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Goal

in genomics:
if we would make an intervention at a single gene, what would
be its effect on a phenotype of interest?

want to infer/predict such effects without actually doing the
intervention
i.e. from observational data
or a mix of observational and interventional data

it doesn’t need to be genes
can generalize to intervention at more than one variable/gene
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Two examples

1. Flowering of arabidopsis thaliana
phenotype of interest: Y = days to bolting (flowering)
“covariates” X = gene expressions from p = 21′326 genes
question: infer/predict the effect of knocking-out/knocking-down
(or enhancing) a single gene j on the phenotype Y ?

2. Gene expressions of yeast
p = 5360 genes
phenotype of interest: Y = expression of first gene
“covariates” X = gene expressions from all other genes

and then
phenotype of interest: Y = expression of second gene
“covariates” X = gene expressions from all other genes

and so on

infer/predict the effects of a single gene knock-down on all
other genes



we could use linear model (fitted from observational data)

Yi =

p∑
j=1

βjX
(j)
i + εi n� p

and measure the effect of X (j) on Y with β̂j from e.g. Lasso or
similar methods...

but regression is the “wrong approach”
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Effects of single gene knock-downs on all other genes (yeast)
(Maathuis, Colombo, Kalisch & PB, 2010)

• p = 5360 genes (expression of genes)
• 231 gene knock downs ; 1.2 · 106 intervention effects
• the truth is “known in good approximation”

(thanks to intervention experiments)

goal: prediction of the true large intervention effects
based on observational data with no knock-downs

n = 63
observational data
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... “causal inference from purely observed data could have
practical value in the prioritization and design of perturbation
experiments”

Editorial in Nature Methods (April 2010)



Why are we doing better than regularized regression?

the problem is of intervention-type!

and not of association-type... which could be well-addressed by regression
techniques



intervention = causality
(defined in mathematical terms)



A bit more specifically

I univariate response Y
I p-dimensional covariate X

question:
what is the effect of setting the j th component of X to a certain
value x :

do(X (j) = x)

; this is a question of intervention type; not association



in contrast to: (high-dimensional) regression

Y =

p∑
j=1

βjX (j) + ε,

Var(X (j)) ≡ 1 for all j

|βj | measures the importance of variable X (j) in terms of
“association”

i.e. change of Y as a function of X (j) when keeping all other
variables X (k) fixed

; not very realistic for intervention problem
if we change e.g. one gene, some others will also change
and these are not (cannot be) kept fixed
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Intervention calculus (a review)
“dynamic” notion of importance:
if we set a variable X (j) to a value x (intervention)
; some other variables X (k) (k 6= j) and maybe Y will change

we want to quantify the “total” effect of
X (j) on Y including “all changed” X (k) on Y

a graph or influence diagram will be very useful

X1

X2

X3X4

Y

quantify total effect of X (2) to Y



for simplicity: just consider DAG’s
(for ancestral graphs with hidden variables: work in progress)

assume Markov condition for DAG: recursive factorization of
joint distribution

P(Y ,X (1), . . . ,X (p)) = P(Y |X (pa(Y )))

p∏
j=1

P(X (j)|X (pa(j)))

for intervention calculus: use truncated factorization (e.g. Pearl)



assume Markov property for causal DAG:

non-intervention

X(1)

X(2)

X(3)X(4)

Y

intervention do(X (2) = x)

X(1)

X(2) = x

X(3)X(4)

Y

P(Y ,X (1),X (2),X (3),X (4)) =
P(Y |X (1),X (3))×
P(X (1)|X (2))×
P(X (2)|X (3),X (4))×
P(X (3))×
P(X (4))

P(Y ,X (1),X (3),X (4)|do(X (2) = x)) =
P(Y |X (1),X (3))×
P(X (1)|X (2) = x)×
P(X (3))×
P(X (4))



truncated factorization for do(X (2) = x):

P(Y ,X (1),X (3),X (4)|do(X (2) = x))

= P(Y |X (1),X (3))P(X (1)|X (2) = x)P(X (3))P(X (4))

P(Y |do(X (2) = x))

=

∫
P(Y ,X (1),X (3),X (4)|do(X (2) = x))dX (1)dX (3)dX (4)



the truncated factorization is a mathematical consequence of
the Markov condition (with respect to the causal DAG) for the
probability distribution P



the intervention distribution P(Y |do(X (2) = x)) can be
calculated from

I observational data (observational distribution)
; need to estimate conditional distributions

I an influence diagram (causal DAG)
; need to estimate structure of a graph/influence diagram

intervention effect:

E[Y |do(X (2) = x)] =

∫
yP(y |do(X (2) = x))dy

intervention effect at x0 :
∂

∂x
E[Y |do(X (2) = x)]|x=x0

in the Gaussian case: Y ,X (1), . . . ,X (p) ∼ Np+1(µ,Σ),

∂

∂x
E[Y |do(X (2) = x)]≡ θ2 for all x



when having no unmeasured confounder (variable):

intervention effect (as defined) = causal effect

causal effect = effect from a randomized trial
(but we want to infer it without a randomized study...
because often we cannot do it, or it is too expensive)
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An important characterization

recap, Gaussian case:
∂

∂x
E[Y |do(X (j) = x)] ≡ θj for all x

for Y /∈ pa(j):

θj is the regression parameter in

Y = θjX (j) +
∑

k∈pa(j)

θkX (k) + error

only need parental set and regression
X(1)

X(2)

X(3)X(4)

Y

j = 2, pa(j) = {3,4}



in the Gaussian case:

causal inference =
regression when conditioning on the right variables



Inferring intervention effects from data

main problem: inferring parental set (or DAG) from data
because regression is easy

outline
1. inferring DAG from observational data
2. inferring DAG from intervention data or

from observational and intervention data



Inferring DAG from observational data

; impossible: can only infer equivalence class of DAG’s
(several DAGs can encode exactly the same conditional
independence relationships)

and we cannot estimate causal/intervention effects from
observational data

the usual statistical inference principle doesn’t work:
observational probability distribution P ⇒ parameter θ(P)

here:

P and graph G⇒ causal effect θ(P,G)



impossible to estimate causal/intervention effects from
observational data

but we will be able to estimate lower bounds of causal effects

conceptual “procedure”:
I probability distribution P from a DAG, generating the data

; true underlying equivalence class of DAG’s
I find all DAG-members of true equivalence class:

G1, . . . ,Gm

I for every DAG-member Gr , and every variable X (j):
single intervention effect θr ,j
summarize them by

Θ = {θr ,j ; r = 1, . . . ,m; j = 1, . . . ,p}︸ ︷︷ ︸
population quantity
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IDA (oracle version)

17

oracle CPDAG

PC-algorithm

DAG 1

DAG 2

...

...

DAG m

do-calculus

effect 1

effect 2

...

...

effect m

multi-set Θ



If you want a single number for every variable ...

instead of the multi-set

Θ = {θr ,j ; r = 1, . . . ,m; j = 1, . . . ,p}

minimal absolute value

αj = min
r
|θr ,j | (j = 1, . . . ,p),

|θtrue,j | ≥ αj

minimal absolute effect αj is a lower bound for true absolute
intervention effect



∃ Computationally tractable algorithm for Θ
“local algorithm”

instead of finding all m DAG’s within an equivalence class ;

compute all intervention effects without finding all DAG’s

Maathuis, Kalisch & PB (2009):
• algorithm which works on local aspects of the graph only
• prove that such a local algorithm is computing Θ



IDA (local sample version)

33

data CPDAG

PC-algorithm do-calculus

effect 1

effect 2

...

...

effect q

multi-set ΘL

ΘL = Θ up to multiplicities



and PC-algorithm (Spirtes, Glymour, 1991) for estimation

IDA (local sample version)

34

data �CPDAG

PC-algorithm(α) do-calculus

�effect 1

�effect 2

...

...

�effect q

multi-set �ΘL
n



Faithfulness assumption is crucial for estimation of CPDAG

A distribution P is called faithful to a DAG G if all conditional
independencies can be inferred from the graph

(can infer some conditional independencies from a Markov
assumption; but we require here “all” conditional
independencies)



What does it mean?

1

2 3

X (1) ← ε(1),

X (2) ← αX (1) + ε(2),

X (3) ← βX (1) + γX (2) + ε(3),

ε(1), ε(2), ε(3) i.i.d. ∼ N (0,1)

enforce marginal independence of X (1) and X (3)

β + αγ = 0, e.g. α = β = 1, γ = −1

Σ =

 1 1 0
1 2 −1
0 −1 2

 , Σ−1 =

 3 −2 −1
−2 2 1
−1 1 1

 .

failure of faithfulness due to cancellation of regression
coefficients



Theorem (Kalisch & PB, 2007; Maathuis, Kalisch & PB, 2009)
triangular scheme of observations

I Y ,X (1), . . . ,X (pn) ∼ Npn+1(µn,Σn) faithful to a DAG ∀n
I pn = O(nα) (0 ≤ α <∞) (high-dimensional)
I dn = maxj |ne(j)| = o(n) (sparsity)
I non-zero (partial) correlations sufficiently large (“signal

strength”)
min{|ρn;i,j|S|; ρn;i,j|S 6= 0, i 6= j , |S| ≤ dn} �

√
dn log(pn)/n

I maximal (partial) correlations ≤ C < 1 (“coherence”)
max{|ρn;i,j|S|; i 6= j , |S| ≤ dn} ≤ C < 1

Then: for some suitable α = αn

P[ĈPDAG(α) = true CPDAG] = 1−O(exp(Cn1−δ))

P[Θ̂local(α)
as set

= Θ] = 1−O(exp(Cn1−δ))

(i.e. consistency of lower bounds for causal effects)



How well can we do?
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the real success is the prediction of
causal effects on
gene interactions in yeast

where the true causal effects are
“known” thanks to intervention exper-
iments
Maathuis, Colombo, Kalisch & PB (2010)



Arabidopsis thaliana

response Y : days to bolting (flowering) of the plant
(aim: fast flowering plants)
X : gene-expression profile

observational data with n = 47 and p = 21′326

we validated the top 14 genes having largest lower bounds α̂j :

randomized experiments with 14 mutant plants
(only 9 mutant plants survived)
; found 3 significant new genes for “time to flowering”
(Stekhoven, PB and Hennig, 2010)



in short:

bounds on causal effects (α̂j ’s) based on observational data
lead to interesting predictions for interventions in genomics
(i.e. which genes would exhibit a large intervention effect)

and these predictions have been validated using experiments



Inference based on observational
and interventional data (Hauser & PB, in progress)

Toy problem: two (Gaussian) variables X ,Y
when doing an intervention at one of them, can infer the
direction

scenario I:
DAG : X → Y ; intervention at Y ; interv. DAG : X Y
; X ,Y independent

scenario II:
DAG : X ← Y ; intervention at Y ; interv.. DAG : X ← Y
; X ,Y dependent

generalizes to: can infer all directions when doing an
intervention at every node (which is not very clever...)



consider data

X1,obs, . . . ,Xn1,obs, X1,I1 , . . . ,Xn2,In2

n1 observational data
n2 intervention data (single variable interventions)

model:

X1,obs, . . . ,Xn1,obs i.i.d. ∼ Np(0,Σ),

faithful to a DAG G,
X1,I1 , . . . ,Xn2,In2

independent
independent of X1,obs, . . . ,Xn1,obs

and arising from Np(0,Σ) faithful to a DAG G

“arising from Np(0,Σ) faithful to a DAG G”: via the do-calculus

the intervention data have non-identical distributions



; can write down the likelihood

−`(Σ,G; data) = . . .

unknown quantities are Σ and G

Gaussian DAG is Gaussian linear structural equation model:

X (j) ←
p∑

k=1

βjkX (k) + εj (j = 1, . . . ,p), βjk 6= 0⇔ edge k → j

X = BT X + ε, ε ∼ Np(0, diag(σ2
1, . . . , σ

2
p)) in matrix notation

; reparametrization

(Σ,G)↔ (B, {σ2
j ; j = 1, . . . ,p})

(non-zeroes of B do not lead to directed cycles)
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thus:

Xi;obs ∼ Np(0,Σ), Σ = (I − B)−T diag({σ2
j ; j})(I − B)−1

and

Xi;Ii = Xi |do(X (Ii )
i = xi) ∼ Np−1(µIi ,ΣIi ),

µIi = (I − BRIi )
−T QT

Ii xi ,

ΣIi = (I − BRIi )
−T RIi diag({σ2

j ; j})RIi (I − BRIi )
−1

; explicit form of likelihood

−`(Σ,G; data) = −`(B, {σ2
j ; j}; data)

where non-zeroes of B do not lead to directed cycles



Penalized MLE

Σ̂, Ĝ = argmin
Σ;G a DAG − `(Σ,G; data) + λ|G|

= argminB; {σ2
j ;j} − `(B, {σ

2
j ; j}; data) + λ ‖B‖0︸ ︷︷ ︸P

ij I(Bij 6=0)

under the non-convex constraint that B corresponds to “no
directed cycles”

severe non-convex problem due to the “no directed cycle”
constraint
(‖ · ‖0-penalty rather than e.g. ‖ · ‖1 doesn’t make the problem
much harder)



Example X (1) ← β1X (2) + ε1

X (2) ← β2X (1) + ε2

X1 X2

(0,0)

beta1

beta2

no straightforward way to do convex relaxation



Properties and computation of penalized MLE

Identifiability
set of variables where interventions are performed

I ⊆ {1, . . . ,p} ∪O

where O denotes observational

Essential graph E(G):
encodes the (Markov-) equivalence class under the
interventions at I, i.e.

E(G) = ∪G′{G′ ∼I G}

(∼I needs to be defined...: “G′ and G encode the same
independence relations for all interventions I ∈ I”)



Example: DAG G (top left)
I I = {O} (observational data only) ; CPDAG(G) (top right)

CPDAG equivalence class contains 26 DAG elements
I I = {1,O}; small equivalence class (bottom left)
I I = {2,O}; can recover the true DAG G (bottom right)

3 5 7

2 4 6 8

1 1 3 5 7

2 4 6 8

DAG observ. CPDAG

1 3 5 7

2 4 6 8

1 53 7

2 4 6 8

E(G,I={1,O}) E(G,I={2,O})

G



there is a minimal set of intervention variables Imin such that
E(G, Imin) = G
in previous example: Imin = {2,O}

the size of Imin has to do with “degree” of so-called
protectedness

very roughly speaking:
the “sparser (few edges) the DAG, the better identifiable from
observational/intervention data”
in the sense that |Imin| is small



Open problem 1:
Inferring Imin from available data
(for doing the next intervention experiment)

I “optimal” sequential estimation
I optimal active learning for estimating the true underlying

DAG



Estimation of equivalence class

for a penalized MLE:

Σ̂, Ĝ = argmin
Σ;G a DAG − `(Σ,G; data) + λ|G|

complete it to the estimator of the equivalence class

Ê(I) = E(Ĝ, I)

and in fact: every G′ ∈ Ê(I) = E(Ĝ, I) leads to the same
optimum of penalized likelihood



once we have equivalence class Ê(I)
; use the local algorithm to compute all possible causal effects

IDA (local sample version)

34

data �CPDAG

PC-algorithm(α) do-calculus

�effect 1

�effect 2

...

...

�effect q

multi-set �ΘL
n

but replacing
• PC-algorithm with penalized MLE
• ĈPDAG with often much smaller Ê(I)



Asymptotic theory (Hauser & PB, in progress)

I p fix, n→∞
I true distribution P0 = Np(0,Σ0) which is faithful w.r.t. to

true underlying DAG G0

I assume λ = λBIC = log(n)/2 from BIC
(or any λ = λn →∞, λn/n→ 0)

then, for any set of intervention variables I

P[Ê(I) = E(G0, I)]→ 1 (n→∞),

Σ̂− Σ0 = oP(1) (n→∞)

n→∞ means: number of observations for every intervention
experiment in I → ∞
i.e. repeated observations for every intervention (and maybe
also observational setting)



instead of n→∞, and more realistic:
I only one observation for every intervention but intervention

value far away from the observational mean:

do(X (j) = x) with |x | → ∞

I no. of observational observations→∞

technicalities: we have to deal with non-i.i.d. data
generalize results for curved exponential families (Haughton,
1988)



Open problem 2:
statistical properties for p � n setting



Computation
for computing `0-penalized MLE:

B̂, {σ̂2
j ; j} = argminB,{σ2

j ;j} − `(B, {σ
2
j ; j}; data) + λ

∑
i,j

I(Bij 6= 0)

under the non-convex constraint that B corresponds to “no
directed cycles”
and then the equivalence class Ê(I) = Ê(Ĝ, I)

recall the Example:

X (1) ← β1X (2) + ε(1)

X (2) ← β2X (1) + ε(2)

X1 X2

(0,0)

beta1

beta2

no straightforward way to do convex relaxation



strategy: do greedy search over equivalent classes,
forward and backward
like Chickering (2002)’s greedy equivalent search for observational DAGs

forward:
I current Markov equivalence class E
I go to the next equivalence class E+ such that:

there exist DAG G in E and G+ ∈ E+ where G+ has one
more directed edge than G;
E+ is such that the objective function is reduced most in
one step (greedy)

backward: ... by deleting one edge...

this can be done efficiently without enumerating all members in
the equivalence classes (Hauser & PB, in progress)



Performance comparison of algorithms
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p = 20, observational data

greedy equivalent (class) search is
• much better than greedy search (over DAGs)
• and for small dimension as good as exhaustive search



Open problem 3:
for large p: an algorithm with provable convergence property to
an optimum for the `0-penalized MLE (or an `1-penalized MLE)



Performance gain with intervention data

1. interventions at randomly chosen nodes:
I = {j1, . . . , jm,O} for m = 0,4, . . . ,20

0
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15

SHD for p = 20, n = 500

0 4 8 12 16 20
intervened vertices



2. interventions at all nodes: I = {1, . . . ,p,O}
for varying intervention values µ (observational mean = 0)
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3. estimation of covariance Σ (varying no. interventions)

●

●

●

●

●

●

0.
50

0.
60

0.
70

0 4 8 12 16 20
intervened vertices

covError for p = 20, n = 500

4. no real data examples so far: but it is “obvious” that we can
improve over the results I’ve shown in the first half



Beware of over-interpretation!

so far, based on current data:
we can not reliably infer the causal network
despite theorems...
(stability selection/bootstrapping yields rather unstable
networks)

but apparently: we obtain stable and better ranking/prediction
for intervention/causal effects than modern but conceptually
wrong regression methods



Concluding remarks

observational data from one probability distribution Pobs

I can estimate equivalence class CPDAG(G) (PC-algorithm)
I can infer lower bounds for causal effects

(local algorithm in CPDAG space)
this doesn’t involve likelihood

and because likelihood is not involved
; for high-dimensional sparse setting:
• computation is feasible and provably correct
• method is statistically consistent



observational and interventional data from from
different distributions

Pobs, {PI ; for all interventions I}

maybe only one observation for every PI

“borrow strength from neighborhood (other interventions)”:
every PI is a function of the DAG G and Pobs and the function is
explicit thanks to the do-calculus

PI = PI;x = fI(Pobs,G, x︸︷︷︸
interv. value

) = fI(Σ,G, x)

likelihood is a convincing approach to “borrow strength from
other interventions”:
• optimization is highly non-convex
• statistical consistency is a much harder problem
• interventions ; better identifiability and better causal infer.



Thank you!
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Intervention data and the DAG model

observations from different distributions

Pobs, {PI ; for all interventions I}

maybe only one observation for every PI

we need to “borrow strength from the neighborhood”:
here: every PI is a function of the DAG G and P and the
function is explicit thanks to the do-calculus

PI = PI;u = f (P,G, u︸︷︷︸
interv. value

) = f (Σ,G,u)



Estimation from finite samples
difficult part: estimation of CPDAG (equivalence class of DAG’s)
; estimation of structure

P ⇒ CPDAG︸ ︷︷ ︸
equiv. class of DAG’s

pcAlgo(dm = d, alpha = 0.05)

1

2

3

45

6

7

8 9

10

this can be inferred (statistical testing) from a list of conditional
independence statements:

X (j) 6⊥ X (k)|X (S) for all subsets S ⊆ {1, . . . ,p} \ {j , k}
or

X (j) ⊥ X (k)|X (S) for some subset S ⊆ {1, . . . ,p} \ {j , k}

so-called faithfulness assumption allows to reduce to “some
subsets S”



The PC-algorithm (Spirtes & Glymour, 1991)

I crucial assumption:
distribution P is faithful to the true underlying DAG
i.e. all conditional (in-)dependencies can be read-off from
the DAG (using the Markov property)

I less crucial but convenient:
Gaussian assumption for Y ,X (1), . . . ,X (p) ; can work with
partial correlations

strategy of the algorithm:
• estimate the skeleton first
• estimate some of the directions (using some special rules)



PC-algorithm: a rough outline
for estimating the skeleton of underlying DAG

1. start with the full graph (all edges present)
2. remove edge i − j if standard sample correlation

Ĉor(X (i),X (j)) is small
by using Fisher’s Z-transform and exact null-distribution of
zero correlation

3. move-up to partial correlations of order 1:

ρ̂i,j|k =
ρ̂i,j − ρ̂i,k ρ̂j,k√

(1− ρ̂2
i,k )(1− ρ̂2

j,k )

4. remove edge i − j if standard sample partial correlation
P̂arcor(X (i),X (j)|X (k)) is small for some k in the current
neighborhood of i or j (thanks to faithfulness)



5. move-up to partial correlations of order 2 via recursive
formula

6. remove edge i − j if standard sample partial correlation
P̂arcor(X (i),X (j)|X (k),X (`)) is small for some k , ` in the
current neighborhood of i or j (thanks to faithfulness)

7. until removal of edges is not possible anymore,
i.e. stop at minimal order of partial correlation where
edge-removal becomes impossible

additional step of the algorithm needed for estimating directions
yields an estimate of the CPDAG (equivalence class of DAG’s)



one tuning parameter (cut-off parameter) α for truncation of
estimated Z -transformed partial correlations

if the graph is “sparse” (few neighbors) ; few iterations only
and only low-order partial correlations play a role

and thus: the estimation algorithm works for p � n problems



more generally: assume knowledge of the skeleton (or the
CPDAG) from observational data;
when doing an intervention at every variable, can infer all
directions of all the arrows in the DAG (cf. He & Geng (2008))

not a very clever approach:
I want to do much less intervention experiments
I want to use information from intervention data for inferring

the skeleton (or CPDAG) and the edge weights



directed Markov property on DAG

⇔ recursive factorization of joint distribution

if � and B are d-separated by C ⇒ X ��) ⊥ X �B)|X �C)

Equivalence class of D�Gs
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� Several DAGs can encode exactly the same conditional

independence relationships. Such DAGs form an equivalence class.

� Example: unshielded triple

�� �� �� �� �� �����

�� �� �� false true

�� �� �� false true

�� �� �� false true

�� �� �� true false

no v-structure

v-structure

� All DAGs in an equivalence class have the same skeleton and the

same v-structures

� An equivalence class can be uniquely represented by a completed

partially directed acyclic graph �CPDAG)

CPDAG DAG 1 DAG 2 DAG 3 DAG 4


