On Certain Structured Fewnomials

Korben Rusek, Jeanette Shakalli, and Frank Sottile

March 4, 2010

Khovanskii's Bound

■ Khovanskii's Bound: A system of n polynomials in n variables having a total of $n+k+1$ distinct monomials has at most $2\binom{n+k}{2}(n+1)^{n+k}$ positive solutions.

The Original Bound

■ Bihan and Sottile's Bound: A system of n polynomials in n variables having a total of $n+k+1$ distinct monomials has at most $\frac{e^{2}+3}{4} 2\binom{k}{2} n^{k}$ positive solutions.

The Original Bound

■ Bihan and Sottile's Bound: A system of n polynomials in n variables having a total of $n+k+1$ distinct monomials has at most $\frac{e^{2}+3}{4} 2^{\binom{k}{2}} n^{k}$ positive solutions.
■ Method: reduce to a system of k equations in k variables having the form:

$$
\sum_{i=1}^{n+k} \beta_{i j} \log \left(p_{i}\right), j=1, \ldots, k,
$$

where $\operatorname{deg}\left(p_{i}\right)=1$ and $\beta_{i j} \in \mathbb{R}$.

Structured Fewnomial

Let $P \subset \mathbb{R}^{\ell}$ be a lattice polytope. A fewnomial with structure P is a polynomial in n variables whose set of exponent vectors $\mathcal{A} \subset \mathbb{Z}^{n}$ decomposes as

$$
\begin{equation*}
\mathcal{A}=\mathcal{W} \bigcup \psi\left(P \cap \mathbb{Z}^{\ell}\right) \tag{1}
\end{equation*}
$$

where \mathcal{W} consists of n linearly independent vectors and $\psi: \mathbb{Z}^{\ell} \rightarrow \mathbb{Z}^{n}$ is a linear map. For example:

Main Theorem

Theorem

A fewnomial with support \mathcal{A} as defined earlier has fewer than

$$
\begin{equation*}
\frac{e^{2}+3}{4} 2\binom{\ell}{2} n^{\ell} \cdot \ell!\cdot \operatorname{Volume}(P) \tag{2}
\end{equation*}
$$

Main Theorem

Theorem

A fewnomial with support \mathcal{A} as defined earlier has fewer than

$$
\begin{equation*}
\frac{e^{2}+3}{4} 2\binom{\ell}{2} n^{\ell} \cdot \ell!\cdot \operatorname{Volume}(P) \tag{2}
\end{equation*}
$$

or

$$
\frac{e^{2}+3}{4} 2\binom{\ell}{2}_{n}^{\ell} \cdot D^{2 \ell}
$$

Main Theorem

Theorem

A fewnomial with support \mathcal{A} as defined earlier has fewer than

$$
\begin{equation*}
\frac{e^{2}+3}{4} 2\binom{\ell}{2} n^{\ell} \cdot \ell!\cdot \operatorname{Volume}(P) \tag{2}
\end{equation*}
$$

or

$$
\frac{e^{2}+3}{4} 2\binom{\ell}{2}_{n}^{\ell} \cdot D^{2 \ell}
$$

To compare this to the original bound, observe that $k+1=\#\left(P \cap \mathbb{Z}^{\ell}\right)$, which has order Volume (P), while ℓ is the dimension of the affine span of P. So $\ell \leq k$.

Example

$$
\begin{aligned}
& 0=\frac{x_{1}{ }^{2564} x_{4}{ }^{3702}}{x_{2}{ }^{1096} x_{3}{ }^{3136}}-x_{2}^{4437}+\frac{23}{50}-\frac{9}{5} x_{1}{ }^{4437}+x_{1}{ }^{8874} \\
& 0=\frac{x_{2}{ }^{78} x_{4}{ }^{2538}}{x_{1}^{3324} x_{3}{ }^{1299}}-\frac{67}{50}-\frac{9}{5} x_{1}{ }^{4437}+x_{1}{ }^{8874}+x_{2}{ }^{4437} \\
& 0=x_{4}{ }^{4437}-\frac{11}{20}+x_{2}{ }^{8874}-\frac{7}{5} x_{2}{ }^{4437}-x_{1}{ }^{4437} x_{2}{ }^{4437}+\frac{9}{10} x_{1}{ }^{4437} \\
& 0=x_{3}^{4437}-\frac{6}{5}+x_{1}^{8874}+\frac{1}{10} x_{1}^{4437}-x_{1}^{4437} x_{2}^{4437}+\frac{2}{5} x_{2}^{4437} .
\end{aligned}
$$

Notice that $n=4$.

■ List of monomials:

$$
\begin{array}{r}
1, x_{4}^{4437}, x_{1}^{4437}, x_{1}^{8874}, x_{2}^{4437}, x_{2}^{8874}, x_{3}^{4437}, \\
x_{1}^{4437} x_{2}^{4437}, \frac{x_{2}^{78} x_{4}^{2538}}{x_{1}^{3324} x_{3}{ }^{1299}}, \frac{x_{1}^{2564} x_{4}^{3702}}{x_{2}^{1096} x_{3}{ }^{3136}}
\end{array}
$$

■ List of monomials:

$$
\begin{array}{r}
1, x_{4}^{4437}, x_{1}^{4437}, x_{1}^{8874}, x_{2}^{4437}, x_{2}^{8874}, x_{3}^{4437} \\
x_{1}^{4437} x_{2}^{4437}, \frac{x_{2}{ }^{78} x_{4}{ }^{2538}}{x_{1}^{3324} x_{3}{ }^{1299}}, \frac{x_{1}^{2564} x_{4}^{3702}}{x_{2}{ }^{1096} x_{3} 3136}
\end{array}
$$

■ $n+\ell+1=10$ so $\ell=5$.

■ List of monomials:

$$
\begin{array}{r}
1, x_{4}^{4437}, x_{1}^{4437}, x_{1}^{8874}, x_{2}^{4437}, x_{2}^{8874}, x_{3}^{4437} \\
x_{1}^{4437} x_{2}^{4437}, \frac{x_{2}^{78} x_{4}^{2538}}{x_{1}^{3324} x_{3} 1299}, \frac{x_{1}^{2564} x_{4}^{3702}}{x_{2}^{1096} x_{3}^{3136}}
\end{array}
$$

$\square n+\ell+1=10$ so $\ell=5$.
■ Bihan and Sottile's bound ensures that we have no more than 3,145,728 positive roots.

If we row reduce, we get

$$
\begin{aligned}
& p_{1}=\frac{x_{1}{ }^{2564} x_{4}{ }^{3702}}{x_{2}{ }^{1096} x_{3}{ }^{3136}}=x_{2}^{4437}-\frac{23}{50}+\frac{9}{5} x_{1}{ }^{4437}-x_{1}{ }^{8874} \\
& p_{2}=\frac{x_{2}{ }^{78} x_{4}{ }^{2538}}{x_{1}{ }^{3324} x_{3}{ }^{1299}}=\frac{67}{50}+\frac{9}{5} x_{1}^{4437}-x_{1}^{8874}-x_{2}^{4437} \\
& p_{3}=x_{4}{ }^{4437}=\frac{11}{20}-x_{2}^{8874}+\frac{7}{5} x_{2}^{4437}+x_{1}^{4437} x_{2}^{4437}-\frac{9}{10} x_{1}^{4437} \\
& p_{4}=x_{3}{ }^{4437}=\frac{6}{5}+x_{1}^{8874}-\frac{1}{10} x_{1}^{4437}+x_{1}^{4437} x_{2}^{4437}-\frac{2}{5} x_{2}^{4437} \\
& p_{5}=x_{1}^{4437}=: u_{1}, p_{6}=x_{2}^{4437}=: u_{2}, p_{7}=x_{1}^{8874}=: u_{3}, \\
& p_{8}=x_{2}{ }^{8874}=: u_{4}, p_{9}=x_{1}^{4437} x_{2}^{4437}=: u_{5},
\end{aligned}
$$

of course p_{1}, \ldots, p_{9} depend on u_{1}, \ldots, u_{5}.

Making substitutions we get linear equations:

$$
\begin{aligned}
p_{1} & =-\frac{23}{50}+\frac{9}{5} u_{1}+u_{2}-u_{3} \\
p_{2} & =\frac{67}{50}+\frac{9}{5} u_{1}-u_{2}-u_{3} \\
p_{3} & =\frac{11}{20}-\frac{9}{10} u_{1}+\frac{7}{5} u_{2}-u_{4}+u_{5} \\
p_{4} & =\frac{6}{5}-\frac{1}{10} u_{1}-\frac{2}{5} u_{2}+u_{3}+u_{5}, \text { and } \\
p_{4+j} & =u_{j}, \text { for } j=1, \ldots, 5 .
\end{aligned}
$$

Making substitutions we get linear equations:

$$
\begin{aligned}
p_{1} & =-\frac{23}{50}+\frac{9}{5} u_{1}+u_{2}-u_{3} \\
p_{2} & =\frac{67}{50}+\frac{9}{5} u_{1}-u_{2}-u_{3} \\
p_{3} & =\frac{11}{20}-\frac{9}{10} u_{1}+\frac{7}{5} u_{2}-u_{4}+u_{5} \\
p_{4} & =\frac{6}{5}-\frac{1}{10} u_{1}-\frac{2}{5} u_{2}+u_{3}+u_{5}, \text { and } \\
p_{4+j} & =u_{j}, \text { for } j=1, \ldots, 5 .
\end{aligned}
$$

Then Bihan and Sotille find a bound based on the associated Gale Dual System, which will be defined later.

For our generalization, we notice that the variables u_{3}, u_{4}, and u_{5} can be defined in terms of u_{1} and u_{2}. That is, we have

For our generalization, we notice that the variables u_{3}, u_{4}, and u_{5} can be defined in terms of u_{1} and u_{2}. That is, we have

$$
\begin{aligned}
& u_{3}=u_{1}^{2} \\
& u_{4}=u_{2}^{2} \\
& u_{5}=u_{1} u_{2}
\end{aligned}
$$

This gives the new system of p_{i} 's as:

$$
\begin{aligned}
& p_{1}=-\frac{23}{50}+\frac{9}{5} u_{1}+u_{2}-u_{1}^{2} \\
& p_{2}=\frac{67}{50}+\frac{9}{5} u_{1}-u_{2}-u_{1}^{2} \\
& p_{3}=\frac{11}{20}-\frac{9}{10} u_{1}+\frac{7}{5} u_{2}-u_{2}^{2}+u_{1} u_{2} \\
& p_{4}=\frac{6}{5}-\frac{1}{10} u_{1}-\frac{2}{5} u_{2}+u_{1}^{2}+u_{1} u_{2} \\
& p_{5}=u_{1} \\
& p_{6}=u_{2}
\end{aligned}
$$

■ Thus our system has structure P, where P has vertices $(0,0)$, $(2,0),(0,2)$.

■ Thus our system has structure P, where P has vertices $(0,0)$, $(2,0),(0,2)$.
■ Thus our bound is $384 \ll 3,145,728$.

Variant of Gale Dual Systems

To define the system, we remember that each p_{i} represented a monomial from the original system. We then represent the monomials as a matrix:

Variant of Gale Dual Systems

To define the system, we remember that each p_{i} represented a monomial from the original system. We then represent the monomials as a matrix:

$$
A:=\left[\begin{array}{cccccc}
2564 & -3324 & 0 & 0 & 0 & 4437 \\
-1096 & 78 & 0 & 0 & 4437 & 0 \\
-3136 & -1299 & 0 & 4437 & 0 & 0 \\
3702 & 2538 & 4437 & 0 & 0 & 0
\end{array}\right]
$$

Variant of Gale Dual Systems

To define the system, we remember that each p_{i} represented a monomial from the original system. We then represent the monomials as a matrix:

$$
A:=\left[\begin{array}{cccccc}
2564 & -3324 & 0 & 0 & 0 & 4437 \\
-1096 & 78 & 0 & 0 & 4437 & 0 \\
-3136 & -1299 & 0 & 4437 & 0 & 0 \\
3702 & 2538 & 4437 & 0 & 0 & 0
\end{array}\right]
$$

We now find the null space of this matrix. This gives us:

Variant of Gale Dual Systems

To define the system, we remember that each p_{i} represented a monomial from the original system. We then represent the monomials as a matrix:

$$
A:=\left[\begin{array}{cccccc}
2564 & -3324 & 0 & 0 & 0 & 4437 \\
-1096 & 78 & 0 & 0 & 4437 & 0 \\
-3136 & -1299 & 0 & 4437 & 0 & 0 \\
3702 & 2538 & 4437 & 0 & 0 & 0
\end{array}\right]
$$

We now find the null space of this matrix. This gives us:

$$
B:=\left[\begin{array}{cccccc}
-\frac{51}{100} & -\frac{17}{50} & \frac{31}{50} & -\frac{23}{50} & -\frac{3}{25} & \frac{1}{25} \\
-\frac{9}{25} & \frac{63}{100} & -\frac{3}{50} & -\frac{7}{100} & -\frac{1}{10} & \frac{17}{25}
\end{array}\right]^{T}
$$

Variant of Gale Dual Systems

$$
\text { Let } A=\left[\alpha_{1}, \ldots, \alpha_{6}\right] \text { and } B=\left[\beta_{1}, \beta_{2}\right] .
$$

Variant of Gale Dual Systems

Let $A=\left[\alpha_{1}, \ldots, \alpha_{6}\right]$ and $B=\left[\beta_{1}, \beta_{2}\right]$. By construction we have:

$$
\sum_{i=1}^{6} \beta_{j, i} \alpha_{i}=0, \text { for } j=1,2
$$

Variant of Gale Dual Systems

Let $A=\left[\alpha_{1}, \ldots, \alpha_{6}\right]$ and $B=\left[\beta_{1}, \beta_{2}\right]$. By construction we have:

$$
\sum_{i=1}^{6} \beta_{j, i} \alpha_{i}=0, \text { for } j=1,2
$$

This gives us:

$$
\prod_{i=1}^{6} x^{\beta_{j, i} \alpha_{i}}=1, \text { for } j=1,2
$$

for $x \in \mathbb{R}_{+}^{4}$.

Variant of Gale Dual Systems

Let $A=\left[\alpha_{1}, \ldots, \alpha_{6}\right]$ and $B=\left[\beta_{1}, \beta_{2}\right]$. By construction we have:

$$
\sum_{i=1}^{6} \beta_{j, i} \alpha_{i}=0, \text { for } j=1,2
$$

This gives us:

$$
\prod_{i=1}^{6} x^{\beta_{j, i} \alpha_{i}}=1, \text { for } j=1,2
$$

for $x \in \mathbb{R}_{+}^{4}$. Replacing $x^{\alpha_{i}}$ with $p_{i}(u)$ we then have:

$$
\prod_{i=1}^{6} p_{i}(u)^{\beta_{j, i}}=1, \text { for } j=1,2
$$

Variant of Gale Dual Systems

Taking logs we have the System

$$
\psi_{j}:=\sum_{i=1}^{6} \beta_{j, i} \log \left(p_{i}(u)\right), \text { for } j=1,2
$$

Variant of Gale Dual Systems

Taking logs we have the System

$$
\psi_{j}:=\sum_{i=1}^{6} \beta_{j, i} \log \left(p_{i}(u)\right), \text { for } j=1,2
$$

Theorem: There is a bijection between the positive solutions to the original system and the solutions to this Gale Dual variant inside the region

$$
\Delta=\left\{y \mid p_{i}(y)>0, \forall i\right\}
$$

which restricts to a bijection between their nondegenerate solutions.

Δ

Figure: Δ is the yellow region

Korben Rusek, Jeanette Shakalli, and Frank Sottile

How it works

We want to find $\left|V\left(\psi_{1}, \psi_{2}\right)\right|$. It is not obvious what this bound should be, but...

How it works

We want to find $\left|V\left(\psi_{1}, \psi_{2}\right)\right|$. It is not obvious what this bound should be, but...
Khovanskii-Rolle Theorem: Let f_{1}, \ldots, f_{k} be smooth functions defined on $\Delta \subset \mathbb{R}^{k}$ which have finitely many common zeroes $V\left(f_{1}, \ldots, f_{k}\right)$ in Δ, where $V\left(f_{1}, \ldots, f_{k-1}\right)$ is a smooth curve C in Δ. Let $\operatorname{ubc}(C)$ denote the number of unbounded components of C in Δ and let

$$
\Gamma=\operatorname{Jac}\left(f_{1}, \ldots, f_{k}\right)=\operatorname{det}\left(\frac{\partial f_{j}}{\partial y_{l}}\right)_{j, l=1, \ldots, k}
$$

be the Jacobian of f_{1}, \ldots, f_{k}. Then

$$
\left|V\left(f_{1}, \ldots, f_{k}\right)\right| \leq \operatorname{ubc}(C)+\left|V\left(f_{1}, \ldots, f_{k-1}, \Gamma\right)\right|
$$

Smooth curves

For $j=1, \ldots, \ell$, define the curve

$$
\begin{equation*}
C_{j}=\left\{y \in \Delta \mid \psi_{1}(y)=\cdots=\psi_{j-1}(y)=\Gamma_{j+1}(y)=\cdots=\Gamma_{\ell}(y)=0\right\} \tag{3}
\end{equation*}
$$

Iterating the Khovanskii-Rolle Theorem, we obtain

$$
\left|V\left(\psi_{1}, \ldots, \psi_{\ell}\right)\right| \leq \operatorname{ubc}\left(C_{\ell}\right)+\cdots+\operatorname{ubc}\left(C_{1}\right)+\left|V\left(\Gamma_{1}, \ldots, \Gamma_{\ell}\right)\right| .
$$

Lemma

Lemma:

■ $J_{\ell-j}:=\Gamma_{\ell-j}(y) \cdot\left(\prod_{i=1}^{n+\ell} p_{i}(y)\right)^{2^{j}}$ is a polynomial of degree 2^{ℓ} Dn.
■ C_{j} is a smooth algebraic curve and

$$
\left.\operatorname{ubc}\left(C_{j}\right) \leq \frac{1}{2} 22_{2}^{\ell-j}\right) D^{j} n^{\ell-j}\binom{n+\ell+1}{j}
$$

■ $\left|V\left(\Gamma_{1}, \ldots, \Gamma_{\ell}\right)\right| \leq 2^{\binom{\ell}{2}}(D n)^{\ell}$.

An important step in our generalization is the fact that we can clear the denominator of Γ after using the Khovanskii-Rolle theorem.

An important step in our generalization is the fact that we can clear the denominator of Γ after using the Khovanskii-Rolle theorem.
Iterating the Khovanskii-Rolle Theorem, we have

$$
\begin{aligned}
\left|V\left(\psi_{1}, \psi_{2}\right)\right| & \leq \operatorname{ubc}\left(\psi_{1}\right)+\left|V\left(\psi_{1}, \Gamma_{2}\right)\right| \\
& \leq \operatorname{ubc}\left(\psi_{1}\right)+\left|V\left(\psi_{1}, J_{2}\right)\right| \\
& \leq \operatorname{ubc}\left(\psi_{1}\right)+\operatorname{ubc}\left(J_{2}\right)+\left|V\left(\Gamma_{1}, J_{2}\right)\right| \\
& \leq \operatorname{ubc}\left(\psi_{1}\right)+\operatorname{ubc}\left(J_{2}\right)+\left|V\left(J_{1}, J_{2}\right)\right| .
\end{aligned}
$$

where $\Gamma_{2}=\operatorname{Jac}\left(\psi_{1}, \psi_{2}\right), \Gamma_{1}=\operatorname{Jac}\left(\psi_{1}, J_{2}\right)$, and J_{i} is Γ_{i} after clearing the denominators.

Figure: ψ_{1} is red, J_{2} is blue, $\operatorname{ubc}\left(\psi_{1}\right)=4$, and $\left|V\left(\psi_{1}, J_{2}\right)\right|=3$.
$V\left(J_{1}, J_{2}\right) \mid$

Figure: J_{2} is red, J_{1} is blue, $\operatorname{ubc}\left(J_{2}\right)=4$, and $\left|V\left(J_{1}, J_{2}\right)\right|=1$.

Korben Rusek, Jeanette Shakalli, and Frank Sottile
On Certain Structured Fewnomials
$V\left(\psi_{1}, \psi_{2}\right) \mid$

Figure: ψ_{1} is blue, ψ_{2} is red, and $\left|V\left(\psi_{1}, \psi_{2}\right)\right|=4 \leq 9$.
Korben Rusek, Jeanette Shakalli, and Frank Sottile
On Certain Structured Fewnomials

Questions?

Korben Rusek, Jeanette Shakalli, and Frank Sottile
On Certain Structured Fewnomials

