Minimal Sums of Squares in a free *-algebra

Martin Harrison

March 2, 2010

Introduction

$\mathbb{R}\left\langle X, X^{*}\right\rangle$ denotes the space of polynomials in the non-commuting variables $X_{1}, \ldots, X_{n}, X_{1}^{*}, \ldots, X_{n}^{*}$ over the reals.
$\mathbb{R}_{d}\left\langle X, X^{*}\right\rangle$: those of degree at most d
$\beta=\left\{m_{1}, \ldots, m_{N}\right\}$ is a basis of monomials for $\mathbb{R}_{d}\left\langle X, X^{*}\right\rangle$
$V=\left(m_{1}, \ldots, m_{N}\right)^{t}$ is the tautological vector, $V^{*}=\left(m_{1}^{*}, \ldots, m_{N}^{*}\right)$

Representing a SOS

- A single square:

$$
f^{*} f=\left(\sum_{i=1}^{N} c_{i} X_{i}\right)^{*}\left(\sum_{i=1}^{N} c_{i} X_{i}\right)=V^{*} C C^{t} V, \quad C=\left(c_{1}, \ldots, c_{N}\right)^{t}
$$

Representing a SOS

- A single square:

$$
f^{*} f=\left(\sum_{i=1}^{N} c_{i} X_{i}\right)^{*}\left(\sum_{i=1}^{N} c_{i} X_{i}\right)=V^{*} C C^{t} V, \quad C=\left(c_{1}, \ldots, c_{N}\right)^{t}
$$

- A SOS:

$$
\sum_{j=1}^{M} f_{j}^{*} f_{j}=\sum_{j=1}^{M} V^{*} C_{j} C_{j}^{t} V=V^{*}\left(\sum_{j=1}^{M} C_{j} C_{j}^{t}\right) V, \quad A=\sum_{j=1}^{M} C_{j} C_{j}^{t}
$$

Representing a SOS

- A single square:

$$
f^{*} f=\left(\sum_{i=1}^{N} c_{i} X_{i}\right)^{*}\left(\sum_{i=1}^{N} c_{i} X_{i}\right)=V^{*} C C^{t} V, \quad C=\left(c_{1}, \ldots, c_{N}\right)^{t}
$$

- A SOS:

$$
\sum_{j=1}^{M} f_{j}^{*} f_{j}=\sum_{j=1}^{M} V^{*} C_{j} C_{j}^{t} V=V^{*}\left(\sum_{j=1}^{M} C_{j} C_{j}^{t}\right) V, \quad A=\sum_{j=1}^{M} C_{j} C_{j}^{t}
$$

- The matrix A is PSD. The correspondence

$$
\text { PSD matrix } \leftrightarrow S O S
$$

is not one-to-one.

An Example

- Let $V=\left(1, X, X^{*}\right)^{T}$, and $P=V^{*} V=X^{*} X+X X^{*}+1$.

An Example

- Let $V=\left(1, X, X^{*}\right)^{T}$, and $P=V^{*} V=X^{*} X+X X^{*}+1$.
- Define $M=\left(\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0\end{array}\right)$

An Example

- Let $V=\left(1, X, X^{*}\right)^{T}$, and $P=V^{*} V=X^{*} X+X X^{*}+1$.
- Define $M=\left(\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0\end{array}\right)$
- $P=V^{*}(I-t M) V$ for any $t \in \mathbb{R}$

An Example

- Let $V=\left(1, X, X^{*}\right)^{T}$, and $P=V^{*} V=X^{*} X+X X^{*}+1$.
- Define $M=\left(\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0\end{array}\right)$
- $P=V^{*}(I-t M) V$ for any $t \in \mathbb{R}$
- $P=\left(X+\frac{\sqrt{2}}{2}\right)^{*}\left(X+\frac{\sqrt{2}}{2}\right)+\left(X^{*}-\frac{\sqrt{2}}{2}\right)^{*}\left(X^{*}-\frac{\sqrt{2}}{2}\right)$ is given by $I+\frac{1}{\sqrt{2}} M$

The Question

Question: In general, what number of squares will suffice for an arbitrary SOS? Can we neatly characterize this minimal number in terms of degree and dimension? How to compute?

Upper Bounds

- Carathéodory's convex hull theorem: $N(2 d)+1$ squares.

Upper Bounds

- Carathéodory's convex hull theorem: $N(2 d)+1$ squares.
- Gram matrix diagonalization gives $\mathrm{N}(\mathrm{d})$ squares:

Upper Bounds

- Carathéodory's convex hull theorem: $N(2 d)+1$ squares.
- Gram matrix diagonalization gives $\mathrm{N}(\mathrm{d})$ squares:
- Write $f_{i}=(F V)_{i}$, Compute Cholesky decomposition $F^{T} F$. May have full rank, but further reduction is possible...

Upper Bounds

- Recall M from example satisfying $V^{*} M V=0$. Such M are symmetric, are not PSD (or NSD), and exist for all $n, d \geq 1$.

Upper Bounds

- Recall M from example satisfying $V^{*} M V=0$. Such M are symmetric, are not PSD (or NSD), and exist for all $n, d \geq 1$.
- Take $A \succeq 0, P=V^{*} A V$. Some combination $A+c M$ is outside the PSD cone, so for some t we have

$$
t A+(1-t)(A+c M) \in \partial P S D
$$

so $P=V^{*} A V=V^{*}(A+t c M) V$ is the sum of $N(d)-1$ squares.

Upper Bounds

- Recall M from example satisfying $V^{*} M V=0$. Such M are symmetric, are not PSD (or NSD), and exist for all $n, d \geq 1$.
- Take $A \succeq 0, P=V^{*} A V$. Some combination $A+c M$ is outside the PSD cone, so for some t we have

$$
t A+(1-t)(A+c M) \in \partial P S D
$$

so $P=V^{*} A V=V^{*}(A+t c M) V$ is the sum of $N(d)-1$ squares.

- For any dimension, and degree $d \leq 2$, this is the best we can do:

$$
\sum_{i \geq 2} m_{i}^{*} m_{i}
$$

always requires $N(d)-1$, and for $d=1$, so does the full sum of squares of monomials

Commutative Case

The sum $1+X_{1}^{2}+X_{2}^{2}+\ldots+X_{N}^{2}$ cannot be expressed as the sum of N squares.

More on the Bounds

The sum of lowest (positive) degree and highest degree monomial squares cannot be reduced.
(since $m_{i} m_{j}=m_{l} m_{k}$ requires $m_{i}=m_{l}$ and $m_{j}=m_{k}$)
The bound is tight for hereditary SOS for the same reason.

This lower bound agrees with the the upper bound for $d \leq 2$, but is much smaller in general.

Semidefinite programming

- We have exactly the problem of minimizing the rank of the Gram matrix subject to positivity constraints:

$$
\begin{array}{cc}
\min & \text { rank } X \\
\text { s.t. } & V^{*} X V=P, \\
& X \succeq 0
\end{array}
$$

Semidefinite programming

- We have exactly the problem of minimizing the rank of the Gram matrix subject to positivity constraints:

$$
\begin{array}{cc}
\min & \text { rank } X \\
\text { s.t. } & V^{*} X V=P, \\
& X \succeq 0
\end{array}
$$

- Rank is not convex.

Semidefinite programming

- We have exactly the problem of minimizing the rank of the Gram matrix subject to positivity constraints:

$$
\begin{array}{cc}
\min & \operatorname{rank} X \\
\text { s.t. } & V^{*} X V=P, \\
& X \succeq 0
\end{array}
$$

- Rank is not convex.
- The trace heuristic: trace minimization will recover a minimal rank solution under certain conditions

Trace Heuristic

Restricted isometry condition for the trace heuristic.[Fazel, Parrilo, Recht]

For a map $\mathcal{A}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}^{M}$ define the r-restricted isometry constant δ_{r} to be the smallest value d for which

$$
(1-d)\|X\| \leq\|\mathcal{A}(X)\| \leq(1+d)\|X\|
$$

whenever X is of rank at most r.

Newton Chip

- Reduce the monomial basis first. Based on Newton polytope. Input: $f=\sum a_{w} w$, a SOS

1. Set $W=\emptyset$
2. For each word $w^{*} w$ in the support of f :
2.1. For each $0 \leq i \leq \operatorname{deg}(w)$, if $r c(w, i)$ is admissible (satisfies certain degree bounds), append it to W.

Newton Chip

- Reduce the monomial basis first. Based on Newton polytope. Input: $f=\sum a_{w} w$, a SOS

1. Set $W=\emptyset$
2. For each word $w^{*} w$ in the support of f :
2.1. For each $0 \leq i \leq \operatorname{deg}(w)$, if $r c(w, i)$ is admissible (satisfies certain degree bounds), append it to W.

- Theorem [Klep, Povh] A symmetric f is SOS exactly when there is a PSD G satisfying

$$
W^{*} G W=f
$$

Newton Chip

- Reduce the monomial basis first. Based on Newton polytope. Input: $f=\sum a_{w} w$, a SOS

1. Set $W=\emptyset$
2. For each word $w^{*} w$ in the support of f :
2.1. For each $0 \leq i \leq \operatorname{deg}(w)$, if $r c(w, i)$ is admissible (satisfies certain degree bounds), append it to W.

- Theorem [Klep, Povh] A symmetric f is SOS exactly when there is a PSD G satisfying

$$
W^{*} G W=f
$$

- Augmented Newton Chip: If $a_{w^{*} w}=0$ and $w^{*} w \neq v^{*} z$ for $v \neq z$ in W (obtained from Newton chip), then throw out u.

