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Introduction

R〈X ,X ∗〉 denotes the space of polynomials in the non-commuting
variables X1, . . . ,Xn, X ∗1 , . . . ,X

∗
n over the reals.

Rd〈X ,X ∗〉: those of degree at most d

β = {m1, . . . ,mN} is a basis of monomials for Rd〈X ,X ∗〉

V = (m1, . . . ,mN)t is the tautological vector, V ∗ = (m∗1, . . . ,m
∗
N)
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Representing a SOS

I A single square:

f ∗f =
( N∑

i=1

ciXi

)∗( N∑
i=1

ciXi

)
= V ∗CC tV , C = (c1, . . . , cN)t

I A SOS:

M∑
j=1

f ∗j fj =
M∑

j=1

V ∗CjC
t
j V = V ∗

( M∑
j=1

CjC
t
j

)
V , A =

M∑
j=1

CjC
t
j

I The matrix A is PSD. The correspondence

PSD matrix↔ SOS

is not one-to-one.

Martin Harrison Minimal Sums of Squares in a free ∗-algebra



Representing a SOS

I A single square:

f ∗f =
( N∑

i=1

ciXi

)∗( N∑
i=1

ciXi

)
= V ∗CC tV , C = (c1, . . . , cN)t

I A SOS:

M∑
j=1

f ∗j fj =
M∑

j=1

V ∗CjC
t
j V = V ∗

( M∑
j=1

CjC
t
j

)
V , A =

M∑
j=1

CjC
t
j

I The matrix A is PSD. The correspondence

PSD matrix↔ SOS

is not one-to-one.

Martin Harrison Minimal Sums of Squares in a free ∗-algebra



Representing a SOS

I A single square:

f ∗f =
( N∑

i=1

ciXi

)∗( N∑
i=1

ciXi

)
= V ∗CC tV , C = (c1, . . . , cN)t

I A SOS:

M∑
j=1

f ∗j fj =
M∑

j=1

V ∗CjC
t
j V = V ∗

( M∑
j=1

CjC
t
j

)
V , A =

M∑
j=1

CjC
t
j

I The matrix A is PSD. The correspondence

PSD matrix↔ SOS

is not one-to-one.

Martin Harrison Minimal Sums of Squares in a free ∗-algebra



An Example

I Let V = (1,X ,X ∗)T , and P = V ∗V = X ∗X + XX ∗ + 1.

I Define M =

 0 1 −1
1 0 0
−1 0 0


I P = V ∗(I − tM)V for any t ∈ R

I P =
(
X +

√
2

2

)∗(
X +

√
2

2

)
+
(
X ∗ −

√
2

2

)∗(
X ∗ −

√
2

2

)
is given

by I + 1√
2
M
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The Question

Question: In general, what number of squares will suffice for an
arbitrary SOS? Can we neatly characterize this minimal number
in terms of degree and dimension? How to compute?
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Upper Bounds

I Carathéodory’s convex hull theorem: N(2d) + 1 squares.

I Gram matrix diagonalization gives N(d) squares:

I Write fi = (FV )i , Compute Cholesky decomposition FTF .
May have full rank, but further reduction is possible...
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I Carathéodory’s convex hull theorem: N(2d) + 1 squares.

I Gram matrix diagonalization gives N(d) squares:

I Write fi = (FV )i , Compute Cholesky decomposition FTF .
May have full rank, but further reduction is possible...

Martin Harrison Minimal Sums of Squares in a free ∗-algebra



Upper Bounds
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Upper Bounds

I Recall M from example satisfying V ∗MV = 0. Such M are
symmetric, are not PSD (or NSD), and exist for all n, d ≥ 1.

I Take A � 0, P = V ∗AV . Some combination A + cM is
outside the PSD cone, so for some t we have

tA + (1− t)(A + cM) ∈ ∂PSD

so P = V ∗AV = V ∗(A + tcM)V is the sum of N(d)− 1
squares.

I For any dimension, and degree d ≤ 2, this is the best we can
do: ∑

i≥2

m∗i mi

always requires N(d)− 1, and for d = 1, so does the full sum
of squares of monomials
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Commutative Case

The sum 1 + X 2
1 + X 2

2 + . . .+ X 2
N cannot be expressed as the sum

of N squares.
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More on the Bounds

The sum of lowest (positive) degree and highest degree monomial
squares cannot be reduced.
(since mimj = mlmk requires mi = ml and mj = mk)

The bound is tight for hereditary SOS for the same reason.

This lower bound agrees with the the upper bound for d ≤ 2, but
is much smaller in general.

Martin Harrison Minimal Sums of Squares in a free ∗-algebra



Semidefinite programming

I We have exactly the problem of minimizing the rank of the
Gram matrix subject to positivity constraints:

min rank X

s.t. V ∗XV = P,

X � 0

I Rank is not convex.

I The trace heuristic: trace minimization will recover a minimal
rank solution under certain conditions
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Trace Heuristic

Restricted isometry condition for the trace heuristic.[Fazel, Parrilo,
Recht]

For a map A : Rn×m → RM define the r-restricted isometry
constant δr to be the smallest value d for which

(1− d)‖X‖ ≤ ‖A(X )‖ ≤ (1 + d)‖X‖

whenever X is of rank at most r .
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Newton Chip

I Reduce the monomial basis first. Based on Newton polytope.
Input: f =

∑
aww , a SOS

1. Set W = ∅
2. For each word w∗w in the support of f :
2.1. For each 0 ≤ i ≤ deg(w), if rc(w , i) is admissible
(satisfies certain degree bounds), append it to W .

I Theorem [Klep, Povh] A symmetric f is SOS exactly when
there is a PSD G satisfying

W ∗GW = f

I Augmented Newton Chip: If aw∗w = 0 and w∗w 6= v∗z for
v 6= z in W (obtained from Newton chip), then throw out u.
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