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Outline of the Talk

Motivation of Structured Sparsity and how to quantify “structure”
information theoretical characterization
other possibilities

How much can we benefit from “structures” ?
review of group Lasso analysis: from info. theoretical view

Convex relaxation for composite structures
additive composition of regularizers
additive composition of covariance

theoretical justification

Work in progress :
talk focuses on high level ideas
no empirical results yet
theory suggests additive covariance formulation is a worthy alternative
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Sparse Regression Problem

Model: Y = X β̄ + ε

Y ∈ Rn: observation
X ∈ Rn×p: design matrix
β̄ ∈ Rp: parameter vector to be estimated
ε ∈ Rn: zero mean sub-Gaussian noise with variance σ2

Sparsity: β̄ has few nonzero components
supp(β̄) = {j : β̄j 6= 0}.
‖β̄‖0 = |supp(β̄)| is small: � n
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Structured sparsity

Wavelet domain: sparsity pattern not random (structured)

Image domain Wavelet domain

can we take advantage of structure?
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Structured Sparsity Characterization

Observation:
sparsity pattern: supp(β̄)
not all sparse patterns are equally likely

Approaches to formalize the intuition
approach 1: information theoretical characterization on sparsity pattern
approach 2: also look into the correlation of features (variables)
approach 3: also look into the magnitude of coefficients

We focus on approach 1 in this talk.
consider the situation where features are weakly correlated (e.g. RIP)
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Structured Sparsity: Information Theoretical Characterization

F = supp(β): sparsity pattern
Prior knowledge on the sparsity pattern F :

e.g., neighboring variables are likely to become nonzeros simultaneously
Each sparsity pattern F is associated with cost c(F )

c(F ): proportional to negative log-likelihood of (prior of) F

Nonconvex formulation: complexity penalization

min
β
‖Xβ − Y‖22 subject to ‖β‖0 + c(supp(β)) ≤ s.

can obtain recovery results using empirical processes
We are interested in convex relaxation
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Example: Group Structure

Variables are divided into pre-defined groups G1, . . . ,Gp/m
m variables per group

Assumption:
coefficients in each group are simultaneously zeros or nonzeros

Group sparsity pattern cost: ‖β‖0 + m−1‖β‖0 ln p.
Standard sparsity pattern cost (for Lasso): ‖β‖0 ln p
Convex relaxation for group sparsity: group Lasso

how does group Lasso improve over Lasso?
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Theory of Convex Relaxation for group sparsity

Recovery result for group Lasso: convex relaxation for group sparsity

β̂ = arg min
β

n−1‖Xβ − Y‖22 + λ
∑
`

‖βG`
‖2.

If coefficients β̄ in each group are simultaneously zeros or nonzeros
(condition can be relaxed). With appropriate λ:

‖β̂ − β̄‖22 = O(σ2(‖β̄‖0 + m−1‖β̄‖0 ln p)/n).

Moreover, the bound matches information theoretical lower-bound.
Compare to Lasso bound:

‖β̂ − β̄‖22 = O(σ2‖β̄‖0 ln p/n).

Group Lasso can be inferior when the group structure is incorrect
question: can we combine Lasso and group Lasso?
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Group sparsity: correct group structure
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Simplified High Level Analysis

Sparsity regularization
shrink the coefficients toward zero.

Two effects for shrinkage:
positive effect: shrink noise toward zero — leads to sparse solution
negative effect: shrink nonzero coefficients toward zero — cause bias

Balancing:
regularization has to be strong enough to dominate the noise
regularization should not be too strong to cause excessive bias

Simplified analysis (assume weak correlation; such as RIP, etc):
assume regularization is strong enough to dominate the noise
then recovery performance is the bias of the regularization
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Simplified noise domination condition

Consider a regularizer R(β)

Consider projection of noise to the variables ξ = n−1X>ε
X is weakly correlated

R(β) dominates noise if (roughly) β = 0 is the unique solution of

min
β

[−2β>ξ + R(β)].

Sub-Gaussian noise property: if ε is sub-Gaussian, then
|ξj | = O(σ

√
ln p/n) for all variable j

‖ξG‖2 = O(σ
√

(m + ln p)/n) for all p/m groups G
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Lasso Analysis

β̂ = arg min
β

n−1‖Xβ − Y‖22 + λ‖β‖1.

Regularization needed to dominate sub-Gaussian noise:

λ = Ω(σ
√

ln p/n)

Regularizer bias
Each coefficient: O(λ2)
Multiply by sparsity ‖β̄‖0: λ2‖β̄‖0

Recovery performance — overall bias with optimal λ

‖β̂ − β̄‖22 = Ω(σ2‖β̄‖0 ln p/n).
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Group Lasso Analysis

β̂ = arg min
β

n−1‖Xβ − Y‖22 + λ
∑
`

‖βG`
‖2.

Regularization needed to dominate sub-Gaussian noise in each
group of size m:

λ = Ω(σ
√

(m + ln p)/n)

Regularization bias:
Each group: O(λ2)
Multiply by nonzero-groups ‖β̄‖0/m: λ2‖β̄‖0/m

Recovery performance – overall bias with optimal λ:

‖β̂ − β̄‖22 = Ω(σ2‖β̄‖0(1 + m−1 ln p)/n).

Remark:
group Lasso benefits: can dominate noise with weaker regularization
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More Complex Structure: hierarchical

+

+

+ +

+ + +

Parent is nonzero if a child is nonzero
Complexity: O(‖β̄‖0)

assuming if a child is a feature, then its parent is also a feature
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More Complex Structure: connected region

+ +

+ + +

+ +

+

+ +

a nonzero pixel implies adjacent pixels more likely to be nonzeros
Complexity: O(‖β̄‖0 + q ln p) (q: number of connected components)
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Complex Structure by combining simple structures

Form complex structure by combining simpler structures
focus on overlapping groups

Semantics (under information theoretical framework)
coefficients within each group likely to be simultaneously nonzeros

Desired recovery performance (info. Th. view)
each group has a sufficiently large regularization to dominate noise
recovery performance: cover supp(β) by groups with smallest overall bias
assume weak correlation

Two different convex relaxation approaches
additive composition of simpler regularizers (popular)
additive composition of covariance (newer or new)

Question: which approach gives desired recovery performance?
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Desirable Recovery Bound (Info. Theoretical View)

Consider a set of groups G = {G`}.
each group j associated with complexity c(G`) = O(|G`|+ ln |G|),
penalty of σ2n−1c(G`) is strong enough to dominate noise.

F : set of nonzero coefficients; define its minimum covering cost

cG(F ) = min
G′⊂G

∑
G`∈G′

c(G`) subject to F ⊂ ∪G`∈G′G`

σ2n−1cG(F ): bias of overlapping groups.
the problem itself is set covering number which is NP hard.

Desirable recovery performance: bias under noise domination

‖β̂ − β̄‖22 = O(σ2n−1cG(F )).

can be achieved with nonconvex regularization:
question: can this be achieved through convex relaxation?
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Simple example: combine standard & group sparsity

Combining sparsity and group sparsity to benefit from both
non-overlapping m-element groups {G`}`=1,...,p/m
standard sparsity structure: single-element groups G′j = {j}j=1,...,p.

The combination has overlapping group structure {G`} ∪ {G′j}
intuition 1: encourage group sparsity as well as within group sparsity
intuition 2: supp(β̄) is partially group sparse and partially standard sparse

We are more interested in intuition 2.
e.g. multi-task learning with shared features plus individual features

Minimum bias cover: supp(β̄) can be covered by
K m-element groups in {G`};
plus L single-element groups in {G′j}

Desired recovery performance

‖β̂ − β̄‖22 = O(σ2(K (m + ln p) + L ln p)/n).
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Additive regularizer composition: properties

Additive composition of regularizers:

β̂ = arg min
β

n−1‖Xβ − Y‖22 + λ(‖β‖1 + α
∑
`

‖βG`
‖2).

Question: can we achieve the bound?

‖β̂ − β̄‖22 = O
(
σ2(K (m + ln p) + L ln p)/n

)
.

answer is no.
Problems of additive composition under weak correlation:

over-counting: each coefficient is covered by multiple groups
extra bias with multiple penalization

If regularizers dominate noise, then L1 is always stronger than group-L1.
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Additive regularizer composition: high level analysis

Formulation:

β̂ = arg min
β

n−1‖Xβ − Y‖22 + λ(‖β‖1 + α
∑
`

‖βG`
‖2).

Require L1 & group-L1 to dominate noise (assume weak correlation)
λ = Ω(σ

√
ln p/n)

αλ = Ω(σ
√

(m + ln p)/n)

The L1 term always cause bias of order σ‖β̄‖0
√

ln p/n.
Conclusion:

additive regularization isn’t too help for some models (weak correlation)
maybe constant

can prove something under intuition 1, but not entirely satisfactory either
intuition 1: encourage group sparsity and within group sparsity

can be more helpful when features are “highly correlated” within group.
situation not considered in this talk
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Alternative formulation of sparse regularization

Main idea:
function β2/µ is jointly convex in β and µ ≥ 0.
µ: covariance term which can be jointly optimized with β

Recently explored in [Micchelli,Morales,Pontil] NIPS 2010.

Equivalent formulation of Lasso:

[β̂, µ̂] = arg min
β,µ

n−1‖Xβ − Y‖22 + 0.5λ(
∑

j

β2
j /µj + µj) µj ≥ 0.

Equivalent formulation of group Lasso:

[β̂, µ̂] = arg min
β,µ

n−1‖Xβ −Y‖22 + 0.5λ(
∑
`

‖βG`
‖22/µ` +αµ`) µ` ≥ 0.
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Additive Covariance Composition

Dealing with overlapping groups by combining covariance µ.
Consider groups {G`} that might overlap.
µ`: covariance parameter associated with G`

Overlapping group formulation: additively combine µ`

[β̂, µ̂] = arg min
β,µ

n−1‖Xβ − Y‖22 + 0.5λ

∑
j

β2
j∑

` µ`I(j ∈ G`)︸ ︷︷ ︸
groups covering j

+
∑
`

α`µ`


µ` ≥ 0.

Also equivalent to [Jacob, Obozinski, Vert], ICML 2009.
α`: sufficiently large to dominate noise within each group G`.
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Simple Example: combine group & standard sparsity

Combine group and standard sparsity
non-overlapping m-element groups {G`}
standard sparsity structure, with single-element groups G′j = {j}j=1,...,p.

Additive composition of covariance formulation:

[β̂, µ̂, µ̂′] = arg min
β,µ,µ′

n−1‖Xβ − Y‖22 + 0.5λ
p∑

j=1

[
β2

j

µ′j + µ`(j)
+ µ′j + αµ`(j)

]
µ` ≥ 0.

where `(j) is the group ` that contains j : j ∈ G`.

Does it achieve desired info theoretical recovery performance under
weak correlation?

yes — we will go through a simplified high level analysis
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Additive Covariance: bias

Combining group sparsity and standard sparsity.
The regularizer satisfies

β2
j

µ′j + µ`(j)
+ µ′j + αµ`(j) ≤ min

[
β2

j

µ′j
+ µ′j ,

β2
j

µ`(j)
+ αµ`(j)

]
.

Informally, bias is the minimum of Lasso/group Lasso bias
Minimum cover of supp(β̄):

L single-element groups
K m-element groups.

The bias for the cover is of order

λ2(L + αmK ),

which matches the form of desired bound: need to estimate λ, α
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Additive Covariance: noise domination

Combining group sparsity and standard sparsity
Sub-Gaussian noise: ξ = n−1X>ε — projection of noise to variables.

ξj = O(σ
√

ln p/n) for each individual variable j = 1, . . . ,p
ξG`

= O(σ
√

(m + ln p)/n) for each group G`

Noise domination: the following problem has unique solution β = 0

min
β,µ,µ′

−2β>ξ + 0.5λ
∑

j

[
β2

j

µ′j + µ`(j)
+ µ′j + αµ`(j)

]

main question: how large λ and α need to be ?
only need to look at single group situation
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Additive Covariance: single group noise domination

Noise domination condition with β ∈ Rm as single group:

0 = arg min
β,µ,µ′

−2β>ξ + 0.5λ
m∑

j=1

[
β2

j

µ′j + µ
+ µ′j + αµ

]
Without loss of generality, assume at solution:

|β1| ≥ |β2| ≥ |βL| > µ ≥ |βL+1| ≥ · · · ≥ |βm|

Solution property of µ and µ′ given β:

µ′j = max[|βj | − µ,0], µ =
√
αm − L

√√√√ m∑
j=L+1

β2
j .

Eliminating µ, µ′, we get lower bound of the regularizer:

m∑
j=1

[
β2

j

µ′j + µ
+ µ′j + αµ

]
≥

L∑
j=1

|βj |+ 2
√
αm

√√√√ m∑
j=L+1

β2
j .
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Additive Covariance: single group noise domination

Simplified noise domination condition: β = 0 is the unique solution of

min
β
−2β>ξ + 0.5λ

 L∑
j=1

|βj |+ 2
√
αm

√√√√ m∑
j=L+1

β2
j


Reduces separately to sparse and group regularizations:

min
β1:L
−2β>1:Lξ1:L + 0.5λ

L∑
j=1

|βj |

min
βL+1:m

−2β>L+1:mξL+1:m + λ
√
αm

√√√√ L∑
j=1

β2
j

now apply sub-Gaussian noise property
Only need λ = Ω(σ

√
ln p/n) and λ

√
αm = Ω(σ

√
(m + ln p)/n).
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Additive Covariance Composition: recovery result

Formulation to combine group sparsity and standard sparsity

[β̂, µ̂, µ̂′] = arg min
β,µ,µ′

n−1‖Xβ − Y‖22 + 0.5λ
∑

j

[
β2

j

µ′j + µ`(j)
+ µ′j + αµ`(j)

]
µ` ≥ 0.

Pick λ = Ω(σ
√

ln p/n) and λ
√
αm = Ω(σ

√
(m + ln p)/n).

noise domination holds (under weak correlation assumption)

Recovery performance is the bias (with optimal λ and α)

‖β̂ − β̄‖22 = O
(
σ2(L ln p + K (m + ln p))/n

)
.

supp(β) covered by L single-element groups and K m-element groups
match desired information theoretical result.
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Extension

Similar argument applies to tree structures with cascaded groups:
partial ordering of groups such that two groups are either
non-overlapping or one is the subset of the other.

Similar results can be derived by cascading the argument.
Further question:

need to study more complex overlapping structures
harder to decouple
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Comparison of two approaches

Problem: how to combine two sparse regularizers
Approach 1: additive regularizer composition

Combined regularizer is roughly equivalent to the stronger of the two
Useful when neither is strong enough: complementary regularizers (e.g.
non-overlapping groups)

Approach 2: additive covariance composition
Combined regularizer is roughly equivalent to the weaker of the two
Reduce bias: useful when both regularizers are strong enough (pick
one)

Both are useful, but should be employed in the right context.
We focus on the weak correlation case; what about correlation?
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Some Remarks about Correlation

Assume within group features are correlated
Consider within group strongly convex regularization (e.g. L2)

reduces within group model complexity
this effect is much weaker when features are uncorrelated.

Additive composition of regularizers can be beneficial
within group complexity reduction and sparse regularization are
complementary

Question: analyze it more formally.
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Summary

Structured sparsity problem
focus on composite regularization from simpler sparse regularizers

Two Convex Relaxation Formulations
Additive regularizer composition versus additive covariance composition

Additive regularizer combination
hard to prove improvement under some assumptions (weak correlation)
futher study: what if variables are correlated within groups.

Additive covariance combination
theoretically can be beneficial under the weak correlation case
a valid approach worthy of serious consideration

Work in progress: empirical study?
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