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Numerical Algebraic Geometry

 Goal:  To numerically manipulate algebraic sets

 Technical Challenge:  To combine high performance 
numerics with algebraic geometry

 Applications:

 Robotics and Mechanism Theory

 Chemical Reactions including combustion

 Computation of algebraic-geometric invariants

 Solution of discretizations of nonlinear differential 
equations

Robotics/Mechanism Theory

Combustion

graphics on right from Sommese-Wampler Book
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General References up to end of 2004

 A.J. Sommese and C.W. Wampler, 
Numerical solution of systems of 
polynomials arising in engineering and 
science, (2005), World Scientific Press.

 T.Y. Li, Numerical solution of polynomial 
systems by homotopy continuation          
methods, in Handbook of Numerical 
Analysis, Volume XI, 209-304,  North-
Holland, 2003.
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Three Recent Articles

 D.J. Bates, J.D. Hauenstein, A.J. Sommese,  and C.W. 

Wampler, Adaptive multiprecision path tracking, SIAM 

Journal on Numerical Analysis 46 (2008) 722-746.

 D.J. Bates, J.D. Hauenstein, C. Peterson, and A.J. Sommese, 

A numerical local dimension test for points on the solution 

set of a system of polynomial equations, SIAM Journal on 

Numerical Analysis, 47 (2009), 3608-3623.

 J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, 

Regeneration homotopies for solving systems of 

polynomials, to appear Math. Of Computation.



Randomization, Relaxation, & Complexity

BIRS, March 4, 2010 
8

Adaptive Multiprecision

double (52 bits) 64 bits 96 bits 128 bits 256 bits 512 bits 1024 bits

2.447 32.616 35.456 35.829 50.330 73.009 124.401

Table 1: A verage t ime, in seconds using Ber t ini, of 10 runs of t he

Chebyshev polynomial of degree 10 wit h ¿ = 8; for di®erent levels

of ¯xed precision.
Fr om B at es, H au en st ei n , Som m ese, W am p l er : A d ap t i v e m u l t i p r ec i si on p at h t r ack i n g .

Is Costly!

GMP is convenient, but because of its relative 
machine independence it takes almost no advantage 
of the built in hardware floating point
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Adaptive multiprecision

Six revolute serial 
link robot

Average time, in seconds, 
needed to solve the Inverse 

Kinematic Problem of General 
6R Serial Robot using Bertini 
with tracking tolerance of 10-6

and

final tolerance of 10-12

2.4 GHz, Opteron 250 processor
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Adaptive multiprecision

Near-singular conditions actually arise.

Out of 143,360 paths (for the 9-point problem):

• 1184 paths (0.826%) used higher precision and

 then dropped back to double precision before

 starting the endgame

• 680 paths (0.474%) used at least 96-bit 

 precision and then dropped back to double

 precision before starting the endgame
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Continuation’s Core Computation  

 Given a system f(x) = 0 of N polynomials in 

N unknowns, continuation computes a finite 

set S of solutions such that:

 any isolated root of f(x) = 0 is contained in S; 

 any isolated root “occurs” a number of times 

equal to its multiplicity as a solution of f(x) = 0;

 S is often larger than the set of isolated 

solutions.
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Local Dimension Test

 The essential case: check if p is isolated

 Homotopy continuation yields a number 

which bounds the multiplicity if the point 

was isolated.

 If not isolated, the space of truncated Taylor 

series around p of functions on the solution 

space is strictly increasing in dimension

 The Macaulay matrix (as presented by 

Dayton-Zeng) computes this dimension
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Implementation Considerations

 Computation of the rank of the 

Macaulay matrix requires

 Different levels of precision

 Reliable multiple precision endgame to 

compute point p to needed accuracy
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Some Comparisons Using Bertini

2xm adjacent minors of 3xm matrix
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Parallel Version (64 cores)

 8 dual quad-core Xeon 5410s (2.33 GH)
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Equation-by-Equation Methods

 Potential to solve systems with relatively few 

solutions that are completely outside of the 

beyond the pale of standard continuation 

methods  

 Intersection Method by Sommese, Verschelde, 

and Wampler

 Regeneration Method by Hauenstein, Sommese, 

and Wampler
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Basic Idea
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Both methods generate a witness set for f1,..,fk+1

Regeneration 

Intersection
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Hardware

 Continuation is computationally intensive.     

On average:

 in 1985: 3 minutes/path on largest mainframes.
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Hardware

 Continuation is computationally intensive.     

On average:

 in 1985: 3 minutes/path on largest mainframes.

 in 1991: over 8 seconds/path on an IBM 3081; 

2.5 seconds/path on a top-of-the-line IBM 3090.
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Hardware

 Continuation is computationally intensive.     

On average:

 in 1985: 3 minutes/path on largest mainframes.

 in 1991: over 8 seconds/path on an IBM 3081; 

2.5 seconds/path on a top-of-the-line IBM 3090.

 2008: 10+ paths a second on an single processor 

desktop CPU; 1000’s of paths/second on 

moderately sized clusters.
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Bertini

 Developed by Daniel Bates, Jonathan 

Hauenstein, Charles Wampler, and myself

 Binaries for Linux (including clusters and 

multiple core workstations), Macs, 

Windows are freely available at

www.nd.edu/~sommese/bertini
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Bertini

 Bertini is designed to 

 Be efficient and robust, e.g., straightline 

evaluation, numerics with careful error 

control

 With data structures reflecting the underlying 

geometry

 Take advantage of parallel hardware

 To dynamically adjust the precision to 

achieve a solution with a prespecified error.  
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Major Ingredients in Bertini

 Adaptive Multiprecision

 Straightline evaluation

 Special Homotopies 

 Genericity

 Endgames & ODE Methods

 Intersections

 Deflation

 Multiplicity & Local Dimension Testing

 Regeneration
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Solving Differential Equations

 E.L. Allgower, D.J. Bates, A.J. Sommese, 

and C.W. Wampler, Solution of Polynomial 

systems derived from differential equations, 

Computing, 76 (2006), 1-10.

 Direct solution and refinement.
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Predator-prey system (Hauenstein, Hu, & S.)
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 8n quadratics with 8n variables

 Total degree 

 Actually has        nonsingular isolated solutions 

n82
n42
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n = 5 (40 equations & 40 variables): < 80 min. 

with 200 cores (25 dual Xeon 5410 nodes)
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Zebra Fish

 Why do the stripes on a zebra fish or the 

spots on a tiger form the patterns they do?

 Alan Turing (1952), The chemical basis of 

morphogenesis: nonlinear diffusion equations.

 A good reference for this story is 

Mathematical Biology by J.D. Murray
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 Based on the model developed in

 Y.–T. Zhang, A. Lander, and Q. Nie, Computational 

analysis of BMP gradients in dorsal–ventral patterning of 

the zebrafish embryo, Journal of Theoretical Biology, 

248(4) : 579 – 589, 2007.

 Our work

 W. Hao, Y. Liu, J. Hauenstein, B. Hu, A. Sommese, and 

Y.-T. Zhang, Multiple stable steady states of a reaction-

diffusion model on zebrafish dorsal-ventral patterning, to 

appear Discrete and Continuous Dynamical Systems -

Series S.
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The differential equation system
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Solutions
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Some timings

 Total degree           (which = 4,294,967,296

When N = 9).

116 N
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Tumor growth
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Assumptions

 In vitro
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Radial solution is quite cheap: < 1 sec. (one core)
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Moving Grid
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3rd Order Stencil
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Critical Points  3 minutes with 200 cores
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Far Along the Branch
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Further work

 Stability

 More realistic models

 Three Dimensional Models

 Necrotic Core Models (disconnected free 

boundaries)

 Model presented in Friedman & Hu, Bifurcation 

for a free boundary problem modeling tumor 

growth by Stokes equation, SIAM J. Math. 

Anal., 39, 174-194.
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Stationary Problem
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Algebraic Geometry

 Infinite Dimensional Algebraic Sets  = 

Solutions of Differential Equations?

 Coupled Towers of Finite Dimensional 

Algebraic Sets?



Randomization, Relaxation, & Complexity

BIRS, March 4, 2010 
49

Summary

 Basic but difficult questions about Scientific 

Models lead to algebraic sets defined by highly 

structured, sparse systems of polynomials that 

are extremely large by classical standards.

 Numerical Algebraic Geometry can make 

contributions when coupled with moderate 

amounts of computer power and appropriate 

numerical software.


