Monomial Ideals and Hypergeometric Equations

Laura Felicia Matusevich, Texas A\&M University joint with Christine Berkesch, Purdue University

Workshop on Randomization, Relaxation and Complexity Banff International Research Station March 3, 2010

The Punchlines

- Good (or bad) examples are hard to find.
- There are open about monomial ideals, and even about squarefree monomial ideals.
- Homological algebra can be easier than combinatorics. Combinatorics is very hard.
- Having an explicit formula for a quantity does not imply fully understanding it.

A-hypergeometric (GKZ) systems

Definition

The Weyl Algebra D (over \mathbb{C}) is given by generators x_{1}, \ldots, x_{n}, $\partial_{1}, \ldots, \partial_{n}$, and relations

$$
x_{i} x_{j}=x_{j} x_{i} ; \quad \partial_{i} \partial_{j}=\partial_{j} \partial_{i} ; \quad \partial_{i} x_{j}=x_{j} \partial_{i}+\delta_{i j} .
$$

A-hypergeometric (GKZ) systems

Let $A=\left(a_{i j}\right) \in \mathbb{Z}^{d \times n} ; \operatorname{rank}(A)=d>n,[1 \ldots 1] \in \operatorname{Rowspan}(A)$. The ideal

$$
I_{A}=\left\langle\partial^{u}-\partial^{v} \mid A \cdot u=A \cdot v\right\rangle \subseteq \mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]
$$

is called a toric ideal.
Define the Euler operators $E_{i}=\sum_{j=1}^{n} a_{i j} x_{j} \partial_{j}$ for $i=1, \ldots d$.

Definition

The A-hypergeometric system with parameter $\beta \in \mathbb{C}^{d}$ (GKZ system) is:

$$
H_{A}(\beta)=I_{A}+\left\langle E_{1}-\beta_{1}, \ldots, E_{d}-\beta_{d}\right\rangle \subseteq D_{n}
$$

A-hypergeometric systems have interesting solutions.

A-hypergeometric (GKZ) Systems

Definition

The A-hypergeometric system with parameter $\beta \in \mathbb{C}^{d}$ is

$$
H_{A}(\beta)=\left\langle\partial^{u}-\partial^{v} \mid A \cdot u=A \cdot v\right\rangle+\left\langle E_{1}-\beta_{1}, \ldots, E_{d}-\beta_{d}\right\rangle \subseteq D_{n}
$$

Example (Roots of sparse polynomials)

$$
A=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
0 & k_{1} & \ldots & k_{m}
\end{array}\right], \quad 0<k_{1}<\cdots<k_{m} \in \mathbb{N} ; \quad \beta=-\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

The solutions of $H_{A}(\beta)$ are spanned by the roots of:

$$
x_{0}+x_{1} t^{k_{1}}+\cdots+x_{m} t^{k_{m}}=0
$$

considered as functions of x_{0}, \ldots, x_{m}.

A-hypergeometric (GKZ) Systems

Definition

The A-hypergeometric system with parameter $\beta \in \mathbb{C}^{d}$ is

$$
H_{A}(\beta)=\left\langle\partial^{u}-\partial^{v} \mid A \cdot u=A \cdot v\right\rangle+\left\langle E_{1}-\beta_{1}, \ldots, E_{d}-\beta_{d}\right\rangle \subseteq D_{n}
$$

Example (Sparse systems)
System of m equations in m unknowns $t_{1}, \ldots, t_{m} ; A_{i}$ the support of i th equation $f_{i}=0 ; J\left(t_{1}, \ldots, t_{m}\right)=\operatorname{det}\left(\partial f_{i} / \partial t_{j}\right)$ the Jacobian.
$\left(T_{1}, \ldots, T_{m}\right)$ a root; T_{j} is a function of the coefficients of the f_{i}.

$$
A=\left\{e_{1}\right\} \times A_{1} \cup \cdots \cup\left\{e_{m}\right\} \times A_{m} \text { (Cayley trick) }
$$

For any $u \in \mathbb{N}^{m}, T^{u} / J(T)$ is A-hypergeometric.
Principal A-determinant: singular locus of $H_{A}(\beta)$.

A-hypergeometric (GKZ) Systems

Definition

The A-hypergeometric system with parameter $\beta \in \mathbb{C}^{d}$ is
$H_{A}(\beta)=\left\langle\partial^{u}-\partial^{v} \mid A \cdot u=A \cdot v\right\rangle+\left\langle E_{1}-\beta_{1}, \ldots, E_{d}-\beta_{d}\right\rangle \subseteq D_{n}$
To summarize:

- Roots of polynomials are hypergeometric.
- Roots of sparse systems are (almost) hypergeometric.
- Mostly, get transcendental solutions: e.g. Gauss, Appell, Lauricella, etc.

Long range goal: understand hypergeometric functions.
Start by studying the differential equations.

The holonomic rank

Define $\operatorname{rank}\left(H_{A}(\beta)\right)=\operatorname{dim}_{\mathbb{C}}\left(\left\{\right.\right.$ Solutions of $\left.\left.H_{A}(\beta)\right\}\right)$.

- (GKZ): $\operatorname{rank}\left(H_{A}(\beta)\right) \geq \operatorname{vol}(A)$ for all β, with equality for β generic.
- (GKZ/MMW): Necessary and sufficient condition on A for constant rank.
- (SST): $\operatorname{rank}\left(H_{A}(\beta)\right) \leq 2^{2 d} \operatorname{vol}(A)$, for all β. Most likely far from optimal. Highest example: $\operatorname{rank}\left(H_{A}(\beta)\right)=\operatorname{vol}(A)+2$.
■ (MW): Examples with $\operatorname{rank}\left(H_{A}(\beta)\right)=\operatorname{vol}(A)+d-1$.
■ (Okuyama): Generalization and rank formulas for $d=3$.
- (Berkesch): Complete rank formulas.

Can we improve the upper bound using the formulas?

Towards better bounds and worse examples

- The formulas are very complicated: multiple sums with signs and binomial coefficients.
- Try to get improvements in the proof by SST. First (hard) step:

$$
\operatorname{rank}\left(H_{A}(\beta)\right) \leq \operatorname{rank}\left(\operatorname{in}_{w}\left(I_{A}\right)+\langle E-\beta\rangle\right) .
$$

- Second step: $\Delta_{w}=$ triangulation of A,

$$
\operatorname{rank}\left(\operatorname{in}_{w}\left(I_{A}\right)+\langle E-\beta\rangle\right) \leq \text { arithmetic volume of } \Delta_{w} .
$$

- Third step: $2^{2 d} \operatorname{vol}(A)$ bounds the arithmetic volume.
- Goal: Improve Step 2.

Theorem (Berkesch-M.)
There is a combinatorial formula for $\operatorname{rank}\left(\operatorname{in}_{w}\left(I_{A}\right)+\langle E-\beta\rangle\right)$.

Shift gears: Stanley-Reisner rings

Definition

Given Δ a simplicial complex on $\{1, \ldots, n\}$, let

$$
I_{\Delta}=\left\langle\prod_{i \in \tau} t_{i} \mid \tau \notin \Delta\right\rangle=\bigcap_{\text {facets } \sigma \in \Delta}\left\langle t_{i} \mid t_{i} \notin \sigma\right\rangle \subseteq \mathbb{C}\left[t_{1}, \ldots, t_{n}\right] .
$$

We call $\mathbb{C}[\Delta]=\mathbb{C}\left[t_{1}, \ldots, t_{n}\right] / I_{\Delta}$ the Stanley-Reisner ring of Δ.

- Every squarefree monomial ideal is of the form I_{Δ} for some Δ.
- $\operatorname{dim}(\mathbb{C}[\Delta])=\operatorname{dim}(\Delta)+1=: d$.
- $\operatorname{deg}\left(I_{\Delta}\right)=$ number of top-dimensional facets of Δ.
- For $\sigma \in \Delta$, define

$$
\operatorname{link}(\sigma)=\{\tau \in \Delta \mid \tau \cap \sigma=\varnothing, \tau \cup \sigma \in \Delta\}
$$

Cohen-Macaulay Stanley-Reisner rings

Theorem (Reisner)
$\mathbb{C}[\Delta]$ is a Cohen-Macaulay ring if and only if for all $\sigma \in \Delta$,

$$
\widetilde{H}_{i}(\operatorname{link}(\sigma), \mathbb{C})=0, \quad \text { for } \mathrm{i}<\operatorname{dim}(\operatorname{link}(\sigma))
$$

A sequence $E=E_{1}, \ldots, E_{d}$ of linear forms is a linear system of parameters (or Isop) for $\mathbb{C}[\Delta]$ if $\mathbb{C}[\Delta] /\langle E\rangle$ is zero dimensional.

Proposition
If E is an Isop for $\mathbb{C}[\Delta]$,

$$
k_{0}(\Delta):=\operatorname{dim}_{\mathbb{C}}(\mathbb{C}[\Delta] /\langle E\rangle) \geq \operatorname{deg}\left(I_{\Delta}\right)
$$

and equality holds if and only if $\mathbb{C}[\Delta]$ is Cohen-Macaulay.

Some comments on $k_{0}(\Delta)$

- $k_{0}(\Delta)$ does not depend on the choice of Isop.

■ $k_{0}(\Delta) \leq 2^{d} \mid\{$ facets of $\Delta\} \mid$, because $\left\{t^{\sigma} \mid \sigma \in \Delta\right\}$ spans the vector space $\mathbb{C}[\Delta] /\langle E\rangle$. This is used in the bound for a. vol.
■ If $\Delta \subseteq \Delta^{\prime}$ are simplicial complexes of the same dimension, then an Isop for $\mathbb{C}\left[\Delta^{\prime}\right]$ is also an Isop for $\mathbb{C}[\Delta]$, and

$$
k_{0}(\Delta) \leq k_{0}\left(\Delta^{\prime}\right)
$$

■ If $\Delta \subseteq \Delta^{\prime}$ as above, and Δ^{\prime} is Cohen-Macaulay,

$$
k_{0}(\Delta) \leq k_{0}\left(\Delta^{\prime}\right)=\operatorname{deg}\left(I_{\Delta^{\prime}}\right)=\mid\left\{\text { facets of } \Delta^{\prime}\right\} \mid
$$

- The notation k_{0} is for Koszul.

Example: Disconnected simplices

Let Δ consist of r disconnected 1-dimensional simplices.

Example: Disconnected simplices

Let Δ consist of r disconnected 2-dimensional simplices.

$$
k_{0}(\Delta) \leq k_{0}\left(\Delta^{\prime}\right)=r+2(r-1)
$$

This way, can see that if Δ consists of r disconnected simplices of dimension $d-1$, then

$$
k_{0}(\Delta) \leq r+(d-1)(r-1)
$$

Computing $k_{0}(\Delta)$

Theorem (Berkesch, M)
There is a formula of the form
$k_{0}(\Delta)=\operatorname{deg}\left(I_{\Delta}\right)+$ sums of binomial coefficients with signs, and terms appearing here depend only on the combinatorics of Δ.

Corollary

Let Δ consist of r disconnected $(d-1)$-dimensional simplices, Then

$$
k_{0}(\Delta)=r+(d-1)(r-1) .
$$

Proof.
Seven lines of regrouping and using combinatorial identities.

Comments and Questions

- The proof of the Theorem is homological (there is a nice spectral sequence).
- A formula without alternating signs would be desirable.
- Is there an upper bound for $k_{0}(\Delta)$ better than $2^{d} \mid\{$ facets of $\Delta\} \mid$? Or is this tight?
- Given Δ is there always $\Delta^{\prime} \supseteq \Delta$ Cohen-Macaulay of the same dimension, such that and $k_{0}(\Delta)=k_{0}\left(\Delta^{\prime}\right)$?

Buchsbaum complexes

Definition

A simplicial complex Δ is Buchsbaum if it is pure and, for all $\sigma \in \Delta \backslash \varnothing, \widetilde{H}_{i}(\operatorname{link}(\sigma), \mathbb{C})=0, \quad$ for $\mathrm{i}<\operatorname{dim}(\operatorname{link}(\sigma))$.
If Δ is Buchsbaum, but not Cohen-Macaulay, this means that $\operatorname{link}(\sigma)=\Delta$ has homology.
Theorem (Schenzel)
If $\Delta \neq \varnothing$ is Buchsbaum,
$k_{0}(\Delta)=\mid\{$ facets of $\Delta\} \left\lvert\,+\sum_{j=2}^{d}\binom{d}{j} \sum_{i=1}^{j-1}(-1)^{j-i-1} \widetilde{h}_{i-1}(\Delta)\right.$.

- Gives a one line computation of k_{0} (Disconnected Simplices).
- Can produce a Buchsbaum Δ with:

$$
k_{0}(\Delta)=\mid\{\text { facets }\} \mid+2^{d}-1+(d+1) d(d-1) / 2 .
$$

Buchsbaum complexes and beyond

- Can produce a Buchsbaum Δ with:

$$
k_{0}(\Delta)=\mid\{\text { facets }\} \mid+2^{d}-1+(d+1) d(d-1) / 2 .
$$

- This example is honestly exponential (the number of facets is polynomial in d).
- Does this Δ come up in the hypergeometric situation? Probably not: initial ideals of toric ideals are very special.
- Idea: use Schenzel's method in the hypergeometric context: impose conditions on A to get better formulas and maybe worse examples.

Towards the non squarefree case: Distractions

Proposition

Let Δ be a simplicial complex, E an Isop, and $\beta \in \mathbb{C}^{d}$. Then

$$
\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[\Delta] /\left\langle E_{1}-\beta_{1}, \ldots, E_{d}-\beta_{d}\right\rangle\right) \geq \operatorname{deg}\left(I_{\Delta}\right), \quad \forall \beta \in \mathbb{C}^{d}
$$

with equality if β is generic. Equality holds for all $\beta \in \mathbb{C}^{d}$ if and only if $\mathbb{C}[\Delta]$ is Cohen-Macaulay.

Definition
If $I \subseteq \mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$ is a monomial ideal, its distraction \tilde{I} is obtained by replacing, in each minimal generator, powers of the variables by descending factorials. For instance,
$t_{1}^{4} t_{2}^{2} t_{3} \quad$ is replaced by $\quad t_{1}\left(t_{1}-1\right)\left(t_{1}-2\right)\left(t_{1}-3\right) t_{2}\left(t_{2}-1\right) t_{3}$.

k_{0} in the non squarefree case

- I is squarefree if and only if $I=\tilde{I}$.
- The zero set of \tilde{I} is the Zariski closure of the exponents of the monomials not in I.

Let $I \subseteq \mathbb{C}[t]$ a monomial ideal, and $d=\operatorname{dim}(\mathbb{C}[t] / I)$. Choose E_{1}, \ldots, E_{d} linear forms such that $\operatorname{dim}_{\mathbb{C}}(\mathbb{C}[t] /(\tilde{I}+\langle E-\beta\rangle))<\infty$ for all $\beta \in \mathbb{C}^{d}$.

Theorem $k_{0}(I, E-\beta):=\operatorname{dim}_{\mathbb{C}}(\mathbb{C}[t] /(\tilde{I}+\langle E-\beta\rangle)) \geq \operatorname{deg}(I), \quad \forall \beta \in \mathbb{C}^{d}$, with equality for generic β. Equality holds for all β if and only if $\mathbb{C}[t] / I$ is Cohen-Macaulay.

More Comments and Questions

- One can use this Theorem to reduce the Cohen-Macaulayness of $\mathbb{C}[t] / I$ to the Cohen-Macaulayness of a finite collection of simplicial complexes.
- One can also write a formula for $k_{0}(I ; E-\beta)$ using the formula for the squarefree case.
- The set $\left\{\beta \in \mathbb{C}^{d} \mid k_{0}(I ; E-\beta)>\operatorname{deg}(I)\right\}$ can be written explicitly in terms of E and the local cohomology of $\mathbb{C}[t] / I$.
- The $\max \left\{k_{0}(I ; E-\beta) \mid \beta \in \mathbb{C}^{d}\right\}$ depends on the choice of linear forms E.
- What is this maximum when $I=\operatorname{in}_{w}\left(I_{A}\right)$ and E comes from the rows of A ? (upper bound $2^{2 d} \operatorname{vol}(A),[\mathrm{SST}]$.)
- There is an analogous criterion to decide whether a binomial ideal is Cohen-Macaulay, but one needs hypergeometric differential equations.

