Solving Ill-posed Algebraic Problems
 --- A Geometric Perspective

Zhonggang Zeng
Northeastern Illinois University

Example: Polynomial root/factorization problem:

Exact coefficients

2372413541474339676910695241133745439996376 -21727618192764014977087878553429208549790220 83017972998760481224804578100165918125988254 -175233447692680232287736669617034667590560789 228740383018936986749432151287201460989730173 -194824889329268365617381244488160676107856145 110500081573983216042103084234600451650439725 -41455438401474709440879035174998852213892159 9890516368573661313659709437834514939863439 -1359954781944210276988875203332838814941903 82074319378143992298461706302713313023249

Inexact coefficients

2372413541474339676910695241133745439996376 -21727618192764014977087878553429208549790220 83017972998760481224804578100165918125988254 -175233447692680232287736669617034667590560781 9 $228740383018936986749432151287201460989730170)_{3}$ -19482488932926836561738124448816067610785614) 5 110500081573983216042103084234600451650439720) 5 -41455438401474709440879035174998852213892159 9890516368573661313659709437834514939863439 -1359954781944210276988875203332838814941903 82074319378143992298461706302713313023249

Exact roots

1.072753787571903102973345215911852872073... $0.422344648788787166815198898160900915499 \ldots$ $0.422344648788787166815198898160900915499 .$. 2.603418941910394555618569229522806448999.. 2.603418941910394555618569229522806448999 2.603418941910394555618569229522806448999 . 1.710524183747873288503605282346269140403... 1.710524183747873288503605282346269140403... 1.710524183747873288503605282346269140403... $1.710524183747873288503605282346269140403 . .$.

"attainable" roots

1.072753787571903102973345215911852872073. 0.422344648788787166815198898160900915499 . 0.422344648788787166815198898160900915499 2.603418941910394555618569229522806448999 2603418941910394555618569229522806448999 2.603418941910394555618569229522806448999 1.710524183747873288503605282346269140403.
1.710524183747873288503605282346269140403. 1710524183747873288503605282346269140403. 1710524183747873288503605282346269140403.

Coeff. in hardware precision

```
2372413541474339676910695241133745439996376
-21727618192764014977087878553429208549790220
83017972998760481224804578100165918125988254
-175233447692680232287736669617034667590560789
228740383018936986749432151287201460989730173
-194824889329268365617381244488160676107856145
110500081573983216042103084234600451650439725
-41455438401474709440879035174998852213892159
9890516368573661313659709437834514939863439
-1359954781944210276988875203332838814941903
82074319378143992298461706302713313023249
```


"attainable" roots

The highest multiplicity is only 4 !

For polynomial

$$
(x-1)^{20}(x-2)^{15}(x-3)^{10}(x-4)^{5}=0
$$

with coefficients in hardware precision:

The computed roots:

Greatest Common divisor (GCD) of exact polynomials

> f ;

$$
\frac{513}{217} x^{3} z-\frac{127}{311} x^{2} z^{2}-\frac{1026}{217} x^{2} y z+\frac{254}{311} x y z^{2}+\frac{1539}{217} x z^{2}-\frac{381}{311} z^{3}
$$

$$
\frac{213}{131} x^{2} y z-\frac{59}{77} x^{4}-\frac{426}{131} z y^{2} x+\frac{118}{77} x^{3} y+\frac{639}{131} y z^{2}-\frac{177}{77} z x^{2}
$$

$>\operatorname{gcd}(f, g) ;$

$$
x^{2}-2 y x+3 z
$$

When coefficients become inexact:
$>F:=$ evalf(f);
$F:=2.3640553 x^{3} z-0.40836013 x^{2} z^{2}-4.7281106 x^{2} y z+0.81672026 x y z^{2}+7.0921659 x z^{2}-1.2250804 z^{3}$
$>G:=\operatorname{evalf}(g)$;
$G:=1.6259542 x^{2} y z-0.76623377 x^{4}-3.2519084 z y^{2} x+1.5324675 x^{3} y+4.8778626 y z^{2}-2.2987013 z x^{2}$
$>\operatorname{gcd}(F, G) ;$

Jordan Canonical Form (JCF)

$$
\begin{aligned}
& \lambda(A)=\left\{\begin{array}{l}
3
\end{array}\right\} \\
& \lambda\left(A+10^{-15} E\right)
\end{aligned}
$$

Matrix rank problem

$\stackrel{=}{>}:=\operatorname{Matrix}([[11 / 7,18 / 7,15 / 7,10 / 7],[50 / 21,64 / 21,37 / 21,41 / 21],[19 / 7,26 / 7,17 / 7,16 / 7],[38 / 21$, $52 / 21,34 / 21,32 / 21],[38 / 21,52 / 21,34 / 21,32 / 21]]$;

$$
A:=\left[\begin{array}{cccc}
\frac{11}{7} & \frac{18}{7} & \frac{15}{7} & \frac{10}{7} \\
\frac{50}{21} & \frac{64}{21} & \frac{37}{21} & \frac{41}{21} \\
\frac{19}{7} & \frac{26}{7} & \frac{17}{7} & \frac{16}{7} \\
\frac{38}{21} & \frac{52}{21} & \frac{34}{21} & \frac{32}{21} \\
\frac{38}{21} & \frac{52}{21} & \frac{34}{21} & \frac{32}{21}
\end{array}\right]
$$

$>\operatorname{Rank}(\mathrm{A})$, Hullspace (A) ;
$2,\left\{\left[\begin{array}{c}\frac{-1}{2} \\ \frac{-1}{4} \\ 0 \\ 1\end{array}\right],\left[\begin{array}{r}\frac{3}{2} \\ \frac{-7}{4} \\ 1 \\ 0\end{array}\right]\right\}$
${ }^{-}>\mathrm{B}:=\operatorname{evalf}(\mathrm{A}, \mathrm{B}) ;$
$B=\left[\begin{array}{llll}1.5714286 & 2.5714286 & 2.1428571 & 1.4285714 \\ 2.3809524 & 3.0476190 & 1.7619048 & 1.9523810 \\ 2.7142857 & 3.7142857 & 2.4285714 & 2.2857143 \\ 1.8095238 & 2.4761905 & 1.6190476 & 1.5238095 \\ 1.8095238 & 2.4761905 & 1.6190476 & 1.5238095\end{array}\right]$

[^0]
Factoring a multivariate polynomial:

$\mathrm{f}:=6 \star \mathrm{x}^{\wedge} 3^{\star} \mathrm{y}^{\prime}+3{ }^{\star} \mathrm{x}^{\wedge} 2{ }^{\star} \mathrm{y}^{+}+\mathrm{x}^{\wedge} 2+4 \mathrm{~A}^{\star} \mathrm{y}^{\wedge} 2+2 \star \mathrm{y}^{\wedge} 2+2 / 3^{\star} \mathrm{y}$;

$$
f:=6 x^{3} y+3 x^{2} y+x^{2}+4 x y^{2}+2 y^{2}+\frac{2}{3} y
$$

factor(f) ;

$$
\frac{1}{3}\left(3 x^{2}+2 y\right)(6 x y+3 y+1)
$$

g := evalf(f);

$$
g=6 \cdot x^{3} y+3 x^{2} y+x^{2}+4 x y^{2}+2 y^{2}+0.6666666667 y
$$

factor (g) ;

$$
6.000000000 x^{3} y+3.000000001 x^{2} y+1.000000000 x^{2}+4.000000001 x y^{2}+2.000000000 y^{2}+0.6666666666 y
$$

Distorted Cyclic Four system in floating point form:

$$
\begin{gathered}
0.7071067810 z_{1}+0.5773502693 z_{2}+z_{3}+z_{4}=0 \\
2.449489743 z_{1} z_{2} z_{3}+3.464101616 z_{2} z_{3} z_{4}+4.242640686 z_{3} z_{4} z_{1}+2.449489743 z_{4} z_{1} z_{2}=0 \\
0.4082482906 z_{1} z_{2} z_{3}+0.5773502693 z_{2} z_{3} z_{4}+0.7071067810 z_{3} z_{4} z_{1}+0.4082482906 z_{4} z_{1} z_{2}=0 \\
0.4082482906 z_{1} z_{2} z_{3} z_{4}-1 .=0
\end{gathered}
$$

approximation

Isolated solutions

$\left\{z_{1}=-1.414213562+0.00001424974386 \mathrm{I}, z_{4}=-0.9999999999-0.00001007609052 \mathrm{I}, z_{3}=0.9999999999+0.00001007609052 \mathrm{I}, z_{2}=1.732050807-0.00001745230071 \mathrm{I}\right\}$
$\left\{z_{1}=0.00001424974386-1.414213562 \mathrm{I}, z_{3}=0.00001007609052+0.9999999999 \mathrm{I}, z_{2}=-0.00001745230071+1.732050807 \mathrm{I}, z_{4}=-0.00001007609052-0.9999999999 \mathrm{I}\right\}$
$\left\{z_{4}=0.00001007609052-0.9999999999 \mathrm{I}, z_{1}=-0.00001424974386-1.414213562 \mathrm{I}, z_{3}=-0.00001007609052+0.9999999999 \mathrm{I}, z_{2}=0.00001745230071+1.732050807 \mathrm{I}\right\}$
$\left\{z_{4}=0.9999999999-0.00001007609052 \mathrm{I}, z_{1}=1.414213562+0.00001424974386 \mathrm{I}, z_{3}=-0.9999999999+0.00001007600052 \mathrm{I}, z_{2}=-1.732050807-0.00001745230071 \mathrm{I}\right\}$
$\left\{z_{1}=1.414213562-0.00001424974386 \mathrm{I}, z_{2}=-1.732050807+0.00001745230071 \mathrm{I}, z_{4}=0.9999999999+0.00001007609052 \mathrm{I}, z_{3}=-0.9999999999-0.00001007609052 \mathrm{I}\right\}$
$\left\{z_{2}=0.00001745230071-1.732050807 \mathrm{I}, z_{4}=0.00001007609052+0.9999999999 \mathrm{I}, z_{3}=-0.00001007609052-0.9999999999 \mathrm{I}, z_{1}=-0.00001424974386+1.414213562 \mathrm{I}\right\}$
$\left\{z_{3}=0.00001007609052-0.9999999999 \mathrm{I}, z_{4}=-0.00001007609052+0.9999999999 \mathrm{I}, z_{2}=-0.00001745230071-1.732050807 \mathrm{I}, z_{1}=0.00001424974386+1.414213562 \mathrm{I}\right\}$
$\left\{z_{2}=1.732050807+0.00001745230071 \mathrm{I}, z_{4}=-0.9999999999+0.00001007609052 \mathrm{I}, z_{1}=-1.414213562-0.00001424974386 \mathrm{I}, z_{3}=0.9999999999-0.00001007609052 \mathrm{I}\right\}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\{z_{4}=1, z_{3}=1 ., z_{2}=-1.732085712, z_{1}=-1.414185063\right\} \\
\left\{z_{4}=1, z_{3}=1, z_{2}=-1.732015903, z_{1}=-1.414242062\right\} \\
\left\{z_{1}=1.414185063, z_{2}=1.732085712, z_{4}=-1 ., z_{3}=-1 .\right\} \\
\left\{z_{2}=1.732015903, z_{1}=1.414242062, z_{4}=-1 ., z_{3}=-1 .\right\} \\
\left\{z_{2}=-1.732085712 \mathrm{I}, z_{1}=-1.414185063 \mathrm{I}, z_{4}=1 . \mathrm{I}, z_{3}=1 . \mathrm{I}\right\}
\end{array}\right\} \\
& \left\{z_{2}=-1.732015903 \mathrm{I}, z_{1}=-1.414242062 \mathrm{I}, z_{4}=1 . \mathrm{I}, z_{3}=1 . \mathrm{I}\right\} \\
& \left\{z_{2}=1.732085712 \mathrm{I}, z_{1}=1.414185063 \mathrm{I}, z_{4}=-1 . \mathrm{I}, z_{3}=-1 . \mathrm{I}\right\} \\
& \left\{z_{2}=1.732015903 \mathrm{I}, z_{1}=1.414242062 \mathrm{I}, z_{4}=-1 . \mathrm{I}, z_{3}=-1 . \mathrm{I}\right\}
\end{aligned}
$$

A well-posed problem: (Hadamard, 1923)

the solution satisfies

- existence
- uniqueness
- continuity w.r.t data

An ill-posed problem is infinitely sensitive to perturbation tiny perturbation \rightarrow huge error

III-posed problems are common in applications

- image restoration
- IVP for stiction damped oscillator
- some optimal control problems
- air-sea heat fluxes estimation
- deconvolution
- inverse heat conduction
- electromagnetic inverse scatering
- the Cauchy prob. for Laplace eq.

III-posed problems are common in algebraic computing

- Multiple roots of polynomials
- Polynomial GCD
- Factorization of multivariate polynomials
- The Jordan Canonical Form
- Multiplicity structure/zeros of polynomial systems
- Matrix rank/kernel
- Uncontrollability and unobservability mode/subspace (control theory)
- Gröbner basis

A frontier in scientific computing

Though frequently needed in application, the adequate handling of such ill-posed ... problems is hardly ever touched upon in numerical analysis textbooks.

--- Arnold Neumaier, SIAM Review

What is a "numerical solution"?

To solve $\quad x^{2}-2 x+1=0 \quad$ with 8 digits precision:

$\begin{array}{lll}\text { backward error: } & 0.00000001 & -- \text { method is good } \\ \text { forward error: } & 0.0001 & -- \text { problem is bad }\end{array}$

The condition number

[Forward error] \leq [Condition number] [Backward error]

A large condition number
$<=>$ The problem is sensitive or, ill-conditioned

An O condition number $<=>$ The problem is ill-posed

Are ill-posed problems solvable in numerical computation?

III-posed problems are infinitely sensitive to data perturbation

Conclusion: III-posed problems are intractable in numerical computation

On difficulties of computing JCF:

C. Moler and C. Van Loan, SIAM Review, 2003: ... [T]he JCF cannot be computed using floating point arithmetic. A single rounding error may cause some multiple eigenvalue to become distinct or vise versa, altering the entire structure ...
S. Barnett and R. Cameron, Introduction to Mathematical Control Theory, 1985: It should be noted that although the Jordan form is of fundamental theoretical importance it is of little use in practical computation, being generally very difficult to compute.
J. Demmel, Applied Numerical Linear Algebra, 1997: The Jordan form tells everything we want to know about a matrix ... But it is bad to compute the Jordan form for two numerical reasons: First reason: It is discontinuous... Second reason: it can not be computed stably in general.
G.W. Stewart, Matrix Algorithms vol II, 1998: [T]he (Jordan) form is virtually uncomputable. Perturbations in the matrix send the eigenvalues flying... [A]ttempts to compute the Jordan canonical form of a matrix have not been very successful...
R.A. Horm \& C.R. Johnson, Matrix Analysis, 1990. There is no hope of computing such an object in a stable way, os the Jordan canonical form is little used in numerical applications

Are ill-posed problems solvable in numerical computation?

A numerical algorithm seeks the exact solution of a nearby problem

III-posed problems are infinitely sensitive to data perturbation

Conclusion: III-posed problems are intractable in numerical computation

What to do: Fix the problem (i.e. regularization)

Challenge in solving ill-posed problems:
Can we recover the lost solution when the problem is inexact?

Data

What's coming up:

- The geometry: Why problems are ill-posed, why they are solvable
- The regularization principle: How to reformulate a numerical problem
- The well-posedness theorem: For the reformulated numerical problem if the data is sufficiently accurate, then the solution satisfies
-- existence
-- uniqueness
-- Lipschitz continuity w.r.t. data
-- |solution error| = O(|data error|)
- The two-staged strategy: Solve the regularized numerical problem via two optimizations

Sample result: For polynomial

$$
(x-1)^{80}(x-2)^{60}(x-3)^{40}(x-4)^{20}
$$

with (inexact) coefficients in hardware precision

```
> : i= aort (expand ((x-1.0)* 00 * (x-2.0)*60 * (x-2.0)*40 * (x-4.0)*20 ))!
```


Sample result: For polynomial

with (inexact) coefficients in hardware precision

Conventional root-finding

Numerical factorization:
$>$ [F,res,fcnd] = uvFactor(f,1e-10,1);
THE CONDITION NUMBER: 914.329
THE BACKWARD ERROR: 5.71e-015
THE ESTIMATED FORWARD ROOT ERROR: $1.04 \mathrm{e}-011$

FACTORS
$\left.\begin{array}{lll}(x- & 3.999999999999990 &)^{\wedge} 20 \\ (x- & 3.000000000000008 &)^{\wedge} 40 \\ (x- & 1.999999999999998 &)^{\wedge 60} \\ (x- & 1.000000000000000\end{array}\right) \wedge 80$
Z. Zeng, ‘03, ’04, ‘05, ‘09
[It is] the most efficient and reliable algorithm for [numerical gcd]

Hans J. Stetter, Numerical Polynomial Algebra

[The algorithm] accurately calculates polynomial roots of high multiplicity without using multiprecision arithmetic (as usually required) even if the coefficients are inexact. This is the first work to do that, and is a remarkable achievement .
J.M McNamee, Numerical Methods for Roots of Polynomials, Part /

Case study: Polynomial factorization (simplified)

$$
\begin{aligned}
(x-t)^{3} & =-t^{3}+\left(3 t^{2}\right) x+(-3 t) x^{2}+x^{3} \\
F(t) & =\left[\begin{array}{c}
-t^{3} \\
3 t^{2} \\
-3 t
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& (x-u)^{1}(x-v)^{2} \quad=-u v^{2}+\left(v^{2}+2 u v\right) x+(-2 v-u) x^{2}+x^{3} \\
& G(u, v)=\left[\begin{array}{c}
-u v^{2} \\
v^{2}+2 u v \\
-2 v-u
\end{array}\right]
\end{aligned}
$$

Polynomails form (factorization) manifolds

Are ill-posed problems really sensitive?

Kahan: It is a misconception.
W. Kahan's observation (1972)

- Problems form a "pejorative manifolds"

Plot of pejorative manifolds of degree 3 polynomials with multiple roots

- III-posedness: a tiny perturbation pushes the problem out of the manifold
- A problem is not sensitive at all if it stays on the manifold.

Stratification of factorization manifolds of degree 3 polynomials
$\Pi(1,1,1)=\left\{p(x)=(x-\alpha)^{1}(x-\beta)^{1}(x-\gamma)^{1} \mid \alpha \neq \beta \neq \gamma\right\}$

$$
\text { Codimensions: } 2
$$

$$
\begin{array}{ccc}
\overline{\Pi(3)} & \overline{\Pi(1,2)} & \overline{\Pi(1,1,1)}=C^{3} \\
2 & 1 & 0
\end{array}
$$

Factorization manifold stratification of degree 4 polynomials:

Manifold mxn matrices or rank r:

Manifold mxn matrices or rank r:

$$
\overline{M_{0}^{m \times n}} \subset \overline{M_{1}^{m \times n}} \subset \overline{M_{2}^{m \times n}} \subset \cdots \subset \overline{M_{n}^{m \times n}}
$$

PolynomialGCD manifold $P_{k}^{m, n}=\{(p, q) \mid \operatorname{deg}(G C D(p, q))=k\}$

$$
\left.\begin{array}{l}
p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\cdots+p_{m} x^{m} \\
q(x)=q_{0}+q_{1} x+q_{2} x^{2}+\cdots+q_{n} x^{n}
\end{array}\right\} \in C^{(m+1)+(n+1)}
$$

$\operatorname{deg}(\operatorname{GCD}(p, q))=k$

$$
\begin{aligned}
p(x)= & \left(u_{0}+u_{1} x+\cdots+u_{k} x^{k}\right)\left(v_{0}+v_{1} x+\cdots+v_{m-k} x^{m-k}\right) \\
q(x)= & \left(u_{0}+u_{1} x+\cdots+u_{k} x^{k}\right)\left(w_{0}+w_{1} x+\cdots+w_{n-k} x^{n-k}\right) \\
& \gamma_{0} u_{0}+\gamma_{1} u_{1}+\cdots+\gamma_{k} u_{k}=1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{codim}\left(P_{k}^{m \times n}\right) & =(m+1)+(n+1)-[(k+1)+(m-k+1)+(n-k+1)-1] \\
& =k
\end{aligned}
$$

$$
\overline{P_{n}^{m \times n}} \subset \overline{P_{n-1}^{m \times n}} \subset \cdots \subset \overline{P_{1}^{m \times n}} \subset \overline{P_{0}^{m \times n}}
$$

Manifolds of 4×4 matrices defined by Jordan structures

e.g. $\{2,1\}\{1\}$ is the structure of 2 eigenvalues in 3 Jordan blocks of sizes 2,1 and 1

Factorization manifolds and their stratification (Zeng, 2009)

$$
\begin{aligned}
\Pi_{\left[k_{1} k_{2} \cdots k_{n}\right]}= & \left\{a_{0}\left(a_{1} x+b_{1}\right)^{k_{1}}\left(a_{2} x+b_{2}\right)^{k_{2}} \cdots\left(a_{n} x+b_{n}\right)^{k_{n}} \mid a_{i}, b_{i} \in C, a_{i} b_{j} \neq a_{j} b_{i}, \forall i \neq j\right\} \\
& \subset C_{m}[x]=\left\{c_{0}+c_{1} x+\cdots+c_{m} x^{m} \mid c_{i} \in C\right\}
\end{aligned}
$$

$$
p(x) \in \Pi_{[2,2]} \quad \rightleftarrows \quad \operatorname{dist}\left(p, \Pi_{[2,2]}\right)=\operatorname{dist}\left(p, \Pi_{[2,1,1]}\right)=\operatorname{dist}\left(p, \Pi_{[1,1,1,1]}\right)=0
$$

Theorem: $\quad p(x) \in \prod_{\left[k 1 \ldots k_{\mathrm{n}]}\right]}$ if and only if

$$
\operatorname{codim}\left(\Pi_{\left[k 1 \ldots k_{n]}\right.}\right)=\max \{\operatorname{codim}(\Pi) \mid \operatorname{dist}(p, \Pi)=0\}
$$

Illustration of ill-posedness manifolds

The "nearest" manifold may not be the answer

The right manifold is of highest codimension within a certain distance

Manifolds of 4×4 matrices defined by Jordan structures

Ask the right question on polynomial factorization

I.e. Formulate a well-posed factorization problem, whose solution

- exists,
- is unique, and
- is Lipschitz continuous w.r.t. data

The approximate factorization of p is

- the exact factorization of \widetilde{p}
- \widetilde{p} lies in the nearby manifold Π of the highest codimension
- \widetilde{p} is the nearest polynomial on Π from p

A "three-strikes" principle for formulating
a "numerical solution" to an ill-posed problem:

- Backward nearness: The numerical solution is the exact solution of a nearby problem
- Maximum codimension: The numerical solution is the exact solution of a problem on the nearby pejorative manifold of the highest codimension.
- Minimum distance: The numerical solution is the exact solution of the nearest problem on the nearby pejorative manifold of the highest codimension.

Finding numerical solution becomes a well-posed problem
Δ Numerical solution is a generalization of exact solution.

Formulation of the numerical rank/kernel:

$\forall A \in C^{m \times n}$ and $\forall \theta>0$

The numerical rank of A within θ :

$$
\operatorname{rank}_{\theta}(A)=\min _{\| B-A \mid \leq \theta} \operatorname{rank}(B)
$$

Backward nearness: num. rank of A is the exact rank of certain matrix B within θ.

Maximum codimension: That matrix B is on the rank manifold Π possessing the highest co-dimension and intersecting the θ-neighborhood of A.

The numerical kernel of A within θ :
$\operatorname{Ker}_{\theta}(A)=\operatorname{Ker}(B) \quad$ with
$\|B-A\|_{2}=\min _{\operatorname{rank}(C)=\operatorname{rank}_{\theta}(A)}\|C-A\|_{2}$
Minimum distance: That B is the nearest matrix on the rank manifold Π.

- An exact rank/kernel is the numerical rank/kernel within a small θ.
- Numerical rank/kernel is well-posed

Rank $\quad\left[\begin{array}{cccccc}12 & 17 & 11 & 7 & 9 & 15 \\ 6 & 6 & 9 & 0 & 3 & 6 \\ 13 & 15 & 11 & 10 & 8 & 14 \\ 18 & 13 & 19 & 13 & 6 & 14 \\ 14 & 7 & 11 & 11 & 7 & 11 \\ 19 & 10 & 15 & 13 & 11 & 16 \\ 14 & 3 & 13 & 11 & 4 & 8 \\ 19 & 6 & 17 & 13 & 8 & 13 \\ 10 & 7 & 12 & 7 & 2 & 7 \\ 6 & 7 & 4 & 7 & 3 & 6\end{array}\right]+\boldsymbol{4}$ nullity = $\mathbf{0}$
After reformulating the rank:

III-posedness is removed successfully.

Numerical rank/kernel can be computed by SVD and other rank-revealing algorithms (e.g. Li-Zeng, Lee-Li-Zeng, SIMAX, 2005, 2009)

$$
f(x)=a_{0}\left(a_{1} x+b_{1}\right)^{k_{1}}\left(a_{2} x+b_{2}\right)^{k_{2}} \cdots\left(a_{n} x+b_{n}\right)^{k_{n}}
$$

Numerical factorization:

- exists
- is unique, and
- is Lipschitz continuous

Moreover:

- accurately approximates the underlying exact factorization
if the data is sufficiently accurate

GCD ---------------> numerical GCD

JCF
---------------->
numerical staircase form

III-posed problem \longrightarrow Well posed problem

The two-staged algorithm

after formulating the numerical solution to problem P within ε

Stage I: Among all pejorative manifolds satisfy $\operatorname{dist}(P, \Pi)<\varepsilon$

Maximize codim(П)

Stage II: Find/solve problem Q such that

$$
\|P-Q\|=\min _{R \in \Pi}\|P-R\|
$$

Exact solution of Q is the numerical solution of P within ε which approximates the solution of S where P is perturbed from

How to identify the maximum codimension manifold?

Answer: Matrix computations

How to reach the minimum distance to the manifold?

Answer: Gauss-Newton iteration

GCD problem:
 $$
f=u \cdot v, \quad g=u \cdot w
$$

$$
[g,-f]\left[\begin{array}{l}
x^{j} v \\
x^{j} w
\end{array}\right]=x^{j}[(u \cdot w) v-(u \cdot v) w]=0
$$

The linear transformation
On the vector space

$$
L:\left[\begin{array}{l}
p \\
q
\end{array}\right] \rightarrow\left[g,-f\left[\begin{array}{l}
p \\
q
\end{array}\right] \quad\left\{\left[\begin{array}{l}
p \\
q
\end{array}\right]: \begin{array}{c}
\operatorname{deg}(p)<\operatorname{deg}(f) \\
\operatorname{deg}(q)<\operatorname{deg}(g)
\end{array}\right\}\right.
$$

Has the kernel $\operatorname{span}\left\{x^{0}\left[\begin{array}{c}v \\ w\end{array}\right], x^{1}\left[\begin{array}{c}v \\ w\end{array}\right], x^{2}\left[\begin{array}{c}v \\ w\end{array}\right], \cdots, x^{\operatorname{deg}(u)-1}\left[\begin{array}{c}v \\ w\end{array}\right]\right\}$

Linear transformation $L \Rightarrow$ Sylverster matrix $S(f, g)$

James J. Sylvester

Numerical rank-deficiency $=$ degree of the approx. GCD

Stage I: Find the max-codimension pejorative manifold by applying univariate numerical GCD algorithm on (f, f^{\prime})

$$
\begin{array}{rl}
\because \quad f & f(x) \approx\left(x-z_{1}\right)^{\mathrm{m}_{1}} \cdots\left(x-z_{k}\right)^{\mathrm{m}_{\mathrm{k}}} \\
& \Rightarrow f^{\prime}(x) \approx\left(x-z_{1}\right)^{\mathrm{m}_{1}-1} \cdots\left(x-z_{k}\right)^{\mathrm{m}_{k}-1} q(x) \\
& \Rightarrow \quad N G C D\left(f, f^{\prime}\right) \approx\left(x-z_{1}\right)^{\mathrm{m}_{1}-1} \cdots\left(x-z_{k}\right)^{\mathrm{m}_{k}-1}
\end{array}
$$

Stage II: solve the (overdetermined) polynomial system $F\left(z_{1}, \ldots, z_{k}\right)=f$

$$
\left(\bullet-z_{1}\right)^{\mathrm{m}_{1}} \cdots\left(\bullet-z_{k}\right)^{\mathrm{m}_{\mathrm{k}}}=f(\bullet)
$$

(in the form of coefficient vectors)
for a least squares solution (z_{1}, \ldots, z_{k}) by Gauss-Newton iteration (key theorem: The Jacobian is injective.)

Multivariate factorization structure: Matrix computations!
$\forall f \in \mathrm{C}[x, y]$ of bidegree $[m, n] \quad \frac{\partial}{\partial y}\left(\frac{f_{x}}{f}\right)=\frac{\partial}{\partial x}\left(\frac{f_{y}}{f}\right)$

Assume $\quad f=f_{1} f_{2} f_{3}$ with distinct factors f_{1}, f_{2}, and f_{3}

$$
\frac{\partial}{\partial y} \frac{\boldsymbol{f}_{1} f_{2 x} \boldsymbol{f}_{3}}{\boldsymbol{f}_{1} f_{2} \boldsymbol{f}_{3}}=\frac{\partial}{\partial x} \frac{\boldsymbol{f}_{1} f_{2 y} \boldsymbol{f}_{3}}{\boldsymbol{f}_{1} f_{2} \boldsymbol{f}_{3}} \quad \frac{\partial}{\partial y}\left(\frac{f_{1} \cdot f_{2 x} \cdot f_{3}}{f}\right)=\frac{\partial}{\partial x}\left(\frac{f_{1} \cdot f_{2 y} \cdot f_{3}}{f}\right)
$$

The equation $\quad \frac{\partial}{\partial y} \frac{g}{f}=\frac{\partial}{\partial x} \frac{h}{f} \quad$ has three solutions

$$
(g, h)=\left(f_{1 x} f_{2} f_{3}, \quad f_{1 y} f_{2} f_{3}\right), \quad\left(f_{1} f_{2 x} f_{3}, \quad f_{1} f_{2 y} f_{3}\right) \quad\left(f_{1} f_{2} f_{3 x}, \quad f_{1} f_{2} f_{3 y}\right)
$$

$\#$ of factors $=\#$ of solutions to $\frac{\partial}{\partial y} \frac{g}{f}=\frac{\partial}{\partial x} \frac{h}{f}$

Irreducibility condition (Ruppert '99, and Gao '03, Kaltofen-May '03,Gao-Kaltofen-May-Yang-Zhi'04)

A squarefree polynomial $f \in \mathrm{C}[x, y]$ of bidegree $[m, n]$ has k distince factors
\Leftrightarrow the homogeneous linear equation

$$
f^{2}\left[\frac{\partial}{\partial y}\left(\frac{g}{f}\right)-\frac{\partial}{\partial x}\left(\frac{h}{f}\right)\right]=0
$$

has k linearly independent solutions (g, h) of bidegrees

$$
\operatorname{deg}(g) \leq[m-1, n], \quad \operatorname{deg}(h) \leq[m, n-1] .
$$

$$
L_{f}:(g, h) \quad \rightarrow \quad f^{2}\left[\frac{\partial}{\partial y} \frac{g}{f}-\frac{\partial}{\partial x} \frac{g}{f}\right]
$$

is a linear transformation corresponding to a matrix R_{f}

$$
\text { Rank-deficiency }=\# \text { of irreducible factors }
$$

Geometry of the Gauss-Newton iteration:

The polynomial

Solve
 $G(\mathrm{z})=a$

for nonlinear least squares solution $\mathrm{z}_{\mathrm{Z}}=\mathrm{Z}_{*}$
Solve $\quad G\left(\mathrm{z}_{0}\right)+J\left(\mathrm{z}_{0}\right)\left(\mathrm{z}-\mathrm{z}_{0}\right)=a$
for linear least squares solution $\mathbf{z}^{2}=\mathbf{z}_{\mathbf{1}}$

$$
\begin{aligned}
& G\left(\mathbf{z}_{0}\right)+J\left(\mathbf{z}_{0}\right)\left(\mathrm{z}-\mathbf{z}_{0}\right)=a \\
& J\left(\mathbf{z}_{0}\right)\left(\mathrm{z}-\mathbf{z}_{0}\right)=-\left[G\left(\mathbf{z}_{0}\right)-a\right] \quad \mathbf{z}_{\mathbf{1}}=\mathbf{z}_{0}-\left[J\left(\mathbf{z}_{0}\right)^{+}\right]\left[G\left(\mathbf{z}_{0}\right)-a\right]
\end{aligned}
$$

Example: For polynomial $(x-1)^{80}(x-2)^{60}(x-3)^{40}(x-4)^{20}$

with (inexact) coefficients in hardware precision

Conventional root-finding

Numerical factorization:

```
>> [F,res,fcnd] = uvFactor(f,1e-10,1);
```

THE CONDITION NUMBER: 914.329
THE BACKWARD ERROR: 5.71e-015
THE ESTIMATED FORWARD ROOT ERROR: $1.04 \mathrm{e}-011$

FACTORS
$\left.\begin{array}{lll}(x- & 3.999999999999990 &)^{\wedge} 20 \\ (x- & 3.000000000000008 &)^{\wedge 40} \\ (x- & 1.999999999999998 &)^{\wedge 60} \\ (x- & 1.000000000000000\end{array}\right) \wedge 80$
Z. Zeng, 2009

Matlab demo:

$$
\begin{aligned}
& f(x, y, z)=-2-x^{3}+x^{6}-y^{3}+2 x^{3} y^{3}+y^{6}-z^{3}+2 x^{3^{3}}+z^{6} \\
& \begin{aligned}
g(x, y, z)= & 2+3 x^{3}+x^{6}+3 y^{3}+2 x^{3} y^{3}+y^{6}+3 z^{3}+2 x^{3} z^{3} \\
& +2 y^{3} z^{3}+z^{6}
\end{aligned} \\
& G C D(f, g)=1+x^{3}+y^{3}+z^{3}
\end{aligned}
$$

$$
\text { backward error }=8.9622 \times 10^{-32}
$$

condition number $=4.1525$

Columns 1 through 7

0	3.0000	6.0000	0	3.0000	0	0
0	0	0	3.0000	3.0000	6.0000	0
0	0	0	0	0	0	3.0000
2.0000	3.0000	1.0050	3.0000	2.0000	1.0000	3.0000

$$
\begin{aligned}
& \tilde{f}(x, y, z)=f(x, y, z)-0.005 x \\
& \widetilde{g}(x, y, z)=g(x, y, z)+0.005 y
\end{aligned}
$$

```
> [u,u,w,r,c] = mugcd(f,g,1.0e-2,1);
```

" $u(4,:)=u(4,:) / u(4,1)$
u =

0	3.0000	0	0
0	0	3.0000	0
0	0	0	3.0000
1.0000	1.0015	0.9999	0.9999

backward error $=0.0031$
condition number $=4.1530$

Exact JCF is ill-posed (discontinuous)

Numerical JCF is strongly well-posed (uniquely exists and is Lipschitz continous) and can be computed with a two-staged algorithm (T.Y. Li and Z. Zeng)

Example: 100x100 matrix A with multiple eigenvalues $\quad 1,-1,2,-2$ 50 simple eigenvalues: random

distinct eigenvalues	Jordan block sizes			backward error	condition number
-2.00000000000010	6,	4		$0.64 \mathrm{e}-12$	4127.6
2.00000000000017	6,	3		$2.96 \mathrm{e}-12$	24554.3
-0.99999999999996	7,	4,	2	$1.89 \mathrm{e}-12$	6599.5
0.99999999999969	9,	6 ,	3	$3.26 \mathrm{e}-12$	7029.3
0.94798616906361	1			$4.15 \mathrm{e}-12$	635669.2
-0.23445335697101-0.08619618556166i	1			$5.01 \mathrm{e}-11$	552.7
$-0.23445335697101+0.08619618556166 i$	1			$5.01 \mathrm{e}-11$	552.7
-0.35838446133613-1.08097722885608i	1			$7.77 \mathrm{e}-13$	435.5
$-0.35838446133613+1.08097722885608 i$	1			$7.77 \mathrm{e}-13$	435.5
. - .					

Summary:

- III-posed problems may indeed be wrong problems.
- To solve an ill-posed problem: Fix the problem, not the solution.
- III-posed problems are sensitive because they form manifolds of positive codimensions in strata.
- An ill-posed problem may be reformulated as a well-posed problem according to the "three-strikes" principle
- The reformulated problem can be solved via a two-staged strategy

[^0]: $=>$ Rank (B), Hullspace (B);

