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“attainable” roots
1.072753787571903102973345215911852872073…
0.422344648788787166815198898160900915499…
0.422344648788787166815198898160900915499…
2.603418941910394555618569229522806448999…
2.603418941910394555618569229522806448999 …
2.603418941910394555618569229522806448999 …
1.710524183747873288503605282346269140403…
1.710524183747873288503605282346269140403…
1.710524183747873288503605282346269140403…
1.710524183747873288503605282346269140403…

Inexact coefficients
2372413541474339676910695241133745439996376
-21727618192764014977087878553429208549790220
83017972998760481224804578100165918125988254
-175233447692680232287736669617034667590560780
228740383018936986749432151287201460989730170
-194824889329268365617381244488160676107856140
110500081573983216042103084234600451650439720
-41455438401474709440879035174998852213892159
9890516368573661313659709437834514939863439
-1359954781944210276988875203332838814941903
82074319378143992298461706302713313023249
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Exact coefficients
2372413541474339676910695241133745439996376
-21727618192764014977087878553429208549790220
83017972998760481224804578100165918125988254
-175233447692680232287736669617034667590560789
228740383018936986749432151287201460989730173
-194824889329268365617381244488160676107856145
110500081573983216042103084234600451650439725
-41455438401474709440879035174998852213892159
9890516368573661313659709437834514939863439
-1359954781944210276988875203332838814941903
82074319378143992298461706302713313023249

Exact roots
1.072753787571903102973345215911852872073…
0.422344648788787166815198898160900915499…
0.422344648788787166815198898160900915499…
2.603418941910394555618569229522806448999…
2.603418941910394555618569229522806448999 …
2.603418941910394555618569229522806448999 …
1.710524183747873288503605282346269140403…
1.710524183747873288503605282346269140403…
1.710524183747873288503605282346269140403…
1.710524183747873288503605282346269140403…
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Example: Polynomial root/factorization problem:



Coeff. in hardware precision 

2372413541474339676910695241133745439996376
-21727618192764014977087878553429208549790220
83017972998760481224804578100165918125988254
-175233447692680232287736669617034667590560789
228740383018936986749432151287201460989730173
-194824889329268365617381244488160676107856145
110500081573983216042103084234600451650439725
-41455438401474709440879035174998852213892159
9890516368573661313659709437834514939863439
-1359954781944210276988875203332838814941903
82074319378143992298461706302713313023249

“attainable” roots

1.072753787571903102973345215911852872073…
0.422344648788787166815198898160900915499…
0.422344648788787166815198898160900915499…
2.603418941910394555618569229522806448999…
2.603418941910394555618569229522806448999 …
2.603418941910394555618569229522806448999 …
1.710524183747873288503605282346269140403…
1.710524183747873288503605282346269140403…
1.710524183747873288503605282346269140403…
1.710524183747873288503605282346269140403…

The highest multiplicity is only 4!
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For polynomial
0)4()3()2()1( 5101520 =−−−− xxxx

with coefficients in hardware precision:
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0  10   3  0 -1  -1 -4  0  0 -5 -5 0  1  0  0 -1  0 -5 -1  0 -3 -1
0   5   9 -1  3  -2 -1  1  1 -2 -2 1 -1  1  1  2 -1 -1 1  0 -1  1
3   1   7  2 -2 -11  1  0  6 -4 -3  6  0  5 -1  0 -3 -2 -1  0  0  0

-1   1   5  2  3   1 -1  0  0  0  0  0 -1  0  1  2  0  0  1  0 -1  1
-4  -2  -9 -2  6  19 -2  0 -8  8  6 -8  1 -7  1 -2  4  4  2  0  0 -1
0  -1   1 -1  1   2  1  1  0  0  0  0  0  0  1  0  0  0  0  0  0  0
0   1   9 -2  4  -3  3  3  1 -2 -2 1  0  1  2  1 -1 -1 1  0 -1  0
1   0   1  0  0  -2  0  3  4  0  0  3  0  2  0  0 -1  0  0  0  0  0
1  -4  -2  0  1   4  1  0  3  5  4  0 -2  0  0  1  0  3  1  0  1  1

-1   1  -2  1 -1   3 -1 -1 -3  3  0 -3  0 -2 -1  0  1  0  0  0  0  0
5   2   6  2 -3 -16  1  0 12 -5 -1 12  0  9 -1  0 -5 -3 -2  0  0  0

-1   4   0  1 -2  -4 -1  0  0 -5 -4  3  4  0 -1 -2  0 -3 -1  0 -1 -2
1   0   1  0  0  -2  0  0  2  0  0  2  3  2  0  0 -1  0  0  0  0  0
0  -1   4 -3  3  -1  1  1  0  0  0  0 -2  3  3  1  0  0  0  0  0  1
0   2  12 -1  2  -7  0  0  2 -4 -3  2 -3  2  4  6 -1 -2  0  0 -1  3

-4  -1  -5 -2  2  12 -1  0 -7  4  3 -7  0 -6  1  3  4  2  1  0  0  0
0  11   8  1 -2 -12 -3  0  6 -9 -8  6  1  5  0 -1  0 -7 -2  0 -3 -1

-2   0   7 -2  5   1 -1  1 -2  0  0 -2  0 -1  1  1  0  4  3 -1 -1 0
3   2   6  2 -2  -7  1  0  2 -5 -4  2 -2  2  0  3 -1 -3  1  2  0  2
5 -12 -10  2 -3   1  5 -1  0  6  6  0  0  0 -2 -1  0  6  0  3  5  0
4  -9   0  1  0   1  4 -1  0  4  4  0 -4  0  0  4  0  4  0  1  6  4
2   0   2  0  0  -3  0  0  3  0  0  3  0  3  0  0 -2  0  0  0  0  3

Jordan Canonical Form (JCF)
3 1 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
0 3 1 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
0   0 3 1 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
0   0   0 3 1 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
0   0   0   0 3 1 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
0   0   0   0   0 3 1 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
0   0   0   0   0   0 3 1 0   0   0   0   0   0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0 3 1 0   0   0   0   0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0 3 1 0   0   0   0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0 3 0   0   0   0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0   0 3 1 0   0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0   0   0 3 1 0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0   0   0   0 3 1 0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0   0   0   0   0 3 1 0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0   0   0   0   0   0 3 1 0   0   0   0   0   0
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 3 1 0   0   0   0   0
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 3 0   0   0   0   0
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 3 1 0   0   0
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 3 1 0   0
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 3 1 0
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 3 1
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 3

JCF

)10( 15 EA −+λ

{ }3)( =Aλ
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Matrix rank problem
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Factoring a multivariate polynomial:

A factorable polynomial irreducible
approximation
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Distorted Cyclic Four system in floating point form:

1-dimensional solution set Isolated solutions
approximation
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A well-posed problem:  (Hadamard, 1923)
the solution satisfies

• existence
• uniqueness
• continuity w.r.t data

Ill-posed problems are common in applications

- image restoration   - deconvolution
- IVP for stiction damped oscillator - inverse heat conduction
- some optimal control problems - electromagnetic inverse scatering
- air-sea heat fluxes estimation - the Cauchy prob. for Laplace eq.
… …
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An ill-posed problem is infinitely sensitive to perturbation

tiny perturbation   huge error 



Ill-posed problems are common
in algebraic computing
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- Multiple roots of polynomials

- Polynomial GCD

- Factorization of multivariate polynomials

- The Jordan Canonical Form

- Multiplicity structure/zeros of polynomial systems

- Matrix rank/kernel

- Uncontrollability and unobservability mode/subspace 
(control theory)  

- Gröbner basis

…



Though frequently needed in application, 
the adequate handling of such ill-posed 
… problems is hardly ever touched upon 
in numerical analysis textbooks.

--- Arnold Neumaier,  SIAM Review
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A frontier in scientific computing



What is a “numerical solution”?
To solve 0122 =+− xx with 8 digits precision: 

backward error: 0.00000001 -- method is good

forward error: 0.0001 -- problem is bad

00000001.010 8 =−

ba
ck

w
ar

d 
er

ro
r

0001.010 4 =−

forw
ard error

0122 =+− xx 1=xexact computation

,9999.0=x

Numerical solution

using 8-digits precision

,0001.1
exact solution

0)0001.1)(9999.0( =−− xx

0)10()1( 242 =−− −x
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The condition number

[Forward error]   ≤ [Condition number] [Backward error]

A large condition number 
<=> The problem is sensitive  or, ill-conditioned

From numerical method

From problem

An  ∞ condition number   <=>  The problem is ill-posed
13
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Are ill-posed problems solvable in numerical computation?

A numerical algorithm  
seeks the exact solution 
of a nearby problem

Ill-posed problems  
are infinitely sensitive
to data perturbation

Conclusion:  Ill-posed problems are intractable in numerical computation



On difficulties of computing JCF:

C. Moler and C. Van Loan,  SIAM Review, 2003: … [T]he JCF cannot be computed using
floating point arithmetic. A single rounding error may cause some multiple eigenvalue to 
become distinct or vise versa, altering the entire structure …

S. Barnett and R. Cameron, Introduction to Mathematical Control Theory, 1985:  It should 
be noted that although the Jordan form is of fundamental theoretical importance it is of little 
use in practical computation, being generally very difficult to compute. 

J. Demmel, Applied Numerical Linear Algebra, 1997:  The Jordan form tells everything we 
want to know about a matrix … But it is bad to compute the Jordan form for two numerical 
reasons: First reason: It is discontinuous… Second reason: it can not be computed stably 
in general. 

G.W. Stewart,  Matrix Algorithms vol II, 1998:    [T]he (Jordan) form is virtually uncomputable. 
Perturbations in the matrix send the eigenvalues flying… [A]ttempts to compute the Jordan 
canonical form of a matrix have not been very successful…

15

R.A. Horm & C.R. Johnson,  Matrix Analysis, 1990: There is no hope of computing such an
object in a stable way, os the Jordan canonical form is little used in numerical applications
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Are ill-posed problems solvable in numerical computation?

A numerical algorithm  
seeks the exact solution 
of a nearby problem

Ill-posed problems  
are infinitely sensitive
to data perturbation

Conclusion:  Ill-posed problems are intractable in numerical computation

What to do:   Fix the problem
(i.e. regularization)



P :Data Solution

P

P

Data

Solution

P

Challenge in solving ill-posed problems:

Can we recover the lost solution 
when the problem is inexact?

17

A reformulated numerical problem 

Objective: 
|| solution error || = O(||data error||)



What’s coming up:

• The regularization principle:  How to reformulate a numerical problem

• The geometry:  Why problems are ill-posed, why they are solvable

• The well-posedness theorem:  For the reformulated numerical problem
if the data is sufficiently accurate, then the solution satisfies

-- existence
-- uniqueness
-- Lipschitz continuity w.r.t. data
-- |solution error| = O(|data error|)

• The two-staged strategy:  Solve the regularized numerical problem
via two optimizations

• The well-posedness theorem:  For the reformulated numerical problem
if the data is sufficiently accurate, then the solution satisfies

-- existence
-- uniqueness
-- Lipschitz continuity w.r.t. data
-- |solution error| = O(|data error|)

18



20406080 )4()3()2()1( −−−− xxxxSample result:  For polynomial

with  (inexact ) coefficients in hardware precision
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20406080 )4()3()2()1( −−−− xxxxSample result:  For polynomial

with  (inexact ) coefficients in hardware precision

Conventional root-finding

Numerical factorization:

>> [F,res,fcnd]  =  uvFactor(f,1e-10,1);

THE CONDITION NUMBER:                      914.329 
THE BACKWARD ERROR:                 5.71e-015 
THE ESTIMATED FORWARD ROOT ERROR:   1.04e-011

FACTORS   

( x - 3.999999999999990 )^20
( x - 3.000000000000008 )^40
( x - 1.999999999999998 )^60
( x - 1.000000000000000 )^80

Z.  Zeng, ‘03, ’04, ‘05, ‘09 19



[It is] the most efficient and reliable algorithm for [numerical gcd]

Hans J. Stetter, Numerical Polynomial Algebra

[The algorithm] accurately calculates polynomial roots of high multiplicity without
using multiprecision arithmetic (as usually required) even if the  coefficients are 
inexact.  This is the first work to do that, and is a  remarkable achievement .

J.M McNamee, Numerical Methods for Roots of Polynomials, Part I



Case study:  Polynomial factorization (simplified)

=    –t3 + ( 3 t2) x  + (–3 t) x2 + x3
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diffeomorphism

diffeomorphism



Are ill-posed problems really sensitive?

Plot of pejorative manifolds of degree 3 polynomials with multiple roots

• Ill-posedness:  a tiny perturbation pushes the problem out of the manifold

• A problem is not sensitive at all if it stays on the manifold.

• Problems form a “pejorative manifolds”

W. Kahan’s observation (1972)

21

Kahan:  It is a misconception.



{ } )()()()()1,1,1( 111 γβαγβα ≠≠−−−==Π xxxxp

3   )1,1,1(      )2,1(      )3( C=Π⊂Π⊂Π

Codimensions:   2               1                0

Stratification of factorization manifolds
of degree 3 polynomials

Factorization manifold stratification of degree 4 polynomials:

)4( Π

)2,2( Π

)3,1( Π
)2,1,1( Π 4     )1,1,1,1( C=Π

Codimensions:   3                    2                    1                 0

{ }βαβα ≠−−==Π 21 )()()()2,1( xxxp

{ }Cxxp ∈−==Π αα 3)()()3(
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Manifold mxn matrices or rank r:

m

n

nm
rM ×

=  { all mxn matrices of rank r }
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Manifold mxn matrices or rank r:

r

r

m-r

n-r

nm
rM ×

))((    )(codim rnrmM nm
r −−=×

=  { all mxn matrices of rank r }

nm
n

nmnmnm MMMM ×××× ⊂⊂⊂⊂ L210
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{ }  )),((deg  |),(   manifold  GCD Polynomial , kqpGCDqpP nm
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deg(GCD(p,q))  = k

=+++ kkuuu γγγ L
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Manifolds of 4x4 matrices defined by Jordan structures

e.g.   {2,1}  {1}     is the structure of 2 eigenvalues in 3 Jordan blocks of sizes 2, 1 and 1

25



Factorization manifolds and their stratification (Zeng, 2009)

{ }jibabaCbabxabxabxaa ijjiii
k

nn
kk

kkk
n

n
≠∀≠∈+++=Π ,,,    )()()( 21

21 22110][ LL

{ }CcxcxccxC i
m

mm ∈+++=⊂     ][    10 L

p(x)  ∈ ∏[2,2] ⇄ dist(p, ∏[2,2] )  = dist(p, ∏[2,1,1] )  = dist(p, ∏[1,1,1,1] ) = 0

Theorem:    p(x)  ∈ ∏[k1… kn] if and only if

codim(∏[k1… kn] )  = max { codim(∏)  |   dist(p,∏ ) = 0 }

26



1n codimensio =

2  ncodimensio =

3 n codimensio =

B

0 n codimensio =

A
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Illustration of ill-posedness manifolds

?

?

Problem A Problem Bperturbation

The “nearest” manifold may not be the answer

The right manifold is of highest codimension within a certain distance



Manifolds of 4x4 matrices defined by Jordan structures

28



Ask the right question on polynomial factorization

I.e. Formulate a well-posed factorization problem, whose solution
• exists, 
• is unique, and
• is Lipschitz continuous w.r.t. data

Πp
p̂

p~

The approximate factorization of  p is

- the exact factorization of 

- lies in the nearby manifold  ∏
of the highest codimension

- is the nearest polynomial on ∏
from   p

p~

p~

p~

29



A “three-strikes” principle for formulating 
a “numerical solution” to an ill-posed problem:

• Backward nearness:  The numerical solution is the exact solution of a nearby problem

• Maximum codimension:  The numerical solution is the exact solution of a problem 
on the nearby pejorative manifold of the highest codimension.

• Minimum distance:  The numerical solution is the exact solution of the nearest problem 
on the nearby pejorative manifold of the highest codimension.

Finding numerical solution becomes a well-posed problem

Numerical solution is a generalization of exact solution.

30



Formulation of the numerical rank/kernel:

)(min)( BrankArank
AB θθ ≤−

=

0   and   >∀∈∀ × θnmCA

The numerical rank of A within θ :
Backward nearness: num. rank of A is 
the exact rank of certain matrix B within θ.

Maximum codimension: That matrix B
is on the rank manifold Π possessing the
highest co-dimension and intersecting the
θ−neighborhood of A.

)()( BKerAKer =θ with

2)()(2
min ACAB

ArankCrank
−=−

= θ

The numerical kernel of A within θ :

Minimum distance: That B is the nearest
matrix on the rank manifold Π. 

• An exact rank/kernel is the numerical rank/kernel within a small θ.

• Numerical rank/kernel is well-posed
31



Rank

= 4
nullity = 2

+ εE = 6
nullity = 0

kernel

basis

+ εE = 4
nullityθ = 2

  98.40 <<≤ θε

ε
ε

εθ −
<+−

1
26.61))()(( EAKerAKerdist

Rankθ

= 4
nullityθ = 2

After reformulating the rank:

32

Ill-posedness is removed successfully. 

Numerical rank/kernel can be computed by SVD and other rank-revealing algorithms
(e.g.  Li-Zeng, Lee-Li-Zeng,  SIMAX, 2005, 2009)



The Well-posedness Theorem of the Numerical Factorization (Zeng, 2009)

p
p̂

p~

ε

][ 1 nkk LΠ

33c.f. Tubular Neighborhood Theorem,  Differential Geometry and Topology,  Burns & Gidea,  p231 

Numerical factorization:
• exists
• is unique, and
• is Lipschitz continuous

Moreover:
• accurately approximates the underlying 
exact factorization

if the data is sufficiently accurate

nk
nn

kk bxabxabxaaxf )()()(    )( 21
22110 +++= L



exact algebraic problem numerical problem
regularization

rank/kernel numerical rank/kernel

root-finding numerical factorization

GCD numerical GCD

JCF numerical staircase form

…
Ill-posed problem Well posed problem

34



after formulating the numerical solution to problem P within ε

P

The two-staged algorithm

Stage II:  Find/solve problem Q such that

RPQP
R

−=−
Π∈

min      

Q

Stage I: Among all pejorative manifolds
satisfy  dist(P, Π) <  ε

)(codim  Maximize Π
Π

Exact solution of Q is the numerical solution of P within ε

which approximates the solution of S where P is perturbed from

S

35



Answer: Matrix computations

How to identify the maximum codimension manifold?

36

How to reach the minimum distance to the manifold?

Answer: Gauss-Newton iteration



GCD problem:
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The linear transformation
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James J. Sylvester

Linear transformation L ⇒ Sylverster matrix  S(f,g)

Numerical rank-deficiency   =   degree of the approx. GCD   



Case study:  univariate factorization: 

Stage I:  Find the max-codimension pejorative manifold by
applying univariate numerical GCD algorithm on  (f, f’ )  

nfxCf =>∀∈∀ )deg(   ,0   ],[ ε
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Stage II:  solve the (overdetermined) polynomial system  F(z1 ,…,zk )=f

for a least squares solution  (z1 ,…,zk )  by Gauss-Newton iteration

(key theorem:  The Jacobian is injective.)

  )(  )   ()   ( k1 mm
1 •=−•−• fzz kL

(in the form of coefficient vectors)
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Multivariate factorization structure: Matrix computations!

∀ f ∈ C[x,y] of bidegree [m,n] ⎟⎟
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Assume    f = f1 f2 f3  with distinct factors f1, f2,  and f3 
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# of factors = # of solutions to

The equation f
h
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Irreducibility condition (Ruppert ‘99, and Gao ‘03, Kaltofen-May ’03,Gao-Kaltofen-May-Yang-Zhi’04)

A squarefree polynomial  f ∈ C[x,y] of bidegree [m,n] has  k distince factors

⇔ the homogeneous linear equation
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has  k linearly independent solutions (g,h) of bidegrees
deg(g) ≤ [m-1,n],      deg(h) ≤ [m,n-1].
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is a linear transformation corresponding to a matrix   Rf
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Rank-deficiency = # of irreducible factors



tangent plane P0 :
u = G(z0)+J(z0)(z- z0)

initial iterate

u
0 =G(z

0 )

u
* =G(z

* )

The polynomial
a

Project to tangent plane

u1 = G(z0)+
J(z0)(z1- z0)

~

new iterate

u
1 =G(z

1 )

Ill-
po

sed
ne

ss 
man

ifo
ld

u =
 G

( z
)

Solve G( z ) = a
for   nonlinear least squares solution z=z*

Solve              G(z0)+J(z0)( z - z0 ) = a
for linear least squares solution z = z1

G(z0)+J(z0)( z - z0 ) = a
J(z0)( z - z0 ) = - [G(z0) - a ] z1 = z0 - [J(z0)+] [G(z0) - a]

Geometry of the Gauss-Newton iteration:
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20406080 )4()3()2()1( −−−− xxxxExample:  For polynomial

with  (inexact ) coefficients in hardware precision

Conventional root-finding

Numerical factorization:

>> [F,res,fcnd]  =  uvFactor(f,1e-10,1);

THE CONDITION NUMBER:                      914.329 
THE BACKWARD ERROR:                 5.71e-015 
THE ESTIMATED FORWARD ROOT ERROR:   1.04e-011

FACTORS   

( x - 3.999999999999990 )^20
( x - 3.000000000000008 )^40
( x - 1.999999999999998 )^60
( x - 1.000000000000000 )^80

Z.  Zeng, 2009 42



6333633363 222),,( zzxzyyxyxxzyxf ++−++−+−−=

333633363 232332),,( zxzyyxyxxzyxg +++++++=
6332 zzy ++

Matlab demo:

3331),( zyxgfGCD +++=

backward error = 32109622.8 −×

condition number = 4.1525
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xzyxfzyxf 005.0),,(),,(~
−=

yzyxgzyxg 005.0),,(),,(~ +=

=)~,~( gfAGCD
333 9999.09999.00015.11 zyx +++

condition number = 4.1530

backward error = 0.0031
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3331 zyx +++≈



Example:  100x100 matrix A with
multiple eigenvalues        1, -1, 2, -2
50 simple eigenvalues:    random
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Exact JCF is ill-posed (discontinuous)

Numerical JCF is strongly well-posed (uniquely exists and is Lipschitz continous)
and can be computed with a two-staged algorithm  (T.Y. Li and Z. Zeng)



Summary:

• Ill-posed problems may indeed be wrong problems.

• Ill-posed problems are sensitive because they form manifolds of 
positive  codimensions in strata.

• An ill-posed problem may be reformulated as a  well-posed 
problem according to the “three-strikes” principle

• The reformulated problem can be solved via a two-staged strategy

• To solve an ill-posed problem:  Fix the problem, not the solution.


