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Khovanskii’s Bound

Khovanskii’s Bound: A system of n polynomials in n

variables having a total of n+ k + 1 distinct monomials has at

most 2(
n+k

2
)(n + 1)n+k positive solutions.
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The Original Bound

Bihan and Sottile’s Bound: A system of n polynomials in n

variables having a total of n+ k + 1 distinct monomials has at

most e2+3

4
2(

k

2
)nk positive solutions.

Korben Rusek, Jeanette Shakalli, and Frank Sottile

On Certain Structured Fewnomials



The Original Bound

Bihan and Sottile’s Bound: A system of n polynomials in n

variables having a total of n+ k + 1 distinct monomials has at

most e2+3

4
2(

k

2
)nk positive solutions.

Method: reduce to a system of k equations in k variables
having the form:

n+k
∑

i=1

βij log(pi ), j = 1, . . . , k ,

where deg(pi ) = 1 and βij ∈ R.
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Structured Fewnomial

Let P ⊂ R
` be a lattice polytope. A fewnomial with structure P is

a polynomial in n variables whose set of exponent vectors A ⊂ Z
n

decomposes as

A = W
⋃

ψ(P ∩ Z
`) , (1)

where W consists of n linearly independent vectors and
ψ : Z` → Z

n is a linear map. For example:

ψ

α2

α1

w1

w2
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Main Theorem

Theorem

A fewnomial with support A as defined earlier has fewer than

e2 + 3

4
2(

`

2
)n` · `! · Volume(P) (2)

Korben Rusek, Jeanette Shakalli, and Frank Sottile

On Certain Structured Fewnomials



Main Theorem

Theorem

A fewnomial with support A as defined earlier has fewer than

e2 + 3

4
2(

`

2
)n` · `! · Volume(P) (2)

or
e2 + 3

4
2(

`

2
)n` · D2`

Korben Rusek, Jeanette Shakalli, and Frank Sottile

On Certain Structured Fewnomials



Main Theorem

Theorem

A fewnomial with support A as defined earlier has fewer than

e2 + 3

4
2(

`

2
)n` · `! · Volume(P) (2)

or
e2 + 3

4
2(

`

2
)n` · D2`

To compare this to the original bound, observe that
k + 1 = #(P ∩ Z

`), which has order Volume(P), while ` is the
dimension of the affine span of P . So ` ≤ k .
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Example

0 =
x1

2564x4
3702

x21096x33136
− x2

4437 + 23

50
− 9

5
x1

4437 + x1
8874

0 =
x2

78x4
2538

x13324x31299
− 67

50
− 9

5
x1

4437 + x1
8874 + x2

4437

0 = x4
4437 − 11

20
+ x2

8874 − 7

5
x2

4437 − x1
4437x2

4437 + 9

10
x1

4437

0 = x3
4437 − 6

5
+ x1

8874 + 1

10
x1

4437 − x1
4437x2

4437 + 2

5
x2

4437.

Notice that n = 4.

Korben Rusek, Jeanette Shakalli, and Frank Sottile

On Certain Structured Fewnomials



List of monomials:

1, x4
4437, x1

4437, x1
8874, x2

4437, x2
8874, x3

4437,

x1
4437x2

4437,
x2

78x4
2538

x13324x31299
,
x1

2564x4
3702

x21096x33136
.
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List of monomials:

1, x4
4437, x1

4437, x1
8874, x2

4437, x2
8874, x3

4437,

x1
4437x2

4437,
x2

78x4
2538

x13324x31299
,
x1

2564x4
3702

x21096x33136
.

n + `+ 1 = 10 so ` = 5.
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List of monomials:

1, x4
4437, x1

4437, x1
8874, x2

4437, x2
8874, x3

4437,

x1
4437x2

4437,
x2

78x4
2538

x13324x31299
,
x1

2564x4
3702

x21096x33136
.

n + `+ 1 = 10 so ` = 5.

Bihan and Sottile’s bound ensures that we have no more than
3,145,728 positive roots.
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If we row reduce, we get

p1 =
x1

2564x4
3702

x21096x33136
= x2

4437 − 23

50
+ 9

5
x1

4437 − x1
8874

p2 =
x2

78x4
2538

x13324x31299
= 67

50
+ 9

5
x1

4437 − x1
8874 − x2

4437

p3 = x4
4437 = 11

20
− x2

8874 + 7

5
x2

4437 + x1
4437x2

4437 − 9

10
x1

4437

p4 = x3
4437 = 6

5
+ x1

8874 − 1

10
x1

4437 + x1
4437x2

4437 − 2

5
x2

4437

p5 = x1
4437 =: u1, p6 = x2

4437 =: u2, p7 = x1
8874 =: u3,

p8 = x2
8874 =: u4, p9 = x1

4437x2
4437 =: u5,

of course p1, . . . , p9 depend on u1, . . . , u5.
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Making substitutions we get linear equations:

p1 = −23

50
+ 9

5
u1 + u2 − u3

p2 =
67

50
+ 9

5
u1 − u2 − u3

p3 =
11

20
− 9

10
u1 +

7

5
u2 − u4 + u5

p4 =
6

5
− 1

10
u1 −

2

5
u2 + u3 + u5, and

p4+j = uj , for j = 1, . . . , 5.
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Making substitutions we get linear equations:

p1 = −23

50
+ 9

5
u1 + u2 − u3

p2 =
67

50
+ 9

5
u1 − u2 − u3

p3 =
11

20
− 9

10
u1 +

7

5
u2 − u4 + u5

p4 =
6

5
− 1

10
u1 −

2

5
u2 + u3 + u5, and

p4+j = uj , for j = 1, . . . , 5.

Then Bihan and Sotille find a bound based on the associated Gale

Dual System, which will be defined later.
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For our generalization, we notice that the variables u3, u4, and u5
can be defined in terms of u1 and u2. That is, we have
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For our generalization, we notice that the variables u3, u4, and u5
can be defined in terms of u1 and u2. That is, we have

u3 = u21

u4 = u22

u5 = u1u2.
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This gives the new system of pi ’s as:

p1 = −23

50
+ 9

5
u1 + u2 − u21

p2 =
67

50
+ 9

5
u1 − u2 − u21

p3 =
11

20
− 9

10
u1 +

7

5
u2 − u22 + u1u2

p4 =
6

5
− 1

10
u1 −

2

5
u2 + u21 + u1u2

p5 = u1

p6 = u2.
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Thus our system has structure P , where P has vertices (0, 0),
(2, 0), (0, 2).
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Thus our system has structure P , where P has vertices (0, 0),
(2, 0), (0, 2).

Thus our bound is 384 � 3,145,728.
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Variant of Gale Dual Systems

To define the system, we remember that each pi represented a
monomial from the original system. We then represent the
monomials as a matrix:
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Variant of Gale Dual Systems

To define the system, we remember that each pi represented a
monomial from the original system. We then represent the
monomials as a matrix:

A :=















2564 −3324 0 0 0 4437

−1096 78 0 0 4437 0

−3136 −1299 0 4437 0 0

3702 2538 4437 0 0 0














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Variant of Gale Dual Systems

To define the system, we remember that each pi represented a
monomial from the original system. We then represent the
monomials as a matrix:

A :=















2564 −3324 0 0 0 4437

−1096 78 0 0 4437 0

−3136 −1299 0 4437 0 0

3702 2538 4437 0 0 0















We now find the null space of this matrix. This gives us:
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Variant of Gale Dual Systems

To define the system, we remember that each pi represented a
monomial from the original system. We then represent the
monomials as a matrix:

A :=















2564 −3324 0 0 0 4437

−1096 78 0 0 4437 0

−3136 −1299 0 4437 0 0

3702 2538 4437 0 0 0















We now find the null space of this matrix. This gives us:

B :=





− 51

100
−17

50

31

50
−23

50
− 3

25

1

25

− 9

25

63

100
− 3

50
− 7

100
− 1

10

17

25





T
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Variant of Gale Dual Systems

Let A = [α1, . . . , α6] and B = [β1, β2].
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Variant of Gale Dual Systems

Let A = [α1, . . . , α6] and B = [β1, β2]. By construction we have:

6
∑

i=1

βj ,i αi = 0, for j = 1, 2.
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Variant of Gale Dual Systems

Let A = [α1, . . . , α6] and B = [β1, β2]. By construction we have:

6
∑

i=1

βj ,i αi = 0, for j = 1, 2.

This gives us:

6
∏

i=1

xβj,i αi = 1, for j = 1, 2,

for x ∈ R
4
+.
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Variant of Gale Dual Systems

Let A = [α1, . . . , α6] and B = [β1, β2]. By construction we have:

6
∑

i=1

βj ,i αi = 0, for j = 1, 2.

This gives us:

6
∏

i=1

xβj,i αi = 1, for j = 1, 2,

for x ∈ R
4
+. Replacing xαi with pi (u) we then have:

6
∏

i=1

pi (u)
βj,i = 1, for j = 1, 2.
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Variant of Gale Dual Systems

Taking logs we have the System

ψj :=

6
∑

i=1

βj ,i log(pi (u)), for j = 1, 2.
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Variant of Gale Dual Systems

Taking logs we have the System

ψj :=

6
∑

i=1

βj ,i log(pi (u)), for j = 1, 2.

Theorem: There is a bijection between the positive solutions to
the original system and the solutions to this Gale Dual variant
inside the region

∆ = {y |pi (y) > 0,∀i},

which restricts to a bijection between their nondegenerate
solutions.
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∆

Figure: ∆ is the yellow region
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How it works

We want to find |V (ψ1, ψ2)|. It is not obvious what this bound
should be, but...
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How it works

We want to find |V (ψ1, ψ2)|. It is not obvious what this bound
should be, but...
Khovanskii-Rolle Theorem: Let f1, . . . , fk be smooth functions
defined on ∆ ⊂ R

k which have finitely many common zeroes
V (f1, . . . , fk) in ∆, where V (f1, . . . , fk−1) is a smooth curve C in
∆. Let ubc(C ) denote the number of unbounded components of C
in ∆ and let

Γ = Jac(f1, . . . , fk) = det

(

∂fj

∂yl

)

j ,l=1,...,k

be the Jacobian of f1, . . . , fk . Then

|V (f1, . . . , fk)| ≤ ubc(C ) + |V (f1, . . . , fk−1, Γ)|.
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Smooth curves

For j = 1, . . . , `, define the curve

Cj = {y ∈ ∆|ψ1(y) = · · · = ψj−1(y) = Γj+1(y) = · · · = Γ`(y) = 0}.
(3)

Iterating the Khovanskii-Rolle Theorem, we obtain

|V (ψ1, . . . , ψ`)| ≤ ubc(C`) + · · ·+ ubc(C1) + |V (Γ1, . . . , Γ`)|.
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Lemma

Lemma:

J`−j := Γ`−j(y) · (
∏n+`

i=1
pi (y))

2j is a polynomial of degree
2`Dn.

Cj is a smooth algebraic curve and

ubc(Cj ) ≤
1

2
2(

`−j

2
)D jn`−j

(

n+ `+ 1

j

)

.

|V (Γ1, . . . , Γ`)| ≤ 2(
`

2
)(Dn)`.
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An important step in our generalization is the fact that we can
clear the denominator of Γ after using the Khovanskii-Rolle
theorem.
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An important step in our generalization is the fact that we can
clear the denominator of Γ after using the Khovanskii-Rolle
theorem.
Iterating the Khovanskii-Rolle Theorem, we have

|V (ψ1, ψ2)| ≤ ubc(ψ1) + |V (ψ1, Γ2)|

≤ ubc(ψ1) + |V (ψ1, J2)|

≤ ubc(ψ1) + ubc(J2) + |V (Γ1, J2)|

≤ ubc(ψ1) + ubc(J2) + |V (J1, J2)|.

where Γ2 = Jac(ψ1, ψ2), Γ1 = Jac(ψ1, J2), and Ji is Γi after
clearing the denominators.

Korben Rusek, Jeanette Shakalli, and Frank Sottile

On Certain Structured Fewnomials



|V (ψ1, J2)|

Figure: ψ1 is red, J2 is blue, ubc(ψ1) = 4, and |V (ψ1, J2)| = 3.
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|V (J1, J2)|

Figure: J2 is red, J1 is blue, ubc(J2) = 4, and |V (J1, J2)| = 1.
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|V (ψ1, ψ2)|

Figure: ψ1 is blue, ψ2 is red, and |V (ψ1, ψ2)| = 4 ≤ 9.
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Questions?
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