sham electrons. This is exact if the target functional,
initially a functional of the wave function of the real system, can be
written exactly as a functional of the density.

FV] = Fln[V]]

QOCT with TDDFT
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Mixed quantum-classical systems

Optimization for the TDKS system

; 1 7
iaaf (For) = =5Vl 1) + vo(PpilFo ) + /d‘r’ ‘*;E’; ;)| pi(Fo, 1)
+ 3 v el 1) + vea 7, u, 1)o7 1)
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Optimization for the TDKS system

Charge transfer in a 2D quantum dot system
QOCT + TDDFT Population of excited states to trigger isomerization

Mixed quantum-classical systems

Optimization for the TDKS system

; 1 7
iaaf (Fo,1) = 7§v2¢,,.(?a, 1) + vo(F)pi(7o, t)+/d3r’ ‘r;Er! t7)| wi(Fo,1)
+ > v [naslei(Fr, 1) + vea (7, u, 1)pi(Fo, 1)
@1
y= e s
©N
H[nop(t), u, 1] 0 . 0 0)

), = —i 0 ﬁ[na;f(f)»u,r] 0 pa(1)

0 0 o Hinap(t),u,1] on(t)
In condensed form:

@(t) = —ifl[n(r), u, (1) .
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Mixed quantum-classical systems

Optimization for the TDKS system (l1)

@ Definition of a target in terms of the Kohn-Sham orbitals:
F=Flpg,u] =  Glu] = Flp[u],u]
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Mixed quantum-classical systems

Optimization for the TDKS system (l1)

@ Definition of a target in terms of the Kohn-Sham orbitals:
F=Flpu] = Glu] =F[plu],u]
In usual cases, the target dependes only on the system at time T:
Flplul,u] = Iilplul] + J2[u] = {@[u)(T)|0]@[ul(T)) + J2[u]
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Mixed quantum-classical systems

Optimization for the TDKS system (l1)

@ Definition of a target in terms of the Kohn-Sham orbitals:
F=Flpg,u] =  Glu] = Flp[u],u]
In usual cases, the target dependes only on the system at time T:
Flplul,u] = Iilplul] + J2[u] = {@[u)(T)|0]@[ul(T)) + J2[u]
@ Optimal control theory equations for this case:

VuGlu] = V. F[p[u], u] + 2Im

Z /Odl N (VB [nfu) (1), u, t]lpf[u](f»}

Pll() = —iB[n(r), u el

e 0) = ¢,

(@) = i [H0n0), 0. + Klld()] Mel(r)
A(T) = (;%[g[u](r),ul.
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Mixed quantum-classical systems

Optimization for the TDKS system (ll1)

A (n=—1 [B' [l (1), . ] + Klelad 0] Al (),
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Mixed quantum-classical systems

Optimization for the TDKS system (ll1)

A (n=—1 [B' [l (1), . ] + Klelad 0] Al (),

Alu)(5) = =B [a[u] (1), u, ANi[u (1) — izky[g[u](f)]hj[u](l)
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Optimization for the TDKS system (ll1)

A (n=—1 [B' [l (1), . ] + Klelad 0] Al (),

Alu)(5) = =B [a[u] (1), u, ANi[u (1) — izky[g[u](f)]hj[u](l)

(AR [l (D]IN [ (1)) = —2ipi[u] (7, 7)Im Ud3r'/\./[u]*(?'7 e [ [u] (D] (7. 7 ) pi[u) (7, 1)
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Mixed quantum-classical systems

Optimization for the TDKS system (ll1)

A (n=—1 [B' [l (1), . ] + Klelad 0] Al (),

Alu)(5) = =B [a[u] (1), u, ANi[u (1) — izky[g[u](f)]hj[u](l)

(AR [l (D]IN [ (1)) = —2ipi[u] (7, 7)Im Ud3r'/\./[u]*(?'7 e [ [u] (D] (7. 7 ) pi[u) (7, 1)

S WD) 7) = =+ felald (O] 7)

771
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@ Charge transfer in a 2D quantum dot system
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Mixed quantum-classical systems

Charge transfer in a 2D quantum dot system

@ System: double quantum dot, formed in a 2D electronic gas trapped in a
semiconductor heterostructure.
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Charge transfer in a 2D quantum dot system

@ System: double quantum dot, formed in a 2D electronic gas trapped in a
semiconductor heterostructure.
1 4 1, 15 1,
o —_ — _—— —_— p—
V(x,y) at 1" + 3" + 7Y

GROUND STATE DENSITY DENSITY OF THE 1st UNOCCUPIED
KOHN-SHAM STATE

0.25 03

0.2 A 0.25 A
0.15 0"12

0.1 - otf
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Mixed quantum-classical systems

Charge transfer in a 2D quantum dot system (II)

@ Two electrons in a single orbital; LDA parameterisation of Attacalite et al
[Attacalite et al,Phys. Rev. Lett. 88, 256601 (2002)].

@ Control: Electric field, expanded in a Fourier series:

N2 -
Za,,\/ cos —nt)er,,q/ s1n(—nt)

@ Target: transfer from one potential well to the other:

F[f?”:{a7b}] = J1[£]+Jz({a,b}),
Nlg]l = />0d2rn(7,T),
N/2
B{ab)) = —ad(@+5)
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Charge transfer in a 2D quantum dot system (lIl)
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@ Population of excited states to trigger isomerization
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Mixed quantum-classical systems

Isomerization

@ System: formaldimine molecule, prototype of double bond rotation.

) §
h
Sw
twisting inversion photoexci In
H <
Y | k \" / \
/& 4 ; .
""""" - ; o % 180
v) v ‘\v W twist angle ® v
T~ o=~ N,

[Hirai and Sugino, PCCP 11, 4421 (2009)]
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Isomerization (Il)

Potential energy surfaces (PBE / LDA kernel):

¢ twisting inversion
" \ i
Y | ;
Z *
? g

v
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Mixed quantum-classical systems

Isomerization (IIl)

@ Target: population of the first excited state. The obvious choice would be
to use the projection operator onto that state, but in TDDFT we do not
have the state.

@ Approximation of the target as a linear combination of Slater
determinants:

D7) = Ciaoliloliic| ®o)
iao
where:

o |dy) is the ground state Kohn-Sham determinant.
@ {cqic} are the coefficients that result of the linear-response TDDFT
computation for the I-th excitation:

(WolR|W) = (Po|X|®r) = ciao (¢ X005 ) -

aio
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Mixed quantum-classical systems

Isomerization (V)

If the excitation is almost a pure HOMO-LUMO transition from a singlet spin
unpolarized ground state:

| ﬁp 1 S LUMO
4+ V4= Hoo

The maximum possible population of this state is %!
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Optimization for a MQCS

Mixed quantum-classical systems

() = <w(r>|§—Z(q,p,u,z>|W(z)>,
b = f<W(r>|§—;f<q,p.,u,z)|w<r)>.
W) = —ifl(g.pu )W)

A(g,p,u,t) =To+ Tc(p) + V(g,u,1).

Flg,p,V,u] = Ji[q(T), p(T), V(T)] + J[u] .
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Mixed quantum-classical systems

Optimization for a MQCS
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Design of bond-breaking laser pulses

@ If the AB bond is breaking,
ta-Fg > 0
FBA . ﬁA < 0

=

FBA~ﬁB—FBA~FA > 0=
toa-Fga > 0

(ﬁBA = ﬁB - ﬁA)

QOCT with TDDFT
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Design of bond-breaking laser pulses (ll1)

@ Bond-breaking target:

Il = / dr{W (1) [Foa | Foa (1) (14 Fon - Foa(1)) [V (0))

QOCT with TDDFT
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Design of bond-breaking laser pulses (ll1)

@ Bond-breaking target:

1
Ir— 1o

1) = o [ sl Fas()] (1-+ s Fas() 1900

fo

@ Within TDDFT, F4 is a local density operator: the necessary expectation
values can be written as simple density integrals.

Fa(r) = / &r A(r) Vs (r, 1)

QOCT with TDDFT
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Cleaving a NH bond
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Krieger et al., http://arxiv.org/abs/1102.3128.
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Other (single electron) work

Control of currents in quantum rings

&
=8

Voulr) < 0.8
2
t g 06
s 04
E(t) 02
-4-3-2-10123 4
1 o 25 o 35 70
tlau.) t(au)
FIG. | (color online). (a) Shape of the external confining
patential for a quantum ring and an example of a circulary FIG. 4 (color online). Schematic picture of transitions from
polarized laser field. (h) Energy-level spectrum of a quantum f=—1tof=1(a)and from /= —2to{ = 2 (b) (upper panel)

The transitions are allowed along the dashed line so that optimized fields for these wansitions (middle panel), and the
*1 occupations of the states (lower panel).

E. Rasanen, AC, J. Werschnik, A. Rubio, and E. K. U. Gross, Phys. Rev. Lett.
98, 157404 (2007).




Other (single electron) work

Control of double quantum dots

[N
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lines mark the nodes of the wave functions volved in the transitions,

E. Rasanen, AC, J. Werschnik, A. Rubio, and E. K. U. Gross, Phys. Rev. B
77, 085324 (2008).




Other (single electron) work

Acceleration of QOCT algorithms with mixing strategies
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AC and E. K. U. Gross, Phys. Rev. E 79, 056704 (2009).
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AC, E. Rasénen, A. Rubio, and E. K. U. Gross, EPL 87, 53001 (2009).
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Other (single electron) work

Conclusions

@ TDDFT can be combined with QOCT, and the resulting equations are
numerically tractable.

@ This provides a scheme to perform QOCT calculations from first
principles, in order to obtain tailored function-specific laser pulses
capable of controlling the electronic state.

@ Most of the previous applications of QOCT were targeted to control, with
femto-second pulses, the motion of the nuclear wave packet on one or
few potential energy surfaces, (scale of hundreds of femtoseconds). The
approach presented here, on the other hand, controls the motion of the
electronic degrees of freedom (sub-femto-second scale)

@ Possibilities: shaping of the high harmonic generation spectrum,
selective excitation of electronic excited states, control of the electronic
current in molecular junctions, selective photo-chemistry, etc.

@ arXiv:1009.2241v1 [physics.atm-clus]
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