Marginalization vs. Profiling

Marginal distribution for signal *s*, eliminating backgrond *b*:

 $p(s|D,M) \propto p(s|M)\mathcal{L}_m(s)$

with $\mathcal{L}_m(s)$ the marginal likelihood for s,

$$\mathcal{L}_m(s) \equiv \int db \; p(b|s) \, \mathcal{L}(s,b)$$

For insight: Suppose for a fixed s, we can accurately estimate b with max likelihood \hat{b}_s , with small uncertainty δb_s .

$$\mathcal{L}_{m}(s) \equiv \int db \ p(b|s) \mathcal{L}(s,b)$$

$$\approx p(\hat{b}_{s}|s) \mathcal{L}(s,\hat{b}_{s}) \delta b_{s} \qquad best \ b \text{ given } s$$

$$b \text{ uncertainty given } s$$

Profile likelihood $\mathcal{L}_p(s) \equiv \mathcal{L}(s, \hat{b}_s)$ gets weighted by a *parameter* space volume factor.

Slides for Banff Discovery Workshop, July 2010 - Tom Loredo, Dept. of Astronomy, Cornell University

$$\mathcal{L}_m(s) \approx p(\hat{b}_s|s) \mathcal{L}(s, \hat{b}_s) \delta b_s$$
 best *b* given *s*
b uncertainty given *s*

Methods for handling nuisance parameters aim to account for *nuisance parameter uncertainty*.

Profiling takes into account variation of the best-fit value of b with s. This will typically be the most important effect of b uncertainty. It accounts for correlation between s and b that is ignored if one just fixes $b = \hat{b}$.

Marginalization implicitly does this, and *additionally accounts for* the uncertainty in \hat{b}_s . When δb_s varies with s, one typically finds the marginal is wider than the profile; the profile ignores important uncertainty.

Bivariate normals: $\mathcal{L}_m \propto \mathcal{L}_p$

General result: For a linear (in params) model sampled with Gaussian noise, and flat priors, $\mathcal{L}_m \propto \mathcal{L}_p$.

In asymptotically normal regime, $\mathcal{L}_m \propto \mathcal{L}_p$. Otherwise, they will likely *differ*.

In *"measurement error problems"* the difference can have dramatic consequences.

Astrophysics Example: SN 1987A m_{ν} Limits

Marginal PDF and profile likelihood for $m_{\bar{\nu}_e}$ based on SN 1987A neutrino energies and arrival times; two SN ν emission models.

Discrete Example: Basu's Problem*

Urn contains 1000 colored red ("1") and green ("-1") balls:

- 980 have color θ , uniquely numbered from $\mathcal{S} = \{1, 2, \dots, 980\}$
- 20 have color - heta, all with the same (unknown) number $\phi \in \mathcal{S}$

What is the color of the majority, θ ?

Color data only

Draw a ball; observe only its color, x.

Sampling distribution: Knowing ϕ does not help you predict the color \rightarrow the sampling dist'n does not depend on ϕ :

$$p(x| heta,\phi) = egin{cases} 0.98 & ext{for } x= heta\ 0.02 & ext{for } x=- heta \end{cases}$$

Maximum likelihood guess is $\theta = x$. This will be correct with long-run frequency 0.98.

Color & number data

Draw a ball; observe its color, x, and number, n.

Sampling distribution:

$$p(x, n|\theta, \phi) = p(x|\theta, \phi)p(n|x, \theta, \phi)$$

$$= \begin{cases} 0.98 \times \frac{1}{980} = 0.001 & \text{for } \theta = x, \text{ any } \phi \\ 0.02 \times 1 = 0.02 & \text{for } \theta = -x, \ n = \phi \\ 0.02 \times 0 = 0 & \text{for } \theta = -x, \ n \neq \phi \end{cases}$$

Profile likelihood: Plug in $\hat{\phi}(\theta)$:

$$\mathcal{L}_{p}(\theta) \equiv p(x, n | \theta, \hat{\phi}(\theta))$$
$$= \begin{cases} 0.001 & \text{if } \theta = x \\ 0.02 & \text{if } \theta = -x \end{cases}$$

Maximum profile likelihood guess is $\theta = -x$. This will be correct with long-run frequency 0.02. *Marginal likelihood*: Use flat prior over S for ϕ :

$$\mathcal{L}_{m}(\theta) \equiv \sum_{\phi=1}^{980} \frac{1}{980} p(x, n | \theta, \phi)$$
$$= \begin{cases} 0.98/980 & \text{for } \theta = x \\ 0.02/980 & \text{for } \theta = -x \end{cases}$$

Maximum marginal likelihood guess is $\theta = x$.

Example: Draw a red ticket numbered 42.

The one hypothesis with (θ = Green, ϕ = 42) has larger likelihood and posterior probability than any hypothesis with θ = Red.

But there are *so many* hypotheses with θ = Red that it is more plausible (probable!) that one of them is true, than that θ = Green.

We must somehow account for the size of the plausible ϕ space.

Continuous Example: The Neyman-Scott problem

Calibrating a noise level

Need to measure several sources with signal amplitudes μ_i , with an "uncalibrated" instrument that adds Gaussian noise with *unknown* but constant σ .

Ideally, either:

- Measure calibration sources of known amplitudes; the scatter of the measurements from the known values allows easy inference of σ.
- Measure one source many times; from many samples we can easily learn both μ_i and σ .

Neyman-Scott problem (1948): Calibrate as-you-go

- No calibration sources are available.
- We have to measure *N* sources with finite resources, so only a few measurements of each source are available.

The multiple measurements of a single source yield a noisy estimate of σ .

 \rightarrow Pool all the data to more precisely estimate σ .

Pairs of measurements

Make 2 measurements (x_i, y_i) for each of the N quantities μ_i . Likelihood:

$$\mathcal{L}(\{\mu_i\},\sigma) = \prod_i \frac{\exp\left[-\frac{(x_i-\mu_i)^2}{2\sigma^2}\right]}{\sigma\sqrt{2\pi}} \times \frac{\exp\left[-\frac{(y_i-\mu_i)^2}{2\sigma^2}\right]}{\sigma\sqrt{2\pi}}$$

Profile likelihood $\mathcal{L}_{\rho}(\sigma) = \max_{\{\mu_i\}} \mathcal{L}(\{\mu_i\}, \sigma)$ Plugs in $\hat{\mu}_i = \frac{1}{2}(x_i + y_i)$

Joint & Marginal Results for $\sigma = 1$

The marginal $p(\sigma|D)$ and $\mathcal{L}_p(\sigma)$ differ dramatically! Profile likelihood estimate converges to $\sigma/\sqrt{2}$.

The total # of parameters grows with the # of data. \Rightarrow Volumes along μ_i do not vanish as $N \rightarrow \infty$.

Astro Example—Distribution of Source Magnitudes

Measure m_i of sources following a "rolling power law" flux dist'n (i.e., a "rolling exponential" magnitude dist'n; inspired by TNOs)

Simulate 100 surveys of populations drawn from the same dist'n. Simulate data for photon-counting instrument, fixed count threshold. Measurements have uncertainties 1% (bright) to \approx 30% (dim). Analyze simulated data with maximum ("profile") likelihood and Bayes.

Parameter estimates from Bayes (circles) and profile likelihood (crosses):

Uncertainties don't average out!

This failure of profile likelihood has been (re)discovered several times in various astronomical sub-disciplines.

A Generalized Wilks Theorem*

Setting

Test $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$

Log likelihood ratio:

$$\lambda(\theta) = \log \mathcal{L}(\hat{\theta}) - \log \mathcal{L}(\theta)$$

Test using maximum log likelihood ratio, $\lambda_0 = \lambda(\theta_0)$. What is the asymptotic distribution for λ_0 ?

Conditions (crudely summarize!)

- The MLE converges to the true value, but in a weaker sense than requiring asymptotic normality
- Likelihood contours are "fan-shaped" (i.e., scaled versions of a single shape)
- The size of the contours grows like a power of λ

A Generalized Wilks Theorem*

Setting

Test $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$

Log likelihood ratio:

$$\lambda(\theta) = \log \mathcal{L}(\hat{\theta}) - \log \mathcal{L}(\theta)$$

Test using maximum log likelihood ratio, $\lambda_0 = \lambda(\theta_0)$. What is the asymptotic distribution for λ_0 ?

Conditions (crudely summarize!)

- The MLE converges to the true value, but in a weaker sense than requiring asymptotic normality
- Likelihood contours are "fan-shaped" (i.e., scaled versions of a single shape)
- The size of the contours grows like a power of λ

Result

Theorem: $\lambda_0 \sim \text{Gamma}(rp)$ for p parameters, and r = power for how contour size grows with λ .

Examples given:

- Multivariate exponential, where contours are hypertriangles and MLE is exponentially distributed; $2\lambda \sim \chi^2_{2p}$
- Multivariate uniform
- Nonlinear normal, $N(\theta^3, I_p)$; MLE \sim cube root of a normal; contours are ellipses; here r = 1/2
- Different asymptotic behavior in different directions
- Nuisance parameters