## Recent work in Numerical Algebraic Geometry

Andrew Sommese University of Notre Dame

www.nd.edu/~sommese

## Numer. Alg. Geometry Collaborators

- Daniel Bates* (CSU)
- Jonathan Hauenstein* (Fields/Texas A\&M)
- Chris Peterson (CSU)
- Charles Wampler* (GM R \& D)

*Bertini Team

## Biological Modeling Collaborators

- Wenrui Hao (Notre Dame)
- Jonathan Hauenstein (Fields/Texas A\&M)
- Bei Hu (Notre Dame)
- Yuan Liu (Notre Dame)
- Timothy McCoy (Notre Dame)
- Yong-Tao Zhang (Notre Dame)


## Overview

- Numerical Algebraic Geometry
- Adaptive Multiprecision
- Local Dimension Test
- Regeneration
- Bertini
- Zebra Fish
- Tumor Growth


## Numerical Algebraic Geometry

- Goal: To numerically manipulate algebraic sets
- Technical Challenge: To combine high performance numerics with algebraic geometry

> Robotics/Mechanism Theory


- Applications:
- Robotics and Mechanism Theory
- Chemical Reactions including combustion
- Computation of algebraic-geometric invariants
- Solution of discretizations of nonlinear differential equations

$\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{O}$
$\mathrm{H}_{2} \rightleftharpoons 2 \mathrm{H}$
$\mathrm{N}_{2} \rightleftharpoons 2 \mathrm{~N}$
$\mathrm{CO}_{2} \rightleftharpoons \mathrm{O}+\mathrm{CO}$
$\mathrm{OH} \rightleftharpoons \mathrm{O}+\mathrm{H}$
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{O}+2 \mathrm{H}$
$\mathrm{NO} \rightleftharpoons \mathrm{O}+\mathrm{N}$

$$
\begin{aligned}
& k_{1} X_{O_{2}}=X_{O}^{2} \\
& k_{2} X_{H_{2}}=X_{H}^{2} \\
& k_{3} X_{N_{2}}=X_{N}^{2} \\
& k_{4} X_{C O_{2}}=X_{O} X_{C O} \\
& k_{5} X_{O H}=X_{O} X_{H} \\
& k_{6} X_{H_{2} O}=X_{O} X_{H}^{2} \\
& k_{7} X_{N O}=X_{O} X_{N} .
\end{aligned}
$$

There are four conservation equations:
graphics on right from Sommese-Wampler Book

Randomization, Relaxation, \& Complexity BIRS, March 4, 2010

$$
\begin{aligned}
& T_{\mathrm{H}}=X_{\mathrm{H}}+2 X_{\mathrm{H}_{2}}+X_{\mathrm{OH}}+2 X_{\mathrm{H}_{2} \mathrm{O}} \\
& T_{C}=X_{\mathrm{CO}}+X_{\mathrm{CO}}^{2} \\
& T_{O}=X_{\mathrm{O}}+X_{\mathrm{CO}}+2 X_{\mathrm{O}_{2}}+2 X_{\mathrm{CO}_{2}}+X_{\mathrm{OH}}+X_{\mathrm{H}_{2} \mathrm{O}}+X_{N O} \\
& T_{N}=X_{N}+2 X_{N_{2}}+X_{N \mathrm{O}}
\end{aligned}
$$

## General References up to end of 2004

- A.J. Sommese and C.W. Wampler, Numerical solution of systems of polynomials arising in engineering and science, (2005), World Scientific Press.
- T.Y. Li, Numerical solution of polynomial systems by homotopy continuation methods, in Handbook of Numerical Analysis, Volume XI, 209-304, NorthHolland, 2003.


## Three Recent Articles

- D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Adaptive multiprecision path tracking, SIAM Journal on Numerical Analysis 46 (2008) 722-746.
- D.J. Bates, J.D. Hauenstein, C. Peterson, and A.J. Sommese, A numerical local dimension test for points on the solution set of a system of polynomial equations, SIAM Journal on Numerical Analysis, 47 (2009), 3608-3623.
- J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Regeneration homotopies for solving systems of polynomials, to appear Math. Of Computation.


## Adaptive Multiprecision

## Is Costly!

| double $(52$ bits) | 64 bits | 96 bits | 128 bits | 256 bits | 512 bits | 1024 bits |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.447 | 32.616 | 35.456 | 35.829 | 50.330 | 73.009 | 124.401 |

## GMP is convenient, but because of its relative

 machine independence it takes almost no advantage of the built in hardware floating point
## Adaptive multiprecision

|  | $96-$ bit | AMP | AMP2 |
| :---: | :---: | :---: | :---: |
| time (sec) | 196.143 | 47.393 | 39.854 |
| paths $/ \mathrm{sec}$ | 1.305 | 5.402 | 6.423 |

Average time, in seconds, needed to solve the Inverse Kinematic Problem of General 6R Serial Robot using Bertini with tracking tolerance of $10^{-6}$ and
final tolerance of $10^{-12}$
2.4 GHz , Opteron 250 processor

Six revolute serial link robot


## Adaptive multiprecision

Near-singular conditions actually arise.

Out of 143,360 paths (for the 9-point problem):

1184 paths ( $0.826 \%$ ) used higher precision and then dropped back to double precision before starting the endgame

680 paths ( $0.474 \%$ ) used at least 96-bit precision and then dropped back to double precision before starting the endgame

The Four-Bar Linkage


## Continuation's Core Computation

- Given a system $\mathrm{f}(\mathrm{x})=0$ of N polynomials in N unknowns, continuation computes a finite set $S$ of solutions such that:
- any isolated root of $f(x)=0$ is contained in $S$;
- any isolated root "occurs" a number of times equal to its multiplicity as a solution of $f(x)=0$;
- $S$ is often larger than the set of isolated solutions.


## Local Dimension Test

- The essential case: check if p is isolated
- Homotopy continuation yields a number which bounds the multiplicity if the point was isolated.
- If not isolated, the space of truncated Taylor series around $p$ of functions on the solution space is strictly increasing in dimension
- The Macaulay matrix (as presented by Dayton-Zeng) computes this dimension


## Implementation Considerations

- Computation of the rank of the Macaulay matrix requires
- Different levels of precision
- Reliable multiple precision endgame to compute point $p$ to needed accuracy


## Some Comparisons Using Bertini

|  | is_isolated |  | membership test |  |
| :---: | :---: | :---: | :---: | :---: |
| $m$ | slicing | cascade | slicing | cascade |
| 3 | 0.12 | 0.15 | 0.12 | 0.17 |
| 4 | 0.71 | 1.12 | 1.15 | 1.32 |
| 5 | 4.96 | 7.30 | 11.86 | 10.68 |
| 6 | 29.26 | 71.51 | 149.59 | 92.28 |
| 7 | 183.14 | 288.70 | 2036.73 | 854.33 |
| 8 | 1157.74 | 1714.35 | 17362.71 | 8720.14 |
| 9 | 7296.78 | 9533.50 | 219509.84 | 83060.43 |

Comparison for computing a numerical irreducible decomposition for $G_{m}$, in seconds

## $\mathbf{2 x m}$ adjacent minors of $\mathbf{3 x m}$ matrix

## Parallel Version (64 cores)

- 8 dual quad-core Xeon 5410s (2.33 GH)

|  | is_isolated |  | membership test |  |
| :---: | :---: | :---: | :---: | :---: |
| $m$ | slicing | cascade | slicing | cascade |
| 7 | 15.83 | 16.36 | 82.59 | 30.03 |
| 8 | 35.87 | 49.88 | 350.96 | 168.46 |
| 9 | 138.91 | 213.23 | 3320.04 | 1399.43 |

## Equation-by-Equation Methods

- Potential to solve systems with relatively few solutions that are completely outside of the beyond the pale of standard continuation methods
- Intersection Method by Sommese, Verschelde, and Wampler
- Regeneration Method by Hauenstein, Sommese, and Wampler


## Basic Idea

It is a natural and ancient approach to work equation by equation.

First Solve $f_{1}(x)=0$;
then solve $\left[\begin{array}{c}f_{1}(z) \\ f_{2}(z)\end{array}\right]=0 ;$
then solve $\left[\begin{array}{l}f_{1}(z) \\ f_{2}(z) \\ f_{3}(z)\end{array}\right]=0 ; \ldots$ and so on.

Both methods generate a witness set for $f_{l}, \ldots, f_{k+1}$

$$
\text { Regeneration } \longrightarrow H(z, t)=\left[\begin{array}{c}
f_{1}(z) \\
\vdots \\
f_{k}(z) \\
(1-t) f_{k+1}(z)+\gamma t \Pi_{i=1}^{\operatorname{deg} f_{k+1}} L_{k+1, i}(z)
\end{array}\right]
$$

$H(w, t)=\left[\begin{array}{c}f_{1} \circ \pi_{1} \\ \vdots \\ f_{k} \circ \pi_{1} \\ f_{k+1} \circ \pi_{2}\end{array}\right]((1-t) \Psi(w)+\gamma t \Phi(w)) \longleftarrow$ Intersection


## Hardware

- Continuation is computationally intensive. On average:
- in 1985: 3 minutes/path on largest mainframes.


## Hardware

- Continuation is computationally intensive. On average:
- in 1985: 3 minutes/path on largest mainframes.
- in 1991: over 8 seconds/path on an IBM 3081; 2.5 seconds/path on a top-of-the-line IBM 3090.


## Hardware

- Continuation is computationally intensive.

On average:

- in 1985: 3 minutes/path on largest mainframes.
- in 1991: over 8 seconds/path on an IBM 3081; 2.5 seconds/path on a top-of-the-line IBM 3090.
- 2008: 10+ paths a second on an single processor desktop CPU; 1000's of paths/second on moderately sized clusters.


## Bertini

- Developed by Daniel Bates, Jonathan Hauenstein, Charles Wampler, and myself
- Binaries for Linux (including clusters and multiple core workstations), Macs, Windows are freely available at


## www.nd.edu/~sommese/bertini

## Bertini

- Bertini is designed to
- Be efficient and robust, e.g., straightline evaluation, numerics with careful error control
- With data structures reflecting the underlying geometry
- Take advantage of parallel hardware
- To dynamically adjust the precision to achieve a solution with a prespecified error.


## Major Ingredients in Bertini

- Adaptive Multiprecision
- Straightline evaluation
- Special Homotopies
- Genericity
- Endgames \& ODE Methods
- Intersections
- Deflation
- Multiplicity \& Local Dimension Testing
- Regeneration


## Solving Differential Equations

- E.L. Allgower, D.J. Bates, A.J. Sommese, and C.W. Wampler, Solution of Polynomial systems derived from differential equations, Computing, 76 (2006), 1-10.
- Direct solution and refinement.


## Predator-prey system (Hauenstein, Hu, \& S.)

Let $n \in \mathbb{N}$. For $1 \leq i \leq n$ and $1 \leq j \leq 4$, define

$$
\begin{aligned}
f_{i j}= & \frac{1}{25}\left(u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right) \\
& \quad+\frac{1}{(n+1)^{2}}\left(u_{i, j+1}-2 u_{i, j}+u_{i, j-1}\right)+\frac{1}{25(n+1)^{2}} u_{i, j}\left(1-v_{i, j}\right) \\
g_{i j}= & \frac{1}{25}\left(v_{i+1, j}-2 v_{i, j}+v_{i-1, j}\right) \\
& \quad+\frac{1}{(n+1)^{2}}\left(v_{i, j+1}-2 v_{i, j}+v_{i, j-1}\right)+\frac{1}{25(n+1)^{2}} v_{i, j}\left(u_{i, j}-1\right)
\end{aligned}
$$

with $u_{0, j}=v_{0, j}=u_{n+1, j}=v_{n+1, j}=u_{i, 0}=v_{i, 0}=u_{i, 5}=v_{i, 5}=0$.

- 8 n quadratics with 8 n variables
- Total degree $2^{8 n}$
- Actually has $2^{4 n}$ nonsingular isolated solutions

|  | total degree | 2-homogeneous | polyhedral | regeneration |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| n | paths | paths | paths | paths | slices moved |
| 1 | 256 | 70 | 16 | 60 | 42 |
| 2 | 65,536 | 12,870 | 256 | 1020 | 762 |
| 3 | $16,777,216$ | $2,704,156$ | 4096 | 16,380 | 12,282 |
| 4 | $4,294,967,296$ | $601,080,390$ | 65,536 | 262,140 | 196,602 |
| 5 | $1,099,511,627,776$ | $137,846,528,820$ | $1,048,576$ | $4,194,300$ | $3,145,722$ |


|  | PHC | HOM4PS-2.0 | Bertini |  |
| :---: | :---: | :---: | :---: | :---: |
| n | polyhedral | polyhedral | regeneration | parallel regeneration |
| 1 | 0.6 s | 0.1 s | 0.3 s |  |
| 2 | 4 m 57 s | 7.3 s | 15.6 s |  |
| 3 | 18 d 10 h 18 m 56 s | 9 m 32 s | 9 m 43 s |  |
| 4 | - | 3 d 8 h 28 m 30 s | 5 h 22 m 15 s | 7 m 32 s |
| 5 | - | - | 6 d 16 h 27 m 3 s | 3 h 41 m 24 s |

## $\mathrm{n}=5$ (40 equations \& 40 variables): < 80 min . with 200 cores ( 25 dual Xeon 5410 nodes)

## Zebra Fish

- Why do the stripes on a zebra fish or the spots on a tiger form the patterns they do?
- Alan Turing (1952), The chemical basis of morphogenesis: nonlinear diffusion equations.
- A good reference for this story is Mathematical Biology by J.D. Murray
- Based on the model developed in
- Y.-T. Zhang, A. Lander, and Q. Nie, Computational analysis of BMP gradients in dorsal-ventral patterning of the zebrafish embryo, Journal of Theoretical Biology, 248(4) : 579 - 589, 2007.
- Our work
- W. Hao, Y. Liu, J. Hauenstein, B. Hu, A. Sommese, and Y.-T. Zhang, Multiple stable steady states of a reactiondiffusion model on zebrafish dorsal-ventral patterning, to appear Discrete and Continuous Dynamical Systems Series $S$.


## The differential equation system

$$
\begin{aligned}
& \frac{\partial[L]}{\partial t}=D_{L} \frac{\partial^{2}[L]}{\partial x^{2}}-k_{o n}[L]\left(R_{0}-[L R]\right)+k_{o f f}[L R]-j_{o n}[L][C]+\left(j_{o f f}+\tau\right)[L C]+V_{L} ; \\
& \frac{\partial[L R]}{\partial t}=k_{\text {on }}[L]\left(R_{0}-[L R]\right)-\left(k_{\text {off }}+k_{\text {deg }}\right)[L R] ; \\
& \frac{\partial[L C]}{\partial t}=D_{L S} \frac{\partial^{2}[L C]}{\partial x^{2}}+j_{\text {on }}[L][C]-\left(j_{\text {off }}+\tau\right)[L C] ; \\
& \frac{\partial[C]}{\partial t}=D_{C} \frac{\partial^{2}[C]}{\partial x^{2}}-j_{o n}[L][C]+j_{o f f}[L C]+V_{C}, \\
& V_{C}=V_{C \text { min }}+\frac{V_{C \text { max }}-V_{C \text { min }}}{1+\gamma_{C}[L R]}+ \begin{cases}V_{\text {Corg }} e^{-a t}, & \text { if } x \geq \frac{7}{8} x_{\text {max }} ; \\
0, & \text { otherwise } .\end{cases} \\
& V_{L}=V_{L \text { min }}+\frac{V_{L \text { max }}-V_{L \text { min }}}{1+\gamma_{L}[L R]^{-1}}+V_{L \text { mat }} e^{-b t} .
\end{aligned}
$$

## Solutions









## Some timings

- Total degree $16^{N-1}($ which $=4,294,967,296$

When $\mathrm{N}=9$ ).

| N | lin. prod. bound | solutions over $\mathbb{C}$ | solutions over $\mathbb{R}$ | computing nodes | time |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 25 | 16 | 6 | serial | 2.7 s |
| 4 | 125 | 98 | 16 | serial | 14.4 s |
| 5 | 625 | 544 | 28 | 1 | 21.1 s |
| 6 | 3,125 | 2,882 | 184 | 5 | 51.6 s |
| 7 | 15,625 | 14,896 | 930 | 25 | 2 m 43 s |
| 8 | 78,125 | 75,938 | 3,720 | 25 | 35 m 2 s |
| 9 | 390,625 | 384,064 | 17,974 | 25 | 11 h 3 m |

Table 2.1: Summary of solving the discretized system for $3 \leq N \leq 9$

## Tumor growth

$$
\begin{aligned}
\sigma_{t}-\Delta \sigma & =-\sigma & & \text { in } \Omega(t) \\
-\Delta p & =\mu(\sigma-\widetilde{\sigma}) & & \text { in } \Omega(t)
\end{aligned}
$$

$$
\sigma=1
$$

$$
p=\kappa
$$

$$
\frac{\partial p}{\partial n}=-V_{n}
$$

on $\partial \Omega(t)$ on $\partial \Omega(t)$ on $\partial \Omega(t)$

\section*{in $\Omega(t)$

## in $\Omega(t)$ in $\Omega(t)$

 in $\Omega(t)$}
## Assumptions

- In vitro
$\Omega(t)$ denotes the tumor region, $\sigma$ denote the concentration of nutrients, $p$ denote the pressure, $\widetilde{\sigma}$ denote the concentration of nutrients needed for sustainability, and $\mu$ denote the aggressiveness of the tumor. Let $\kappa$ denote the mean curvature, $n$ denote the outward normal direction, and $V_{n}$ denote the velocity of $\partial \Omega(t)$ in the outward normal direction $n$.


## Governing equations:

- Diffusion of the nutrients:

$$
\sigma_{t}-\Delta \sigma+\sigma=0 \quad \text { in } \Omega(t) .
$$

- Conservation of mass: $\operatorname{div} \vec{V}=S, S=$ proliferation rate. Assuming linear dependence on $\sigma: S=\mu(\sigma-\tilde{\sigma})$, (here $\tilde{\sigma}>0$ is the death rate)
- Porous medium in tumor region: Darcy's law: $\vec{V}=-\nabla p$. Thus

$$
\Delta p=-\mu(\sigma-\tilde{\sigma}) \quad \text { in } \Omega(t) .
$$

- Continuity: $V_{n}=-\frac{\partial p}{\partial n}$ on $\partial \Omega(t)$ where $V_{n}=$ velocity in the normal $n$ direction.


## Radial solution is quite cheap: < 1 sec . (one core)



## Moving Grid

| 7 |
| :--- | :--- |

## $3^{\text {rd }}$ Order Stencil

 BIRS, March 4, 2010

## Critical Points 3 minutes with 200 cores



## Far Along the Branch



Randomizat
BIRS, March

## Further work

- Stability
- More realistic models
- Three Dimensional Models
- Necrotic Core Models (disconnected free boundaries)
- Model presented in Friedman \& Hu, Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39, 174-194.


## Stationary Problem

$$
\begin{aligned}
& \sigma_{t}-\Delta \sigma+\sigma=0, \quad x \in \Omega(t), t>0, \\
& \sigma=1, \quad x \in \Omega(t), \quad t>0, \\
& -\Delta \vec{v}+\nabla p=\frac{\mu}{3} \nabla(\sigma-\tilde{\sigma}), \quad x \in \Omega(t), t>0, \\
& \operatorname{div} \vec{v}=\mu(\sigma-\tilde{\sigma}), \quad x \in \Omega(t), t>0 \quad(\tilde{\sigma}<1), \\
& T(\vec{v}, p) \vec{n}=\left(-\gamma \kappa+\frac{2}{3} \mu(1-\tilde{\sigma})\right) \vec{n}, \quad x \in \Gamma(t), t>0, \\
& T(\vec{v}, p)=(\nabla \vec{v})^{T}+\nabla \vec{v}-p I, \quad I=\left(\delta_{i j}\right)_{i, j=1}^{3}, \\
& V_{n}=\vec{v} \cdot \vec{n} \quad \text { on } \Gamma(t),
\end{aligned}
$$

subject to the constraints

$$
\int_{\Omega(t)} \vec{v} d x=0, \quad \int_{\Omega(t)} \vec{v} \times \vec{x} d x=0 .
$$

Governing equations:

- Diffusion of the nutrients: $\sigma_{t}-\Delta \sigma+\sigma=0$ in $\Omega(t)$.
- Conservation of mass: $\operatorname{div} \vec{V}=S, S=$ proliferation rate. Assume linear dependence on $\sigma: S=\mu(\sigma-\tilde{\sigma})$, (here $\tilde{\sigma}>0$ is the death rate)
- Instead of Darcy's law, Stoke's equation is used: $-\nu \Delta \vec{\nabla}+\nabla p-\frac{1}{3} \nu \nabla \operatorname{div} \vec{\nabla}=0 \quad$ in $\Omega(t)$.
- Introducing the stress tensor $Q=\nu\left(\nabla \vec{v}+(\nabla \vec{v})^{T}\right)-\left(p+\frac{2}{3} \nu \operatorname{div} \vec{v}\right) /$ with components $Q_{i j}=\nu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)-\delta_{i j}\left(p+\frac{2 \nu}{3} \operatorname{div} \vec{v}\right)$, we then have

$$
Q \vec{n}=-\gamma \kappa \vec{n} \quad \text { on } \Gamma(t), \quad t>0,
$$

here the cell-to-cell adhesion equal to a constant $\gamma, \kappa$ is the mean curvature.

- Continuity: $V_{n}=\vec{v} \cdot \vec{n}$ on $\partial \Omega(t)$ where $V_{n}=$ velocity in the normal $n$ direction.

Since $\vec{v}$ is determined up to $\vec{b} \times \vec{x}$, some additional constraints are needed.


Randomization, Relaxation, \& Complexity BIRS, March 4, 2010

$$
\begin{aligned}
& -\theta \mid \\
& 0|\theta| \\
& 0|0|=
\end{aligned}
$$

## Algebraic Geometry

- Infinite Dimensional Algebraic Sets = Solutions of Differential Equations?
- Coupled Towers of Finite Dimensional Algebraic Sets?


## Summary

- Basic but difficult questions about Scientific Models lead to algebraic sets defined by highly structured, sparse systems of polynomials that are extremely large by classical standards.
- Numerical Algebraic Geometry can make contributions when coupled with moderate amounts of computer power and appropriate numerical software.

