Upper Limits

David A. van Dyk¹ Joint work with Vinay Kashyap² and Members of the California-Boston AstroStatistics Collaboration

¹Department of Statistics, University of California, Irvine ²Smithsonian Astrophysical Observatory

BIRS, July 2010

2 Upper Limits

Goals

- Clear up the terminology of "upper bounds" and "upper limits" among (high energy?) astronomers.
- Clarify the probability calculations of "upper limits".
- Illustrate a difficulty with frequency coverage of selected confidence intervals.

I am not an Astronomer....

Detection Problems

For simplicity, consider a simple Poisson model

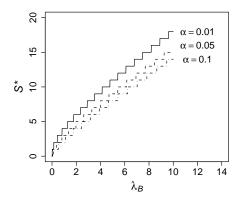
$$n_B|(\lambda_B, r, \tau_B) \sim \text{Poisson}(r\tau_B\lambda_B)$$

 $n_S|(\lambda_S, \lambda_B, \tau_S) \sim \text{Poisson}(\tau_S(\lambda_S + \lambda_B))$

For simplicity we assume λ_B is known. We use a standard hypothesis testing framework:

> H_0 There is no source: $\lambda_S = 0$ H_A There is a source: $\lambda_S > 0$.

Detection Threshold


The detection threshold n_{S}^{\star} is the smallest value such that

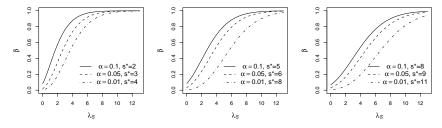
$$\Pr(\boldsymbol{n}_{\mathsf{S}} > \boldsymbol{n}_{\mathsf{S}}^{\star} | \lambda_{\mathsf{S}} = \boldsymbol{0}, \lambda_{\mathsf{B}}, \tau_{\mathsf{S}}, \tau_{\mathsf{B}}, \boldsymbol{r}) \leq \alpha,$$

If $n_S \le n_S^*$ we conclude there is insufficient evidence to declare a source detection.

If $n_S > n_S^*$ we conclude there is sufficient evidence to declare a source detection.

Detection Threshold

 α -level detection threshold $n_{\rm S}^{\star}$ as a function of the background intensity λ_B .



The *power* of the test to detect a source as a function of its intensity is

$$\beta(\lambda_{\mathsf{S}}) = \Pr(n_{\mathsf{S}} > n_{\mathsf{S}}^{\star} | \lambda_{\mathsf{S}}, \lambda_{\mathsf{B}}, \tau_{\mathsf{S}}, \tau_{\mathsf{B}}, r).$$

Note $\beta(\lambda_{S} = 0) \leq \alpha$.

Power

Power for $\lambda_B = 1, 3, 5$ and given α

Typical Detection Prodedure

When there is a detection astronomers often

- Report a detection
- 2 Report a confidence interval for λ_S

When there is not a detection astronomers often

- Report no detection
- 2 Report an "Upper Limit" for λ_S

What is the difference?

Upper Limits

What is an "upper limit"?

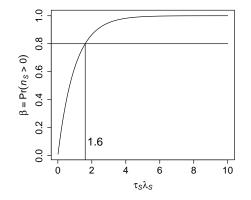
In astronomy upper limits are inextricably bound to source detection: by an upper limit, an astronomer means

The maximum intensity that a source can have without having at least a probability of β_{\min} of being detected under an α -level detection threshold.

or conversely,

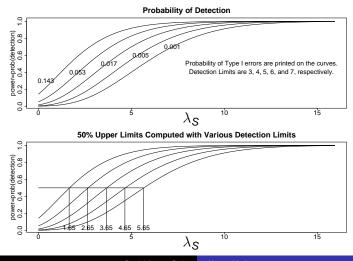
The smallest intensity that a source can have with at least a probability of β_{\min} of being detected under an α -level detection threshold.

Requires two probability calculations.

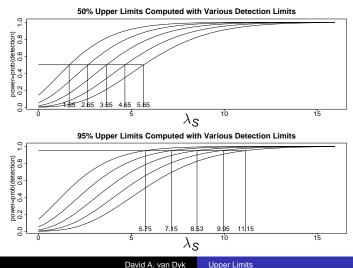


Upper Limits are analogous to sample sizes as follows:

If you don't have a detection, the sample size indicates how much you should worry.


The Upper Limit aims to directly calibrate this.

Illustrating Upper Limits


Upper limit with no background contamination.

Effect of Detection Threshold on UL

David A. van Dyk Upper Limits

Effect of UL probability on UL

David A. van Dyk

Upper Limits and Power

• In a typical power calculation, we would find the minimum $\tau_{\rm S}~{\rm so}$

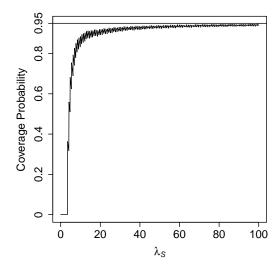
$$\beta(\lambda_{S}) = \Pr(n_{S} > n_{S}^{\star} | \lambda_{S}, \lambda_{B}, \tau_{S}, \tau_{B}, r)$$

achieves a given value for a given λ_s . Say 90% for $\lambda_s = 2$.

• For an upper limit we solve the same equation, but fixing $\tau_{\rm S}$ and solving for $\lambda_{\rm S}$.

Like power, an upper limit does not depend on the data and can be computed in advance.

2 Upper Limits



The Typical Procedure

- In the typical procedure, the confidence interval is only reported if a source is detected.
- But deciding whether to report the CI based on the data alters it frequency properties.
- This is similar to the problem reported in Feldman and Cousins (1998).

Unfortunately, frequency properties depend on what you would have done, had you had a different data set.

Under Coverage

David A. van Dyk Upper Limits

Proposed Procedure

Always report

- Whether the source was detected.
- A Confidence Interval for the source intensity.
- An upper limit, to quantify the strength of the experiment.

Proposed Procedure

Always report

- Whether the source was detected.
- A Confidence Interval for the source intensity.
- An upper limit, to quantify the strength of the experiment.

But NEVER a p-value!!