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Interior-Point Methods

Modern theory of interior-point methods pushes all difficult constraints into

the convex set constraints and/or convex cone constraints. Then, each of

these convex inclusion constraints is treated via a strictly convex barrier

function with very special properties.
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Theory of interior-point methods for beautiful and powerful special cases:

• Symmetric (self-scaled) cones (Nesterov and Todd [1996-...] and

others)

• Homogeneous cones (Güler and T. [1998], Chua [2008], Chua and T.

[2008])

• Hyperbolic cones (Güler [1997], Renegar [2006-...], today’s talk, ...)
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We denote by E a finite-dimensional linear space (other variants: H, V),

and by E∗ its dual space, composed by linear functions on E. The value of

function s ∈ E
∗ at point x ∈ E is denoted by 〈s, x〉.

For a linear transformation A : E → H
∗ we denote by A∗ the

corresponding adjoint transformation:

〈Ax, y〉 = 〈A∗y, x〉, x ∈ E, y ∈ H.

Thus, A∗ : H → E
∗. A self-adjoint positive-definite linear transformation

B : E → E∗ (notation B ≻ 0) defines the Euclidean norms for the primal

and dual spaces:

‖x‖B = 〈Bx, x〉1/2, x ∈ E, ‖s‖B = 〈s,B−1s〉1/2, s ∈ E
∗.

The sense of this notation is determined by the space of arguments.
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Let Φ be a self-concordant function defined on the interior of a convex set

Q ⊂ E:

∇3Φ(x)[h, h, h] ≤ 2〈∇2Φ(x)h, h〉3/2, x ∈ int Q, h ∈ E.

Note that ∇3Φ(x)[h1, h2, h3] is a trilinear symmetric form. Thus,

∇3Φ(x)[h1, h2] = ∇3Φ(x)[h2, h1] ∈ V
∗,

and ∇3Φ(x)[h] is a self-adjoint linear transformation from V to V∗.
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We call cone K ⊂ E regular if it is a closed, convex, and pointed cone

with nonempty interior. Sometimes it is convenient to write inclusion

x ∈ K in the form x �K 0.

If K is regular, then the dual cone

K∗ := {s ∈ E∗ : 〈s, x〉 ≥ 0, ∀x ∈ K } ,

is also regular.
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Every such convex cone K , admits a ν-normal barrier F (x) (that is, F is

self-concordant and ν-logarithmically homogeneous:

F (τx) = F (x) − ν ln τ, x ∈ int K, τ > 0.)

Note that −∇F (x) ∈ int K∗ for every x ∈ intK .

Note that the dual barrier

F∗(s) := max
x∈int K

{ −〈s, x〉 − F (x) }

is a ν-normal barrier for cone K∗.
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1 CONIC PROGRAMMING, CENTRAL PATH

1 Conic Programming, Central Path

Consider the standard conic optimization problem:

min
x∈K

{ 〈c, x〉 : Ax = b } ,

where c ∈ E∗, b ∈ H∗, A is a linear transformation from E to H∗, and

K ⊂ E is a regular cone. The dual problem is then

max
s∈K∗, y∈H

{〈b, y〉 : s + A∗y = c } .

Fp := {x ∈ K : Ax = b}, and Fd := {s ∈ K∗ : s + A∗y = c}.
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1 CONIC PROGRAMMING, CENTRAL PATH

Under the strict feasibility assumption,

∃ x0 ∈ int K, s0 ∈ intK∗, y0 ∈ H : Ax0 = b, s0 + A∗y0 = c,

the optimal sets of the primal and dual problems are nonempty and

bounded, and there is no duality gap.
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1 CONIC PROGRAMMING, CENTRAL PATH

Primal-dual central path zµ := (xµ, sµ, yµ):

Axµ = b,

c + µ∇F (xµ) = A∗yµ,

sµ = −µ∇F (xµ)







































, µ > 0,

is well defined. Note that

〈c, xµ〉 − 〈b, yµ〉 = 〈sµ, xµ〉 = ν · µ.
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2 PREDICTION FROM A NEIGHBORHOOD OF THE CENTRAL PATH

2 Prediction from a neighborhood of the central

path

For a fast local convergence of a path-following scheme, we need to show

that the predicted point

ẑµ = zµ − z′µ · µ

enters a small neighborhood of the solution point

z∗ = lim
µ→0

zµ = (x∗, s∗, y∗).
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2 PREDICTION FROM A NEIGHBORHOOD OF THE CENTRAL PATH

It is more convenient to analyze this situation by looking at y-component of

the central path.

Note that s-component of the dual problem can be easily eliminated:

s = s(y) := c − A∗y.

More concise full-dimensional form:

f∗ := max
y∈H

{ 〈b, y〉 : y ∈ Q},

Q := {y ∈ H : c − A∗y ∈ K∗}.
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2 PREDICTION FROM A NEIGHBORHOOD OF THE CENTRAL PATH

In view of the strict feasibility assumption, the interior of set Q is

nonempty. Moreover, for this set we have a ν-self-concordant barrier

f(y) := F∗(c − A∗y), y ∈ int Q.
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2 PREDICTION FROM A NEIGHBORHOOD OF THE CENTRAL PATH

We will use the predictor step

yk+1 := yk + α[∇2f(y)]−1∇f(y),

for α > 0 and prove that under mild assumptions, in addition to

guaranteeing global linear rate convergence (poly. iteration complexity),

we can take α → 1 in the limit in a way that we can attain local quadratic

convergence.
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2 PREDICTION FROM A NEIGHBORHOOD OF THE CENTRAL PATH

Local quadratic convergence is a natural and very desired property of

many methods in Nonlinear Optimization.
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2 PREDICTION FROM A NEIGHBORHOOD OF THE CENTRAL PATH

Local quadratic convergence is a natural and very desired property of

many methods in Nonlinear Optimization.

However, for interior-point methods the corresponding analysis does not

seem to be trivial.
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2 PREDICTION FROM A NEIGHBORHOOD OF THE CENTRAL PATH

The reason is that the barrier function is not defined in a neighborhood of

the solution. Therefore, in order to study the behavior of the central path,

we need to employ somehow the separable structure of the functional

inequality constraints. From the very beginning (going back to Fiacco and

McCormick [1968]), this analysis was based on the Implicit Function

Theorem as applied to Karush-Kuhn-Tucker conditions.

17



2 PREDICTION FROM A NEIGHBORHOOD OF THE CENTRAL PATH

What about an appropriate framework for analyzing the local behavior of

general polynomial-time interior-point methods?.
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2 PREDICTION FROM A NEIGHBORHOOD OF THE CENTRAL PATH

What about an appropriate framework for analyzing the local behavior of

general polynomial-time interior-point methods?.

Indeed, in the theory of self-concordant functions it seems difficult to

analyze the local structure of the solution since we have no access to the

components (individual coordinates) of the barrier function. Moreover, in

general, it seems difficult to relate the self-concordant barrier with

functional inequality constraints of the initial optimization problem.
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2 PREDICTION FROM A NEIGHBORHOOD OF THE CENTRAL PATH

Previously, the local superlinear convergence for polynomial-time

path-following methods was proved only for Linear Programming Ye, Güler,

Tapia and Y. Zhang [1993], Mehrotra [1993] and for Semidefinite

Programming problems Kojima, Shindoh and Shida [1998] ,Potra and

Sheng [1998], Luo, Sturm and S. Zhang [1998], Ji, Potra and Sheng

[1999].
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2 PREDICTION FROM A NEIGHBORHOOD OF THE CENTRAL PATH

In the current work,

• we investigate the possibility of a local quadratic convergence theory

for modern interior-point methods,

• we establish the local quadratic convergence of interior-point

path-following methods by utilizing some geometric properties of the

general conic optimization problem

• the main structural property used in our analysis is the logarithmic

homogeneity of self-concordant barrier functions
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2 PREDICTION FROM A NEIGHBORHOOD OF THE CENTRAL PATH

• we propose new path-following predictor-corrector schemes which

work only in the dual space

• the algorithms are based on an easily computable gradient proximity

measure, which ensures an automatic transformation of the global

linear rate of convergence to the local quadratic rate (under a mild

assumption)

• our step-size procedure for the predictor step is related to the

maximum step size to stay feasible.
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2 PREDICTION FROM A NEIGHBORHOOD OF THE CENTRAL PATH

Now we can introduce our main assumptions.

Assumption 1 There exists a constant γd > 0 such that

f∗ − 〈b, y〉 = 〈s, x∗〉 ≥ γd‖s − s∗‖B ≡ γd‖y − y∗‖G,

for every y ∈ Q (that is s = s(y) ∈ Fd).

Thus, we assume that the dual problem admits a sharp optimal solution.

We need one more assumption.

Assumption 2 There exists a constant σd such that for any µ ≤ 1 we

have

‖∇2F∗(sµ)s∗‖B ≤ σd.
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2 PREDICTION FROM A NEIGHBORHOOD OF THE CENTRAL PATH

Example 1 For the cone of positive-semidefinite matrices K = K∗ = S
n
+, we

choose

F (X) = − ln detX, F∗(S) = n − ln detS.

Then,

〈I,∇2F∗(Sµ)S∗〉 = 〈I, S−1
µ S∗S−1

µ 〉.
We have

〈I, S−1
µ S∗S−1

µ 〉 = µ−2〈X2
µ, S∗〉 = µ−2〈(Xµ − X∗)2, S∗〉.

Thus, we get an upper bound for ‖∇2F∗(Sµ)S∗‖ assuming

‖Xµ − X∗‖ ≤ O(µ). This condition is weaker than assuming that the primal

problem admits a sharp solution. It is also weaker than assuming differentiability

of the primal central path at µ = 0.
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3 NEIGHBORHOOD, PROXIMITY MEASURE

3 Neighborhood, proximity measure

For µ ∈ (0, 1], β ∈ (0, 1
2),

γ(y, µ) :=

∥

∥

∥

∥

∇f(y) − 1

µ
b

∥

∥

∥

∥

y

,

and

N (µ, β) := {y ∈ H : γ(y, µ) ≤ β} .
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3 NEIGHBORHOOD, PROXIMITY MEASURE

This proximity measure has a very familiar interpretation in the special

case of Linear Programming. Denoting by S the diagonal matrix made up

from the slack variable s = c − AT y, notice that Dikin’s affine scaling

direction in this case is given by
(

AS−2AT
)−1

b. Our predictor step

corresponds to the search direction
(

AS−2AT
)−1

AS−1e. Our

proximity measure becomes
∥

∥

∥

∥

AS−1e − b

µ

∥

∥

∥

∥

AS−2AT

.
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3 NEIGHBORHOOD, PROXIMITY MEASURE

p(y) := y + v(y), y ∈ int Q,

v(y) := [∇2f(y)]−1∇f(y).

Theorem 1 Let dual problem satisfy the assumptions 1 and 2. If for some

µ ∈ (0, 1] and β ∈ (0, 1
2) we have y ∈ N (µ, β), then

‖p(y) − y∗‖G ≤ 4σd(1−β)2

γ2
d(1−2β)2

〈b, y − y∗〉2 ≤ 4ν(1−β)2σd

γ2
d(1−2β)2

· ‖y − y∗‖2
G.
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4 EFFICIENCY OF THE PREDICTOR STEP

4 Efficiency of the Predictor Step

y(α) := y + αv(y), α ∈ [0, 1].

Denote by ᾱ(y), the maximal feasible step size along direction v(y):

ᾱ(y) := max
α≥0

{α : y + αv(y) ∈ Q}.
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4 EFFICIENCY OF THE PREDICTOR STEP

Theorem 2 Let y ∈ N (µ, β) with µ ∈ (0, 1] and β ∈ (0, 1
2). Then

1 − ᾱ(y) ≤ κµ
1+κµ ,

‖y(ᾱ) − y∗‖y ≤ (1 +
√

ν)κµ.
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5 POLYNOMIAL-TIME PATH-FOLLOWING METHOD

5 Polynomial-time path-following method

Note that at the predictor stage, we need to choose the rate of decrease of

the penalty parameter (central path parameter) µ as a function of the

predictor step size α.

We denote

ξᾱ(α) = 1 + αᾱ
ᾱ−α , α ∈ [0, ᾱ),

and choose

µ(α) ≈ µ
ξᾱ(α) .
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5 POLYNOMIAL-TIME PATH-FOLLOWING METHOD

ηᾱ(α) :=







2α, α ∈ [0, 1
3 ᾱ],

α+ᾱ
2 , α ∈ [13 ᾱ, ᾱ].

This function will be used for updating the length of our predictor step.

Lemma 1 If α ≥ 0 and α+ = ηᾱ(α), then ξᾱ(α+) ≥ 2ξᾱ(α) − 1.

Hence, for the recurrence

αi+1 = ηᾱ(αi), i ≥ 0,

we have ξᾱ(αi) ≥ 1 + α0 · 2i.
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5 POLYNOMIAL-TIME PATH-FOLLOWING METHOD

Path-following method for general barriers

1. Set µ0 = 1 and find point y0 ∈ N (µ0,
1
18 ).

2. For k ≥ 0 iterate:

a) Compute ᾱk = ᾱ(yk).

b) Using recurrence

αk,0 = 1
6·max{1,‖v(yk)‖yk

} , αk,i+1 = ηᾱk
(αk,i),

find the maximal i ≡ ik such that γ
(

yk(αk,i),
µk

ξᾱk
(αk,i)

)

≤ 1
6 .

c) Set αk = αk,ik
, pk = yk + αkv(yk), µk+1 = µk

ξᾱk
(αk) .

d) Starting from pk, apply the Newton method for

finding yk+1 ∈ N (µk+1,
1
18µk+1).
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5 POLYNOMIAL-TIME PATH-FOLLOWING METHOD

Theorem 3 Let K be a regular cone and F∗ be a normal barrier for K∗.

Also let y0 ∈ N (µ0,
1
18) for some µ0 > 0. Then, above method

generates a sequence of feasible points such that

f∗ − 〈b, yk〉 ≤ µ0κ1 exp
{

− k
1+6ν1/2

}

.

This is an

O

(√
ν ln

(

1

ǫ

))

iteration complexity bound. Moreover, if Assumptions 1 and 2 hold, the

method attains local quadratic convergence.
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5 POLYNOMIAL-TIME PATH-FOLLOWING METHOD

In this scheme, for computing the value of gradient proximity measure at

new points, we need to compute and ”invert” the Hessian of barrier

function. However, the step size in this procedure is rapidly increased.

Therefore, it is easy to prove that the total number of auxiliary steps ik,

which is necessary for computing an ǫ-solution to our problem is bounded

by O(ν1/2 ln ν
ǫ ). The number of steps at the correction stage (Step 2d)

cannot be large since pk belongs to the region of quadratic convergence

of the Newton method. In any case, if Assumptions 1 and 2 are satisfied,

then the above method is locally quadratically convergent.
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6 RECESSION COEFFICIENT OF BARRIER FUNCTION

6 Recession coefficient of barrier function

Definition 1 We call γF recession coefficient of the normal barrier F if it

is the smallest positive constant such that for every x ∈ int K and

u ∈ K we have

∇2F (x + u) � γF · ∇2F (x).

Proposition 1 For every normal barrier F ,

1 ≤ γF ≤ 4ν2.

However, very often this upper bound is very pessimistic. Note that the

following main operations with convex cones do not increase this

coefficient.
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6 RECESSION COEFFICIENT OF BARRIER FUNCTION

Theorem 4 1. Let F be a normal barrier for the cone K , and

KA = {x ∈ K : Ax = 0}.

Denote by f the restriction of F onto the relative interior of KA. Then

γf ≤ γF .

2. Let Fi, i = 1, 2, be normal barriers for cones Ki ⊂ E. Denote

F = F1 + F2. If int (K1
⋂

K2) 6= ∅, then γF ≤ max{γF1 , γF2}.

3. Let Fi, i = 1, 2, be normal barriers for cones Ki ⊂ Ei. Denote

F (x, y) = F1(x) + F2(y). Then γF ≤ max{γF1 , γF2}.

Thus, all barriers constructed as sums or direct products of

small-dimensional cones have small recession coefficients. On the other

hand, restriction of such barriers onto linear subspaces does not increase

the recession coefficient. It remains to note that there exists an important

family of normal barriers with minimal value of the recession coefficient.
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6 RECESSION COEFFICIENT OF BARRIER FUNCTION

Definition 2 Let F be a normal barrier for the regular cone K . We say

that F has negative curvature if for every x ∈ intK and h ∈ K we have

∇3F (x)[h] � 0.

Thus, for such a barrier γF = 1. It is clear that self-scaled barriers have

negative curvature (Nesterov and Todd [1997]). Some other important

barriers, like the logarithms of hyperbolic polynomials (Güler [1997]) also

share this property.
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6 RECESSION COEFFICIENT OF BARRIER FUNCTION

Theorem 5 Let K be a regular cone and F be a normal barrier for K .

Then, TFAE:

1. F has negative curvature;

2. for every x ∈ int K and h ∈ E we have

−∇3F (x)[h, h] ∈ K∗;

3. for every x ∈ int K and for every h ∈ E such that x + h ∈ intK ,

we have

∇F (x + h) −∇F (x) �K∗ ∇2F (x)h.
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6 RECESSION COEFFICIENT OF BARRIER FUNCTION

Theorem 6 Let the curvature of F be negative. Then for every x ∈ K ,

we have

∇2F (x)h �K∗ 0, ∀h ∈ K,

and, consequently,

∇F (x + h) −∇F (x) �K∗ 0.
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6 RECESSION COEFFICIENT OF BARRIER FUNCTION

Lemma 2 Let both F and F ∗ have negative curvature. Then K is a

symmetric cone.

Proof: Indeed, for every x ∈ int K we have ∇2F (x)K ⊆ K∗. Denote

s = −∇F (x). Since F ∗ has negative curvature, then

∇2F∗(s)K∗ ⊆ K . However, since ∇2F∗(s) = [∇2F (x)]−1, this

means K∗ ⊆ ∇2F (x)K . Thus K∗ = ∇2F (x)K . Now, using

standard arguments, it is easy to prove that for every pair x ∈ int K and

s ∈ intK∗ there exists a scaling point w ∈ int K such that

s = ∇2F (w)x (this w can be taken as the minimizer of the convex

function −〈∇F (w), x〉 + 〈s,w〉). Thus, we have proved that K is

homogeneous and self-dual. Hence, it is symmetric.
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6 RECESSION COEFFICIENT OF BARRIER FUNCTION

Remark 1 Lemma 2 shows that the value

min {γF + γF ∗ − 2 : F is a normal barrier for K}

can be seen as a measure of distance between the cone K and the family

of symmetric cones.
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6 RECESSION COEFFICIENT OF BARRIER FUNCTION

σx(h) := min
ρ≥0

{ρ : ρ · x − h ∈ K}.

Theorem 7 Let K be a regular cone and F be a normal barrier for K .

Further let x, x + h ∈ intK . Then for every α ∈ [0, 1) we have

1
γF (1+ασx(h))2

∇2F (x) � ∇2F (x + αh) � γF

(1−α)2
∇2F (x).
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7 BOUNDING THE GROWTH OF OUR PROXIMITY MEASURE

7 Bounding the growth of our proximity measure

Let us analyze now our predictor step

y(α) = y + αv(y), α ∈ [0, ᾱ],

where ᾱ = ᾱ(y). Denote s̄ = s(y(ᾱ)) ∈ K∗.

Lemma 3 For every α ∈ [0, ᾱ), we have

δy(α) := ‖∇f(y(α)) − ᾱ
ᾱ−α∇f(y)‖G ≤ αγF∗

ᾱ−α ‖∇2F∗(s(y))s̄‖B .
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7 BOUNDING THE GROWTH OF OUR PROXIMITY MEASURE

Γµ(y, α) := γ
1/2
F∗

(

1 + α · σs(y) (−A∗v(y))
)

∥

∥

∥

∥

∇f(y(α)) − ξᾱ(α)

µ
· b

∥

∥

∥

∥

y

.

Theorem 8 Let y ∈ N (µ, β) with µ ∈ (0, 1] and β ∈ (0, 1
2). Then for

y(α) = y + αv(y) with α ∈ (0, ᾱ) we have

γ
“

y(α), µ
ξᾱ(α)

”

≤ Γµ(y, α)

≤ γ
1/2
F∗

(1 + α · σs(y)(−A∗v(y)))
h

γ1(α) + β ·
“

1 + αᾱ
ᾱ−α

”i

.
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7 BOUNDING THE GROWTH OF OUR PROXIMITY MEASURE

Lemma 4 Let y ∈ N (µ, β) with β ≤ 1

18γ
1/2
F∗

. Then for all

α ∈
[

0, 1

6 γ
1/2
F∗

max{1,‖v(y)‖y}

]

we have Γµ(y, α) ≤ 1
6 .
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7 BOUNDING THE GROWTH OF OUR PROXIMITY MEASURE

Path-following method based on recession coefficient

1. Set µ0 = 1 and find point y0 ∈ N
(

µ0,
1

18
√

γF∗

)

.

2. For k ≥ 0 iterate:

a) Compute ᾱk = ᾱ(yk).

b) Using recurrence

αk,0 = 1
6·√γF∗

max{1,‖v(yk)‖yk
} , αk,i+1 = ηᾱk

(αk,i),

find the maximal i ≡ ik such that Γµk
(yk, αk,i) ≤ 1

6 .

c) Set αk = αk,ik
, pk = yk + αkv(yk), µk+1 = µk

ξᾱk
(αk) .

d) Starting from pk, apply the Newton method for

finding yk+1 ∈ N
(

µk+1,
µk+1

18
√

γF∗

)

.
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7 BOUNDING THE GROWTH OF OUR PROXIMITY MEASURE

For the above method, we can prove a polynomial complexity bound:

f∗ − 〈b, yk〉 ≤ µ0κ1 exp
{

− k
1+6

√
γF∗ν

}

.

On the other hand, in a small neighborhood of the solution, the method

accelerates to the quadratic convergence rate.
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7 BOUNDING THE GROWTH OF OUR PROXIMITY MEASURE

Theorem 9 Let K be a regular cone and F∗ be a normal barrier for K∗

with negative curvature. Also let y0 ∈ N (µ0,
1
18) for some µ0 > 0.

Then, above method generates a sequence of feasible points such that

f∗ − 〈b, yk〉 ≤ µ0κ1 exp
{

− k
1+6ν1/2

}

.

This is an

O

(√
ν ln

(

1

ǫ

))

iteration complexity bound. Moreover, if Assumptions 1 and 2 hold, the

method attains local quadratic convergence.
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7 BOUNDING THE GROWTH OF OUR PROXIMITY MEASURE 7.1 Examples of cones

7.1 Examples of cones with negative curvature

Negative curvature of barrier functions is preserved by the following

operations.

• If barriers Fi for cones Ki ⊂ Ei, i = 1, 2, have negative curvature,

then the curvature of the barrier F1 + F2 for the cone K1 ⊕ K2 is

negative.

• If barriers Fi for cones Ki ⊂ E, i = 1, 2, have negative curvature,

then the curvature of the barrier F1 + F2 for the cone K1
⋂

K2 is

negative.

• If barrier F for cone K has negative curvature, then the curvature of

the barrier f(y) = F (A∗y) for the cone

Ky = {y ∈ H : A∗y ∈ K} is negative.
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7 BOUNDING THE GROWTH OF OUR PROXIMITY MEASURE 7.1 Examples of cones

• If barrier F (x) for cone K has negative curvature, then the curvature

of its restriction onto the linear subspace {x ∈ E : Ax = 0} is

negative.

At the same time, we know two important families of cones with negative

curvature.

• Self-scaled barriers have negative curvature (Nesterov and Todd

[1996]).

• Let p(x) be hyperbolic polynomial. Then the barrier

F (x) = − ln p(x) has negative curvature (Güler [1997]).

Thus, using above mentioned operations, we can construct barriers with

negative curvature for many interesting cones.
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8 EXPLOITING THE PRIMAL-DUAL ASYMMETRY OF A PROBLEM

8 Exploiting the Primal-Dual Asymmetry of a

Problem

In some situations we can argue that currently, some nonsymmetric

treatments of the primal-dual problem pair have better complexity bounds

than the primal-dual symmetric treatments.

Example 2 Consider the cone of nonnegative univariate polynomials:

K =

{

p ∈ R2n+1 :
2n
∑

i=0
pit

i ≥ 0, ∀t ∈ R

}

.

The dual to this cone is the cone of positive semidefinite Hankel matrices.
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8 EXPLOITING THE PRIMAL-DUAL ASYMMETRY OF A PROBLEM

For k = 0 . . . , 2n, denote

Hk ∈ R(n+1)×(n+1) : H
(i,j)
k =







1, if i + j = k + 2

0, otherwise

For s ∈ R2n+1 we can define now the following linear transformation:

H(s) =
2n
∑

i=0
si · Hi.

Then the cone dual to K can be represented as follows:

K∗ = {s ∈ R2n+1 : H(s) � 0}.

The natural barrier for the dual cone is f(s) = − ln detH(s). Clearly, it

has negative curvature.
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8 EXPLOITING THE PRIMAL-DUAL ASYMMETRY OF A PROBLEM

Note that we can lift the primal cone to a higher dimensional space (see

Nesterov [1999]):

K = {p ∈ R
2n+1 : pi = 〈Hi, Y 〉, Y � 0, i = 0, . . . , 2n},

and use F (Y ) = − ln detY as a barrier function for the extended

feasible set. However, in this case we significantly increase the number of

variables. Moreover, we need O(n3) operations for computing the value

of the barrier F (Y ) and its gradient. On the other hand, in the dual space

the cost of all necessary computations is very low (O(n ln2 n) for the

function value and O(n2 ln2 n) for solution of the Newton system, see

Genin et al. [2003]). On top of these advantages, for non-degenerate dual

problems, now we have a locally quadratically convergent path-following

scheme.
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9 CONCLUSION

• Negative curvature seems to be a natural property of self-concordant

barriers.

• Is it possible to construct a self-concordant barrier with negative

curvature for any regular cone? However, we have already seen that

for nonsymmetric cones this property is not dual-invariant.

• Do there exist self-concordant barrier functions which have small

recession coefficients for arbitrary regular cone?
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9 CONCLUSION

Strictly speaking we have,

LP ⊂ SOCP ⊂ SDP ⊂ SymCP ⊂ HomCP ⊂ HypCP ⊂ CP.

However, in some sense,

LP ⊂ SOCP ⊆ SDP = SymCP = HomCP ⊆ HypCP ⊂ CP.

Yet in an another sense,

LP = SOCP ⊆ SDP = SymCP = HomCP ⊆ HypCP ⊆ CP.

See, Ben-Tal and Nemirovski, Chua, Faybusovich, Nesterov and

Nemirovski, Vinnikov, Helton and Vinnikov, Lewis, Parillo and Ramana,

Gurvits.
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