

Motivation

Problem: Approximate all real roots of a zero-dimensional polynomial system.
Solution: There are many options, but all have problems.

Motivation

Problem: Approximate all real roots of a zero-dimensional polynomial system.

Solution: There are many options, but all have problems.

One option: Homotopy continuation.
This is a good method in general, but complexity depends on the number of complex solutions.

Motivation

Problem: Approximate all real roots of a zero-dimensional polynomial system.
Solution: There are many options, but all have problems.

One option: Homotopy continuation.
This is a good method in general, but complexity depends on the number of complex solutions.

Today's method: Numerical (mostly non-homotopy) method with complexity depending on the number of real roots.

Motivation

Question: Given polynomial system

$$
f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}
$$

with support

$$
W=\cup_{i=1}^{N} \operatorname{supp}\left(f_{i}\right)
$$

having $\mathrm{N}+\mathrm{L}+1$ monomials, how many solutions are there?

Motivation

Question: Given polynomial system

$$
f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}
$$

with support

$$
W=\cup_{i=1}^{N} \operatorname{supp}\left(f_{i}\right)
$$

having $\mathrm{N}+\mathrm{L}+1$ monomials, how many solutions are there?
Bézout (1776): no more than the product of the degrees (complex)

Motivation

Question: Given polynomial system

$$
f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}
$$

with support

$$
W=\cup_{i=1}^{N} \operatorname{supp}\left(f_{i}\right)
$$

having $\mathrm{N}+\mathrm{L}+1$ monomials, how many solutions are there?
Bézout (1776): no more than the product of the degrees (complex)

Bernstein-Kouchnirenko-Khovanskii (1976): no more than

$$
N!\operatorname{vol}(\operatorname{conv}(W)) \quad(\text { complex })
$$

Motivation

Question: Given polynomial system

$$
f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}
$$

with support

$$
W=\cup_{i=1}^{N} \operatorname{supp}\left(f_{i}\right)
$$

having $\mathrm{N}+\mathrm{L}+1$ monomials, how many solutions are there?
Bézout (1776): no more than the product of the degrees (complex)

Bernstein-Kouchnirenko-Khovanskii (1976): no more than

$$
N!\operatorname{vol}(\operatorname{conv}(W)) \quad(\text { complex })
$$

Remark: Homotopy methods rely on these sorts of bounds. (stick around for the next two talks)

Bertrand-Bihan-Sottile (2006): $2 \mathrm{~N}+1 \quad(\mathrm{~L}=2$, real, sharp)
Bihan (2007): $\mathrm{N}+1$ ($\mathrm{L}=2$, positive real, sharp)

Bertrand-Bihan-Sottile (2006): $2 \mathrm{~N}+1 \quad(\mathrm{~L}=2$, real, sharp)
Bihan (2007): $\mathrm{N}+1 \quad(\mathrm{~L}=2$, positive real, sharp)
Bihan-Sottile (2007): no more than

$$
\frac{e^{2}+3}{4} 2^{\binom{L}{2}} N^{L} \quad \text { (positive real) }
$$

Bihan-Rojas-Sottile (2007): That is asymptotically sharp for L fixed and N large.

Bertrand-Bihan-Sottile (2006): $2 \mathrm{~N}+1 \quad(\mathrm{~L}=2$, real, sharp)
Bihan (2007): $\mathrm{N}+1 \quad(\mathrm{~L}=2$, positive real, sharp)
Bihan-Sottile (2007): no more than

$$
\frac{e^{2}+3}{4} 2^{\binom{L}{2}} N^{L} \quad \text { (positive real) }
$$

Bihan-Rojas-Sottile (2007): That is asymptotically sharp for L fixed and N large.

Bates-Bihan-Sottile (2007): no more than

$$
\left.\frac{e^{4}+3}{4} 2^{\binom{L}{2}} N^{L} \quad \text { (real }\right)
$$

Bertrand-Bihan-Sottile (2006): $2 \mathrm{~N}+1 \quad(\mathrm{~L}=2$, real, sharp)
Bihan (2007): $\mathrm{N}+1 \quad(\mathrm{~L}=2$, positive real, sharp)
Bihan-Sottile (2007): no more than

$$
\frac{e^{2}+3}{4} 2^{\binom{L}{2}} N^{L} \quad \text { (positive real) }
$$

Bihan-Rojas-Sottile (2007): That is asymptotically sharp for L fixed and N large.

Bates-Bihan-Sottile (2007): no more than

$$
\frac{e^{4}+3}{4} 2^{\binom{L}{2}} N^{L} \quad \text { (real) }
$$

The ratio of this by Bihan-Sottile's bound is constant! (Come to Corben Rusek's talk at 5:15....)

Motivation

Maurice: We need methods that depend on complexity over the reals. (People who have systems they need to solve feel similarly.)

The proof of the 2007 Bihan-Sottile paper indicates a clear numerical method.

This talk: Khovanskii-Rolle continuation. Features:

- (mostly non-homotopy) numerical method
- finds all solutions on the real torus
- complexity (of some sort) is bounded above by a constant multiple of the number of real solutions
- the actual computational cost is often better than complexity bound

Timings (more motivation)

- Example 1:
$c d=\frac{1}{2} b e^{2}+2 a^{-1} b^{-1} e-1 \quad c d^{-1} e^{-1}=\frac{1}{2}\left(1+\frac{1}{4} b e^{2}-a^{-1} b^{-1} e\right)$
$b c^{-1} e^{-2}=\frac{1}{4}\left(6-\frac{1}{4} b e^{2}-3 a^{-1} b^{-1} e\right) \quad b c^{-2} e=\frac{1}{2}\left(8-\frac{3}{4} b e^{2}-2 a^{-1} b^{-1} e\right)$ $a b^{-1}=3-\frac{1}{2} b e^{2}+a^{-1} b^{-1} e$,
102 complex solutions, 10 real solutions
KhRo took 1.4 seconds, Bertini took 9 sec (on one processor).

Timings (more motivation)

- Example 1:
$c d=\frac{1}{2} b e^{2}+2 a^{-1} b^{-1} e-1 \quad \quad c d^{-1} e^{-1}=\frac{1}{2}\left(1+\frac{1}{4} b e^{2}-a^{-1} b^{-1} e\right)$
$b c^{-1} e^{-2}=\frac{1}{4}\left(6-\frac{1}{4} b e^{2}-3 a^{-1} b^{-1} e\right) \quad b c^{-2} e=\frac{1}{2}\left(8-\frac{3}{4} b e^{2}-2 a^{-1} b^{-1} e\right)$ $a b^{-1}=3-\frac{1}{2} b e^{2}+a^{-1} b^{-1} e$,
102 complex solutions, 10 real solutions
KhRo took 1.4 seconds, Bertini took 9 sec (on one processor).
- Example 2:
$10500-t u^{492}-3500 t^{-1} u^{463} v^{5} w^{5}=0$ $10500-t-3500 t^{-1} u^{691} v^{5} w^{5}=0$ $14000-2 t+t u^{492}-3500 v=0$ $14000+2 t-t u^{492}-3500 w=0$
7663 complex solutions, 6 real solutions KhRo took 23 sec , PHCpack took 39.3 min (on one processor). Notice the degrees....

Gameplan

1. Background on proof of Bihan-Sottile bound
2. Proof \longrightarrow Algorithm
3. Example (pretty pictures)
4. A word about complexity
5. Further plans

Background: 2 main techniques

Gale Duality

A polynomial system with $\mathrm{N}+\mathrm{L}+1$ monomials has a dual system of "master functions" defined in the complement of a hyperplane arrangment AND there is a bijection between the solutions (under a technical condition).
(see Bihan-Sottile).

Khovanskii-Rolle Theorem

Given a curve C defined by a set of polynomials, the solutions on C of another polynomial are interspersed with solutions of an appropriately defined Jacobian determinant. (see Khovanskii's Fewnomials).

Each idea has an important implication for us.

Background: Gale duality (high level)

```
polynomial system
    f:\mp@subsup{\mathbb{R}}{}{N}->\mp@subsup{\mathbb{R}}{}{N}
with N+L monomials
Solutions of original
polynomial system
```


Background: Gale duality (high level)

Background: Gale duality (high level)

Background: Gale duality (high level)

Background: Gale duality (low level)

The details are picky but not impossible...see the paper (or I can show you on paper later).

Bottom line: We want to find the solutions of the master functions defined in the complement of a hyperplane arrangement.

Matt Niemerg and I are nearly done with software for both the wrapping and the unwrapping. We will release the code once we have finished and tested it.

Background: Khovanskii-Rolle theorem

Given master functions

$$
\psi: \mathbb{R}^{L} \rightarrow \mathbb{R}^{L}
$$

For $\mathrm{j}=\mathrm{L}, \mathrm{L}-1, \ldots$, define:

$$
J_{j}:=\operatorname{Jac}\left(\psi_{1}, \ldots, \psi_{j}, J_{j+1}, \ldots, J_{L}\right)
$$

and let

$$
C_{j}:=V\left(\psi_{1}, \ldots, \psi_{j-1}, J_{j+1}, \ldots, J_{L}\right),
$$

curves in the complement of a hyperplane arrangement.
Khovanskii-Rolle says that solutions of ψ_{j} on C_{j} are separated by solutions of J_{j}.

Background: Bates-Bihan-Sottile proof

Thanks to Gale duality, to count the positive solutions of a system of polynomials, we can instead count the number of solutions of a system of master functions in the positive chamber.

Consequence of Khovanskii-Rolle:

$$
\left|V\left(\psi_{1}, \ldots, \psi_{L}\right)\right| \leq b\left(C_{L}\right)+\cdots+b\left(C_{1}\right)+\left|V\left(J_{1}, \ldots, J_{L}\right)\right|
$$

where $b(C)$ is the number of unbounded components of C.
Also (from Bihan-Sottile):

1. $\left|V\left(J_{1}, \ldots, J_{L}\right)\right| \leq 2^{\binom{L}{2}} N^{L}$
2. $b\left(C_{j}\right) \leq \frac{1}{2} 2^{\binom{L-j}{2}} n^{N-L}\binom{N+L+1}{j} \cdot 2^{j} \leq 2^{\binom{k}{2}} n^{k} \cdot \frac{2^{2 j-1}}{j!}$

Putting this together gives the latest bound.

Gameplan

1. Background on proof of Bihan-Sottile bound
2. Proof \longrightarrow Algorithm
3. Example (pretty pictures)
4. A word about complexity
5. Further plans

Proof \longrightarrow Algorithm

Where is the algorithm?
Rather than counting arcs and intersections, we move along them and watch for solutions:

- Solve $J_{L}, J_{L-1}, \ldots, J_{1}$ and find all points where the arcs given by vanishing of all J_{j} except J_{1} intersect the boundary of the chamber.
- Traverse each arc twice, looking for solutions of ψ_{1} (or the current master function of interest):
- Move one direction from boundary points
- Move two directions from interior points
- Security: Know how many times we reach each point
- Move on to the next master function and J_{j}

Gameplan

1. Background on proof of Bihan-Sottile bound
2. Proof \longrightarrow Algorithm
3. Example (pretty pictures)
4. A word about complexity
5. Further plans

An example

- The initial (Laurent) polynomials (after Gaussian elimination):
$c d=\frac{1}{2} b e^{2}+2 a^{-1} b^{-1} e-1 \quad c d^{-1} e^{-1}=\frac{1}{2}\left(1+\frac{1}{4} b e^{2}-a^{-1} b^{-1} e\right)$ $b c^{-1} e^{-2}=\frac{1}{4}\left(6-\frac{1}{4} b e^{2}-3 a^{-1} b^{-1} e\right) \quad b c^{-2} e=\frac{1}{2}\left(8-\frac{3}{4} b e^{2}-2 a^{-1} b^{-1} e\right)$
$a b^{-1}=3-\frac{1}{2} b e^{2}+a^{-1} b^{-1} e$,
Notice that $\mathrm{N}=5$ and $\mathrm{L}=2$.
- Master functions (just two, in two variables):
$f:=(2 x+2 y-1)(1+x-y)(8-3 x-2 y)^{2}-8 y x^{2}(6-x-3 y)^{2}(3-2 x+y)$,
$g:=y(2 x+2 y-1)^{6}(1+x-y)^{6}(8-3 x-2 y)^{7}(3-2 x+y)-32768 x^{3}(6-x-3 y)^{2}$.

Solutions of the master functions:

Thanks to Frank for all the images from now on!

Preparation for KR continuation

- Form the Jacobian determinants
$\mathrm{J}_{2}=\mathrm{J}(\mathrm{f}, \mathrm{g}), J_{2}=-168 x^{5}-137 x^{4} y+48 x^{3} y^{3}-536 x^{2} y^{3}-1096 x y^{4}+456 y^{5}+1666 x^{4}+2826 x^{3}$ $\mathrm{J}_{1}=\mathrm{J}\left(\mathrm{f}, \mathrm{J}_{2}\right) \quad+3098 x^{2} y^{2}+6994 x y^{3}-1638 y^{4}-3485 x^{3}-3721 x^{2} y-15318 x y^{2}-1836 y^{3}$ $\mathrm{J}_{1}=\mathrm{J}\left(\mathrm{f}, \mathrm{J}_{2}\right) . \quad+1854 x^{2}+8442 x y+9486 y^{2}-192 x-6540 y+720$
$J_{1}=10080 x^{10}-168192 x^{9} y-61328 x^{8} y^{2}-\cdots+27648+2825280 y$,
- Key properties:

1. The solutions of $\mathrm{f}=\mathrm{g}=0$ are separated by those of $\mathrm{f}=\mathrm{J}_{2}=0$ on the curve $\mathrm{f}=0$.
2. The solutions of $\mathrm{f}=\mathrm{J}_{2}=0$ are separated by those of $\mathrm{J}_{1}=\mathrm{J}_{2}=0$ on the curve $\mathrm{J}_{2}=0$.

The curves for J_{1} and J_{2} :

We find the solutions of $\mathrm{J}_{1}=\mathrm{J}_{2}=0$ with continuation. There are 6 of these.

The curves for J_{1} and J_{2} :

We also find all points where J_{2} meets the boundary.
There are 8 of these points.

The bottom right corner:

Step I

Since any two solutions of $\mathrm{f}=\mathrm{J}_{2}=0$ along the curve
$\mathrm{J}_{2}=0$ are separated by solutions of
$\mathrm{J}_{1}=\mathrm{J}_{2}=0$, we will find all solutions of
$\mathrm{f}=\mathrm{J}_{2}=0$ by tracking

1. each way from the solutions of $\mathrm{J}_{1}=\mathrm{J}_{2}=0$ AND
2. into the polytope from the points at which J_{2} reaches the boundary.

Moving from red and blue to purple along green curve (replacing a Jacobian with a master function):

Safety from the Khovanskii-Rolle theorem

- Since any two solutions of $f=J_{2}=0$ along the curve
$\mathrm{J}_{2}=0$ are separated by solutions of
$\mathrm{J}_{1}=\mathrm{J}_{2}=0$:

1. we will find all solutions of $f=J_{2}=0$ exactly twice, and
2. we can watch the behavior along each arc we trace to help make sure that each arc is traced the appropriate number of times.

- Who cares? We do, because we don't have the usual guarantees of homotopy continuation.

Step 2 (last step for this example)

Now we move along the curve $\mathrm{f}=0$

- in two directions from each solution of $f=J_{2}=0$ and
- in one direction from each point at which f reaches the boundary
to find all points at which $\mathbf{f}=\mathbf{g}=\mathbf{0}$ (the solutions we wanted in the first place!).

Moving from purple and brown to black along brown:

Gameplan

1. Background on proof of Bihan-Sottile bound
2. Proof \longrightarrow Algorithm
3. Example (pretty pictures)
4. A word about complexity
5. Further plans

Complexity

Question: What is the complexity of this method?

Complexity

Question: What is the complexity of this method? Answer: Unknown.

Complexity

Question: What is the complexity of this method?

Answer: Unknown.

However, if you count the following and add:

- Upper bound on \# arcs to follow (often fewer),
- \# polynomial systems to solve, and
- Bézout number of each,
then the total number of paths/arcs to follow is less than twice the Bihan-Sottile bound!

Complexity

Question: What is the complexity of this method?
Answer: Unknown.
However, if you count the following and add:

- Upper bound on \# arcs to follow (often fewer),
- \# polynomial systems to solve, and
- Bézout number of each,
then the total number of paths/arcs to follow is less than twice the Bihan-Sottile bound!
(The complexity of curve-tracing/path-following is unknown in general.)

Gameplan

1. Background on proof of Bihan-Sottile bound
2. Proof \longrightarrow Algorithm
3. Example (pretty pictures)
4. A word about complexity
5. Further plans

Further plans

- Generalize algorithm to $\mathrm{L}>2$.
- Increase numerical security.
- Extend software (KhRo - see Frank's website) to L>2.
- Add Gale duality pre- and post-processing to KhRo.
- Parallelize.
- Applications.

Thanks!

For more details, please see "Khovanskii-Rolle continuation for real solutions," arXiv:0908.4579
(Ask me about $\mathrm{SI}(\mathrm{AG})^{2}$ if you don't know about it.)

