Solving Ill-posed Algebraic Problems --- A Geometric Perspective

Zhonggang Zeng Northeastern Illinois University

BIRS, March 1, 2010 (supported in part by NSF under Grant DMS-0715137)

Example: Polynomial root/factorization problem:

Exact coefficients

2372413541474339676910695241133745439996376 -21727618192764014977087878553429208549790220 83017972998760481224804578100165918125988254 -175233447692680232287736669617034667590560789 228740383018936986749432151287201460989730173 -194824889329268365617381244488160676107856145 110500081573983216042103084234600451650439725 -41455438401474709440879035174998852213892159 9890516368573661313659709437834514939863439 -1359954781944210276988875203332838814941903 82074319378143992298461706302713313023249

Inexact coefficients

2372413541474339676910695241133745439996376 -21727618192764014977087878553429208549790220 83017972998760481224804578100165918125988254 -175233447692680232287736669617034667590560780 9 228740383018936986749432151287201460989730170 3 -194824889329268365617381244488160676107856140 5 110500081573983216042103084234600451650439720 5 -41455438401474709440879035174998852213892159 9890516368573661313659709437834514939863439 -1359954781944210276988875203332838814941903 82074319378143992298461706302713313023249

Exact roots

1.072753787571903102973345215911852872073... 0.422344648788787166815198898160900915499... 0.422344648788787166815198898160900915499... 2.603418941910394555618569229522806448999... 2.603418941910394555618569229522806448999... 2.603418941910394555618569229522806448999... 1.710524183747873288503605282346269140403... 1.710524183747873288503605282346269140403... 1.710524183747873288503605282346269140403... 1.710524183747873288503605282346269140403...

"attainable" roots

1.072753787571903102973345215911852872073... 0.422344648788787166815198898160900915499... 0.422344648788787166815198898160900915499... 2.603418941910394555618569229522806448999... 2.603418941910394555618569229522806448999... 2.603418941910394555618569229522806448999... 1.710524183747873288503605282346269140403... 1.710524183747873288503605282346269140403... 1.710524183747873288503605282346269140403... 1.710524183747873288503605282346269140403...

Coeff. in hardware precision

2372413541474339676910695241133745439996376 -21727618192764014977087878553429208549790220 83017972998760481224804578100165918125988254 -175233447692680232287736669617034667590560789 228740383018936986749432151287201460989730173 -194824889329268365617381244488160676107856145 110500081573983216042103084234600451650439725 -41455438401474709440879035174998852213892159 9890516368573661313659709437834514939863439 -1359954781944210276988875203332838814941903 82074319378143992298461706302713313023249

"attainable" roots

1.072753787571903102973345215911852872073...
 0.422344648788787166815198898160900915499...
 0.422344648788787166815198898160900915499...
 2.603418941910394555618569229522806448999...
 2.603418941910394555618569229522806448999...
 2.603418941910394555618569229522806448999...
 2.603418941910394555618569229522806448999...
 1.710524183747873288503605282346269140403...
 1.710524183747873288503605282346269140403...
 1.710524183747873288503605282346269140403...
 1.710524183747873288503605282346269140403...

The highest multiplicity is only 4!

For polynomial

$$(x-1)^{20}(x-2)^{15}(x-3)^{10}(x-4)^5 = 0$$

with coefficients in hardware precision:

The computed roots:

E:\ApproximateGCD.mw

File Edit View Insert Format Tools Window Help

ⓑ월월월 ▓월월 ▷⊄ T▷ ⇔⇒ ⑧也 및

Jordan Canonical Form (JCF)

-1 n - 3 -1 n -1 n Δ -4 -2 -9 - 8 -1 -1 Δ n -2 -3 n -2 -1 -2 -4 Λ -1 -2 n - 3 . 5 n -1 -2 n n Δ Δ -1 Δ n n - 3 -1 -2 -1 . 3 n -1 -4 -5 З C .2 - 3 -1 n -2 n .2 -7 - 3 n -12 -10. 3 -9 n r n - 3 0.04 0.03 $\lambda(A) = \{$ 0.02 0.01 $\lambda(A+10^{-15}E)$ C -0.01 -0.02 -0.03 -0.04 L 2.96 ç

2.97

2.98

2.99

3.01

3.02

3.03

3.04

3.05

Matrix rank problem

> A := Matrix([[11/7, 18/7, 15/7, 10/7], [50/21, 64/21, 37/21, 41/21], [19/7, 26/7, 17/7, 16/7], [38/21, 52/21, 34/21, 32/21], [38/21, 52/21, 34/21, 32/21]);

$$A := \begin{bmatrix} \frac{11}{7} & \frac{18}{7} & \frac{15}{7} & \frac{10}{7} \\ \frac{50}{21} & \frac{64}{21} & \frac{37}{21} & \frac{41}{21} \\ \frac{19}{7} & \frac{26}{7} & \frac{17}{7} & \frac{16}{7} \\ \frac{38}{21} & \frac{52}{21} & \frac{34}{21} & \frac{32}{21} \\ \frac{38}{21} & \frac{52}{21} & \frac{34}{21} & \frac{32}{21} \end{bmatrix}$$

> Rank(A), HullSpace(A);
$$L := evalf(A, B);$$

$$B := evalf(A, B);$$

$$B := evalf(A, B) :$$

$$B := 27142857 & 2.1428571 & 1.4285714 \\ 2.3809524 & 3.0476190 & 1.7619048 & 1.9523810 \\ 2.7142857 & 3.7142857 & 2.4285714 & 2.2857143 \\ 1.8095238 & 2.4761905 & 1.6190476 & 1.5238095 \\ 1.8095238 & 2.4761905 & 1.6190476 & 1.5238095 \end{bmatrix}$$

> Rank(B) , NullSpace(B) ;

= ,

Factoring a multivariate polynomial:

Distorted Cyclic Four system in floating point form:

$$\begin{array}{c} 0.7071067810\,z_{1}\,+\,0.5773502693\,z_{2}\,+\,z_{3}\,+\,z_{4}\,=\,0\\ 2.449489743\,z_{1}\,z_{2}\,z_{3}\,+\,3.464101616\,z_{2}\,z_{3}\,z_{4}\,+\,4.242640686\,z_{3}\,z_{4}\,z_{1}\,+\,2.449489743\,z_{4}\,z_{1}\,z_{2}\,=\,0\\ 0.4082482906\,z_{1}\,z_{2}\,z_{3}\,+\,0.5773502693\,z_{2}\,z_{3}\,z_{4}\,+\,0.7071067810\,z_{3}\,z_{4}\,z_{1}\,+\,0.4082482906\,z_{4}\,z_{1}\,z_{2}\,=\,0\\ 0.4082482906\,z_{1}\,z_{2}\,z_{3}\,z_{4}\,-\,1.\,=\,0\end{array}$$

 $\begin{cases} z_4 = 1., z_3 = 1., z_2 = -1.732085712, z_1 = -1.414185063 \\ z_4 = 1., z_3 = 1., z_2 = -1.732015903, z_1 = -1.414242062 \\ z_1 = 1.414185063, z_2 = 1.732085712, z_4 = -1., z_3 = -1. \\ z_2 = 1.732015903, z_1 = 1.414242062, z_4 = -1., z_3 = -1. \\ \end{cases} \\ \begin{cases} z_2 = -1.732085712 \text{ I}, z_1 = -1.414185063 \text{ I}, z_4 = 1. \text{ I}, z_3 = 1. \text{ I} \\ z_2 = -1.732015903 \text{ I}, z_1 = -1.414242062 \text{ I}, z_4 = 1. \text{ I}, z_3 = 1. \text{ I} \\ z_2 = 1.732085712 \text{ I}, z_1 = -1.414242062 \text{ I}, z_4 = -1. \text{ I}, z_3 = 1. \text{ I} \\ z_2 = 1.732085712 \text{ I}, z_1 = 1.414242063 \text{ I}, z_4 = -1. \text{ I}, z_3 = -1. \\ \end{cases}$

A well-posed problem: (Hadamard, 1923)

the solution satisfies

- existence
- uniqueness
- continuity w.r.t data

An ill-posed problem is *infinitely* sensitive to perturbation

tiny perturbation \rightarrow huge error

Ill-posed problems are common in applications

- image restoration -
- IVP for stiction damped oscillator
- some optimal control problems
- air-sea heat fluxes estimation
- deconvolution
- inverse heat conduction
- electromagnetic inverse scatering
- the Cauchy prob. for Laplace eq.

III-posed problems are common in algebraic computing

- Multiple roots of polynomials
- Polynomial GCD
- Factorization of multivariate polynomials
- The Jordan Canonical Form
- Multiplicity structure/zeros of polynomial systems

- Matrix rank/kernel

- Uncontrollability and unobservability mode/subspace (control theory)
- Gröbner basis

. . .

A frontier in scientific computing

Though frequently needed in application, the adequate handling of such ill-posed ... problems is hardly ever touched upon in numerical analysis textbooks.

--- Arnold Neumaier, SIAM Review

What is a "numerical solution"?

To solve $x^2 - 2x + 1 = 0$ with 8 digits precision:

backward error:0.00000001-- method is goodforward error:0.0001-- problem is bad

The condition number

A large condition number

<=> The problem is sensitive or, ill-conditioned

Are ill-posed problems solvable in numerical computation?

On difficulties of computing JCF:

C. Moler and **C. Van Loan**, SIAM Review, 2003: ... [T]he JCF cannot be computed using floating point arithmetic. A single rounding error may cause some multiple eigenvalue to become distinct or vise versa, altering the entire structure ...

S. Barnett and **R. Cameron**, Introduction to Mathematical Control Theory, 1985: *It should* be noted that although the Jordan form is of fundamental theoretical importance it is of little use in practical computation, being generally very difficult to compute.

J. Demmel, Applied Numerical Linear Algebra, 1997: The Jordan form tells everything we want to know about a matrix ... But it is bad to compute the Jordan form for two numerical reasons: First reason: It is discontinuous... Second reason: it can not be computed stably in general.

G.W. Stewart, Matrix Algorithms vol II, 1998: [T]he (Jordan) form is virtually uncomputable. Perturbations in the matrix send the eigenvalues flying... [A]ttempts to compute the Jordan canonical form of a matrix have not been very successful...

R.A. Horm & C.R. Johnson, Matrix Analysis, 1990 *There is no hope of computing such an object in a stable way, os the Jordan canonical form is little used in numerical applications*

Are ill-posed problems solvable in numerical computation?

<u>What to do</u>: Fix the problem (i.e. regularization)

Challenge in solving ill-posed problems:

What's coming up:

- <u>The geometry</u>: Why problems are ill-posed, why they are solvable
- <u>The regularization principle</u>: How to reformulate a numerical problem
- <u>The well-posedness theorem</u>: For the reformulated numerical problem if the data is sufficiently accurate, then the solution satisfies
 - -- existence
 - -- uniqueness
 - -- Lipschitz continuity w.r.t. data
 - -- |solution error| = O(|data error|)
- <u>The two-staged strategy</u>: Solve the regularized numerical problem via two optimizations

Sample result: For polynomial

 $(x-1)^{80}(x-2)^{60}(x-3)^{40}(x-4)^{20}$

with (inexact) coefficients in hardware precision

> f (= sort(expand((x-1,0)^80 + (x-2,0)^60 + (x-3,0)^60 + (x-6,0)^20)); - 0.2021330172401423 10³⁰ 183 + 0.402282640531631 10³¹ 182 - 0.7533021057072224 10³² 181 + 0.1531004716955644405 10³⁵ 179 + 0.525403747157756 10³⁵ 179 + 0.525403747157756 10³⁵ -0 1038452039098072 10 40 , 175 +0 1354319585005555 10 41 , 174 -0 1555955077459734 10 42 , 175 +0 2015527194092254 10 43 , 172 -0 2505555727571545 10 44 , 171 +0 2537027024935542 10 45 , 170 -0 2675575019599633 10 46 , 169 +0 2720042441005213 10 47 - 0.2659190935436511 10⁴⁵, 167 + 0.2505005435729205 10⁴⁹, 166 - 0.2275690219137232 10⁵⁰, 165 + 0.199326935410531457 10⁵², 163 + 0.1552592324253459 10⁵³, 162 - 0.1094541572250056 10⁵⁴, 161 + 0.5555410531457 10⁵², 163 - 0 ANIONALITATION 10³⁵, 139 - 0 4400414171704471 10³⁶, 135 - 0 1111447417114470 10³⁷, 137 - 0 1014714101140714010 10³⁹, 135 - 0 117401447010471 10³⁹, 135 - 0 117401447010471 10⁵⁹, 135 - 0 117401471 10⁵⁹, 135 - 0 11740 - 0 1900094999944119 10⁶⁵, 151 + 0 1018091408028166 10⁶⁵, 150 - 0 1949641617102610 10⁶⁵, 149 + 0 194647101717112 10⁶⁵, 145 - 0 1669141400177044 10⁶⁵, 147 + 0 5404711901199281 10⁶⁵, 146 - 0 4209100101609420 10⁶⁵, 145 + 0 2011894621118180 10⁶⁵ -0 9557435471387570 10 67 , 145 +0 45816838575160602 10 68 , 142 -0 1958454981777859 10 69 , 141 +0 8535870525824515 10 69 , 140 -0 3628730909318234 10 70 , 139 +0 1504953058794335 10 71 , 138 -0 6090335761233469 10 71 , 137 +0 2405445246826672 10 72 -0 1015607012151575 10⁷⁷, 127 -0 4010075190577616 10⁷⁷, 126 -0 151551770017562 10⁷⁸, 125 -0 151555500756001 10⁷⁹, 123 -0 44150760174601 10⁷⁹, 122 -0 120075134554147 10⁵⁰, 121 -0 151555500750001 10⁵⁰ - 0 9414 9411 8909401 0 10⁵⁰, 119 - 0 945180701094185 10⁵¹, 115 - 0 811810750094170 10⁵¹, 117 - 0 11810101000145 10⁵², 116 - 0 18101010014510⁵², 116 - 0 18101010014510⁵⁵, 115 - 0 190001111010014510⁵⁵ -01124070844728893 10⁵⁴, 111 +02477336304177674 10⁵⁴, 110 -0333707705477143 10⁵⁴, 109 +01124873780307008 10⁵⁵, 105 -0232140310078500 10⁵⁵, 107 +0448978972457735 10⁵⁵, 106 -00271040680715252 10⁵⁵, 105 +01705702304000048 10⁵⁵ -03403920183398081 10⁵⁵, 103 +06316721873546134 10⁵⁵, 102 -0.1147619161241749 10⁵⁷, 101 +0.2041269140353387 10⁵⁷, 100 -0.3554678154483986 10⁵⁷, 99 +0.6060543312533552 10⁵⁷, 95 -0.1011553330008518 10⁵⁵, 97 +0.1652992710130165 10⁵⁵, 96 - 0 1270710447044147 10⁵⁹, 57 + 0 6017154401876673 10⁵⁹, 55 - 0 1015160201477672 10⁵⁰, 54 - 0 1401707087061400 10⁵⁰, 53 + 0 1701518833001815 10⁵⁰, 52 - 0 201514040876573 10⁵⁰, 51 + 0 234831711964186 10⁵⁰, 50 -0.2646336173327272 10⁹⁰, ⁷⁹ + 0.2934002366177735 10⁹⁰, ⁷⁵ + 0.3181544326387304 10⁹⁰, ⁷⁷ + 0.3373988904699309 10⁹⁰, ⁷⁶ - 0.3498910782963117 10⁹⁰, ⁷⁵ + 0.3547796960203292 10⁹⁰, ⁷⁴ - 0.3516996722798237 10⁹⁰, ⁷³ + 0.3408165031539225 10⁹⁰, ⁷⁴ LO SELOSE ANTION 10 55 .55 LO SELECTORESTI 10 55 .54 LO SOLENTEREDEDITORS 10 57 .45 LO SOLENTEREDITORS 10 57 .45 LO SOLENTEREDEDITORS 10 57 .45 LO SOLENTER -0 1551795161091077 10 55 47 +0 2013937246433160 10 55 46 -0 1440310529905747 10 55 45 +0 4517955216199557 10 55 44 -0 3131710765672253 10 55 45 +0 1591201726195999 10 55 42 -0 602569005151971 10 54 41 +0 2121311610130564 10 54 40 -0.2161361190362389 10⁵⁰ + 31 + 0.6359233600765355 10⁷⁹ + 30 - 0.1797948084199121 10⁷⁹ + 0.4879523867450773 10⁷⁵ + 28 - 0.1269710212868924 10⁷⁵ + 27 + 0.3163878742656724 10⁷⁷ + 26 - 0.7539495360019225 10⁷⁶ + 25 + 0.1715711274413615 10⁷⁶ + 24 -03722559975154065 10⁷⁵ + ²³ + 07657560554562410 10⁷⁴ + ²² - 01505405412556510 10⁷⁴ + ²¹ + 02506075057063664 10⁷³ + ²⁰ - 04935301537560765 10⁷² + ¹⁹ + 0501255200350290 10⁷¹ + ¹⁵ - 01551560545022448 10⁷¹ + ¹⁷ + 015705695272755 10⁷⁰ + ¹⁶ -0.2576999765404155 10⁶⁹, 15 +0.3290773131227619 10⁶⁵, 14 -0.3596623869465437 10⁶⁷, 13 +0.4256749115413366 10⁶⁶, 12 -0.4264535824263202 10⁶⁵, 11 +0.3591755536191415 10⁶⁴, 10 -0.3207935874162295 10⁶⁵, 9 +0.2564733406710157 10⁶², 8 -01539696736505133 10⁶¹, 7+05716536972530130 10⁵⁹, 6-04203457144414555 10⁵⁵, 5+01673677151214472 10⁵⁷, 4-05329544005643565 10⁵⁵, 5+01261349025419935 10⁵⁴, 2-01977531229290269 10⁵², +01541167191654754 10⁵⁰

Sample result: For polynomial

$$(x-1)^{80}(x-2)^{60}(x-3)^{40}(x-4)^{20}$$

with (inexact) coefficients in hardware precision

Numerical factorization:

>> [F,res,fcnd] = uvFactor(f,1e-10,1);

THE	CONDITION NUMBER:	914.329
THE	BACKWARD ERROR:	5.71e-015
THE	ESTIMATED FORWARD ROOT ERROR:	1.04e-011

(x -	3.9999999999999999)^20
(x -	3.000000000000008)^40
(x -	1.9999999999999999)^60

x - 1.000000000000000000)^80

[It is] the most efficient and reliable algorithm for [numerical gcd]

Hans J. Stetter, Numerical Polynomial Algebra

[The algorithm] accurately calculates polynomial roots of high multiplicity without using multiprecision arithmetic (as usually required) even if the coefficients are inexact. This is the first work to do that, and is a remarkable achievement.

J.M McNamee, Numerical Methods for Roots of Polynomials, Part I

Are ill-posed problems really sensitive?

Kahan: It is a misconception.

W. Kahan's observation (1972)

Plot of pejorative manifolds of degree 3 polynomials with multiple roots

- Ill-posedness: a tiny perturbation pushes the problem out of the manifold
- A problem is <u>not</u> sensitive at all if it stays on the manifold.

Stratification of factorization manifolds

$$\Pi(1,1,1) = \{p(x) = (x - \alpha)^{1} (x - \beta)^{1} | \alpha \neq \beta \neq \gamma\}$$

$$\Pi(1,2) = \{p(x) = (x - \alpha)^{1} (x - \beta)^{2} | \alpha \neq \beta\}$$

$$\Pi(3) = \{p(x) = (x - \alpha)^{3} | \alpha \in C\}$$

$$\Pi(3) = \{p(x) = (x - \alpha)^{3} | \alpha \in C\}$$

$$\Pi(3) \subset \Pi(1,2) \subset \Pi(1,1,1) = C^{3}$$
Codimensions: 2 1 0

Factorization manifold stratification of degree 4 polynomials:

Codimensions: 3

22

Manifold mxn matrices or rank r:

$$M_r^{m \times n}$$
= { all *mxn* matrices of rank *r* }

Manifold mxn matrices or rank r:

$$M_0^{m \times n} \subset M_1^{m \times n} \subset M_2^{m \times n} \subset \cdots \subset M_n^{m \times n}$$

Polynomial GCD manifold $P_k^{m,n} = \{(p,q) \mid \deg(GCD(p,q)) = k\}$

$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_m x^m$$

$$q(x) = q_0 + q_1 x + q_2 x^2 + \dots + q_n x^n$$

$$\left\{ \in C^{(m+1)+(n+1)} \right\}$$

deg(GCD(p,q)) = k

$$p(x) = (u_0 + u_1 x + \dots + u_k x^k)(v_0 + v_1 x + \dots + v_{m-k} x^{m-k})$$

$$q(x) = (u_0 + u_1 x + \dots + u_k x^k)(w_0 + w_1 x + \dots + w_{n-k} x^{n-k})$$

$$\gamma_0 u_0 + \gamma_1 u_1 + \dots + \gamma_k u_k = 1$$

$$\operatorname{codim}(P_k^{m \times n}) = (m+1) + (n+1) - [(k+1) + (m-k+1) + (n-k+1) - 1]$$
$$= k$$

$$P_n^{m \times n} \subset P_{n-1}^{m \times n} \subset \cdots \subset P_1^{m \times n} \subset P_0^{m \times n}$$

Manifolds of 4x4 matrices defined by Jordan structures

e.g. {2,1} {1} is the structure of 2 eigenvalues in 3 Jordan blocks of sizes 2, 1 and 1

Factorization manifolds and their stratification (Zeng, 2009)

$$\Pi_{[k_1k_2\cdots k_n]} = \left\{ a_0 (a_1x + b_1)^{k_1} (a_2x + b_2)^{k_2} \cdots (a_nx + b_n)^{k_n} \mid a_i, b_i \in C, a_ib_j \neq a_jb_i, \forall i \neq j \right\}$$

$$\subset C_m[x] = \left\{ c_0 + c_1x + \cdots + c_mx^m \mid c_i \in C \right\}$$

Theorem: $p(x) \in \prod_{[k_1 \dots k_n]}$ if and only if

 $\operatorname{codim}(\prod_{[k_1 \dots k_n]}) = \max \{ \operatorname{codim}(\prod) \mid \operatorname{dist}(p, \prod) = 0 \}$

Illustration of ill-posedness manifolds

The "nearest" manifold may not be the answer

The right manifold is of highest codimension within a certain distance

Manifolds of 4x4 matrices defined by Jordan structures

Ask the right question on polynomial factorization

I.e. Formulate a well-posed factorization problem, whose solution

- exists,
- is unique, and
- is Lipschitz continuous w.r.t. data

The approximate factorization of p is

- the exact factorization of \widetilde{p}
- \widetilde{p} lies in the nearby manifold \prod of the highest codimension
- \widetilde{p} is the nearest polynomial on \prod from p

A "three-strikes" principle for formulating a "numerical solution" to an ill-posed problem:

- **<u>Backward nearness</u>**: The numerical solution is the exact solution of a <u>nearby</u> problem
- Maximum codimension: The numerical solution is the exact solution of a problem on the <u>nearby</u> pejorative manifold of the <u>highest codimension</u>.
- Minimum distance: The numerical solution is the exact solution of the <u>nearest</u> problem on the <u>nearby</u> pejorative manifold of the <u>highest codimension</u>.

- >> Finding numerical solution becomes a well-posed problem
- \sum
 - Numerical solution is a generalization of exact solution.

Formulation of the numerical rank/kernel:

$$\forall A \in C^{m \times n} \text{ and } \forall \theta > 0$$

The numerical rank of A within θ :

 $rank_{\theta}(A) = \min_{\|B-A\| \le \theta} rank(B)$

The numerical kernel of A within θ : $Ker_{\theta}(A) = Ker(B)$ with $\|B - A\|_{2} = \min_{rank(C) = rank_{\theta}(A)} \|C - A\|_{2}$ Backward nearness: num. rank of A is the exact rank of certain matrix B within θ .

Maximum codimension: That matrix B

is on the rank manifold Π possessing the highest co-dimension and intersecting the θ -neighborhood of A.

Minimum distance: That B is the nearest matrix on the rank manifold Π .

- An exact rank/kernel is the numerical rank/kernel within a small θ .
- Numerical rank/kernel is well-posed

After reformulating the rank:

III-posedness is removed successfully.

Numerical rank/kernel can be computed by SVD and other rank-revealing algorithms (e.g. Li-Zeng, Lee-Li-Zeng, SIMAX, 2005, 2009)

The Well-posedness Theorem of the Numerical Factorization (Zeng, 2009)

$$f(x) = a_0(a_1x + b_1)^{k_1}(a_2x + b_2)^{k_2} \cdots (a_nx + b_n)^{k_n}$$

Numerical factorization:

- exists
- is unique, and
- is Lipschitz continuous

Moreover:

 accurately approximates the underlying exact factorization

if the data is sufficiently accurate

The two-staged algorithm

after formulating the numerical solution to problem P within ε

which approximates the solution of S where P is perturbed from

How to identify the maximum codimension manifold?

Answer: Matrix computations

How to reach the minimum distance to the manifold?

Answer: Gauss-Newton iteration

GCD problem:
$$f = u \cdot v, \quad g = u \cdot w$$

 $\begin{bmatrix} g, -f \end{bmatrix} \begin{bmatrix} x^{j}v \\ x^{j}w \end{bmatrix} = x^{j} \begin{bmatrix} (u \cdot w)v - (u \cdot v)w \end{bmatrix} = 0$

The linear transformation

On the vector space

$$L:\begin{bmatrix}p\\q\end{bmatrix} \rightarrow [g, -f\begin{bmatrix}p\\q\end{bmatrix} \quad \left\{\begin{bmatrix}p\\q\end{bmatrix}: \frac{\deg(p) < \deg(f)}{\deg(q) < \deg(g)}\right\}$$

Has the kernel $span\left\{x^0\begin{bmatrix}v\\w\end{bmatrix}, x^1\begin{bmatrix}v\\w\end{bmatrix}, x^2\begin{bmatrix}v\\w\end{bmatrix}, \cdots, x^{\deg(u)-1}\begin{bmatrix}v\\w\end{bmatrix}\right\}$

Linear transformation $L \Rightarrow$ Sylverster matrix S(f,g)

Numerical rank-deficiency = degree of the approx. GCD

James J. Sylvester

<u>Case study:</u> univariate factorization: $\forall f \in$

$$\forall f \in C[x], \forall \varepsilon > 0, \deg(f) = n$$

Stage I: Find the max-codimension pejorative manifold by applying univariate numerical GCD algorithm on (f, f')

$$f(x) \approx (x - z_1)^{m_1} \cdots (x - z_k)^{m_k}$$

$$\Rightarrow f'(x) \approx (x - z_1)^{m_1 - 1} \cdots (x - z_k)^{m_k - 1} q(x)$$

$$\Rightarrow NGCD(f, f') \approx (x - z_1)^{m_1 - 1} \cdots (x - z_k)^{m_k - 1}$$

Stage II: solve the (overdetermined) polynomial system $F(z_1, ..., z_k) = f$

$$(\bullet -z_1)^{m_1} \cdots (\bullet -z_k)^{m_k} = f(\bullet)$$

(in the form of coefficient vectors)

for a least squares solution $(z_1, ..., z_k)$ by Gauss-Newton iteration (key theorem: The Jacobian is injective.)

Multivariate factorization structure: Matrix computations!

$$\forall f \in \mathbb{C}[x,y] \text{ of bidegree } [m,n] \qquad \frac{\partial}{\partial y} \left(\frac{f_x}{f}\right) = \frac{\partial}{\partial x} \left(\frac{f_y}{f}\right)$$

Assume $f = f_1 f_2 f_3$ with distinct factors $f_{1,} f_{2,}$ and f_3

$$\frac{\partial}{\partial y} \frac{f_1 f_{2x} f_3}{f_1 f_2 f_3} = \frac{\partial}{\partial x} \frac{f_1 f_{2y} f_3}{f_1 f_2 f_3} \qquad \qquad \frac{\partial}{\partial y} \left(\frac{f_1 \cdot f_{2x} \cdot f_3}{f}\right) = \frac{\partial}{\partial x} \left(\frac{f_1 \cdot f_{2y} \cdot f_3}{f}\right)$$

The equation
$$\frac{\partial}{\partial y} \frac{g}{f} = \frac{\partial}{\partial x} \frac{h}{f}$$
 has three solutions

 $(g,h) = (f_{1x}f_2f_3, f_{1y}f_2f_3), (f_1f_{2x}f_3, f_1f_{2y}f_3) (f_1f_2f_{3x}, f_1f_2f_{3y})$

of factors = # of solutions to

$$\frac{\partial}{\partial y} \frac{g}{f} = \frac{\partial}{\partial x} \frac{h}{f}$$

Irreducibility condition (Ruppert '99, and Gao '03, Kaltofen-May '03, Gao-Kaltofen-May-Yang-Zhi'04)

A squarefree polynomial $f \in \mathbb{C}[x,y]$ of bidegree [m,n] has k distince factors

$$\iff$$
 the homogeneous linear equation

$$f^{2}\left[\frac{\partial}{\partial y}\left(\frac{g}{f}\right) - \frac{\partial}{\partial x}\left(\frac{h}{f}\right)\right] = 0$$

has k linearly independent solutions (g,h) of bidegrees $\deg(g) \le [m-1,n], \quad \deg(h) \le [m,n-1].$

$$L_f : (g,h) \rightarrow f^2 \left[\frac{\partial}{\partial y} \frac{g}{f} - \frac{\partial}{\partial x} \frac{g}{f} \right]$$

is a linear transformation corresponding to a matrix $\,R_{f}\,$

Rank-deficiency = # of irreducible factors

Geometry of the Gauss-Newton iteration:

Example: For polynomial $(x-1)^{80}(x-2)^{60}(x-3)^{40}(x-4)^{20}$

with (inexact) coefficients in hardware precision

Numerical factorization:

>> [F,res,fcnd] = uvFactor(f,1e-10,1);

THE	CONDITION NUMBER:	914.329
THE	BACKWARD ERROR:	5.71e-015
THE	ESTIMATED FORWARD ROOT ERROR:	1.04e-011

(x -	3.99999999999999999)^20
(x -	3.00000000000008)^40
(x -	1.99999999999999998)^60
(x -	1.0000000000000000)^80

ł		MAT	LAB Co	omm	and V	Vindo	W				-	□ >
	ile	<u>E</u> dit	<u>O</u> ptions	<u>W</u> inc	tows <u>H</u> e	elp						
»	f											
f	=											
		Θ	3	6	Θ	3	0	0	3	Θ	0	
		0	0	0	3	3	6	0	0		0	
		0 -2	0 -1	0 1	0 -1	0 2	0 1	3 -1	3 2	3 3 2	6 1	
»	9											
9	=											
		0	3	6	0	3	0	0	3	0	0	
		0	0	0	3 0	3	6	0	0	3 3 2	0	
		0 2	0 3	0 1	0 3	0 2	0 1	3 3	3 2	3 2	6 1	
»	Γ.	1 11 14	r,c] =			00-11	0 1).					
»	u((4,:)=	u(4,:)/	⊪ogc ′u(4,	u(r,g, 1)	i.ue ii	0,1);					
u	=											
ă												
		0 0	3 0	0 3	0 0							
		0	0 1	0	3 1							
		1	1	1	1							
»	r											
r	-											
	8.	9622e	-032									
»	c											
с	=											
		1. 4.54										
		4.152	5									
4												

Matlab demo:

$$f(x, y, z) = -2 - x^{3} + x^{6} - y^{3} + 2x^{3}y^{3} + y^{6} - z^{3} + 2x^{3}z^{3} + z^{6}$$

 $g(x, y, z) = 2 + 3x^{3} + x^{6} + 3y^{3} + 2x^{3}y^{3} + y^{6} + 3z^{3} + 2x^{3}z^{3} + 2y^{3}z^{3} + z^{6}$

$$GCD(f,g) = 1 + x^3 + y^3 + z^3$$

backward error = 8.9622×10^{-32}

condition number = 4.1525

V	M	ATLA	B Comma	nd Windo	w				- 🗆	x
Ei	le <u>E</u> o	dit <u>O</u> p	itions <u>W</u> indo	ws <u>H</u> elp						
										•
9										
	Colu	mns 1	through 7							
		0	3.0000	6.0000	0	3.0000	0	0		
		õ	0.0000	0.0000	3.0000	3.0000	6.0000	0		
		0	0	0	0	0	0	3.0000		
	2.	0000	3.0000	1.0050	3.0000	2.0000	1.0000	3.0000		
	Colu	mns 8	through 10)						
	3.	0000	0	0						
		Θ	3.0000	0						
		0000	3.0000	6.0000						
	2.	0000	2.0000	1.0000						
»	[u,v	.w.r.c	c] = mvgcd(f,q,1.0e-2	2,1);					
			u(4,:)/u(4,							
u	=									
		0	3.0000	Θ	0					
		0	0	3.0000	0					
		Θ	0	Θ	3.0000					
	1.	0000	1.0015	0.9999	0.9999					
»	r									
r	=									
	•	0001								
	⊍.	0031								
»	c									
с	=									
	Ji -	1530								
	4.	1530								
»										•
◀										/

 $\widetilde{f}(x, y, z) = f(x, y, z) - 0.005x$ $\widetilde{g}(x, y, z) = g(x, y, z) + 0.005y$

 $AGCD(\tilde{f}, \tilde{g}) = 1 + 1.0015x^{3} + 0.9999y^{3} + 0.9999y^{3}$ $\approx 1 + x^{3} + y^{3} + z^{3}$

backward error = 0.0031

condition number = 4.1530

Exact JCF is ill-posed (discontinuous)

Numerical JCF is strongly well-posed (uniquely exists and is Lipschitz continous) and can be computed with a two-staged algorithm (T.Y. Li and Z. Zeng)

Example:	100x100 matrix A with	
	multiple eigenvalues	1, -1, 2, -2
	50 simple eigenvalues:	random

distinct eigenvalues	Jordan block sizes	backward error	condition number
-2.0000000000010	6, 4	0.64e-12	4127.6
2.0000000000017	6, 3	2.96e-12	24554.3
-0.9999999999996	7, 4, 2	1.89e-12	6599.5
0.99999999999969	9, 6, 3	3.26e-12	7029.3
0.94798616906361	1	4.15e-12	635669.2
-0.23445335697101 - 0.08619618556166i	1	5.01e-11	552.7
-0.23445335697101 + 0.08619618556166i	1	5.01e-11	552.7
-0.35838446133613 - 1.08097722885608i	1	7.77e-13	435.5
-0.35838446133613 + 1.08097722885608i	1	7.77e-13	435.5

45

Summary:

- Ill-posed problems may indeed be wrong problems.
- To solve an ill-posed problem: Fix the problem, not the solution.
- Ill-posed problems are sensitive because they form manifolds of positive codimensions in strata.
- An ill-posed problem may be reformulated as a well-posed problem according to the "three-strikes" principle
- The reformulated problem can be solved via a two-staged strategy