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Finding Exoplanets via Stellar Reflex Motion

All bodies in a planetary system orbit wrt the system’s center of
mass, including the host star:

Astrometric Method
Sun’s Astrometric Wobble from 10 pc
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Doppler Radial Velocity (RV)
Method

Doppler Shift Along Line-of-Sight

≈ 430 of ≈ 460 currently known exoplanets found using RV method
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RV Data Via Precision Spectroscopy
Eschelle grating

Disperses horizontally

Cross disperser

Disperses vertically
CCD detector

Top View

Side View

Collimator

Eschelle

Spectrometer

IAAT ORFEUS

Millipixel spectroscopy Meter-per-second velocities

This step involves nontrivial analysis that should be investigated!
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Population Properties
California-Carnegie search of ∼1300 FGKM stars

How many stars have planets?

What about the non-detections?
Now that we know this, should it influence detection criteria?
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What are the orbits like?

Plots ignore uncertainties & strong selection effects!
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A Variety of Related Statistical Tasks

• Planet detection — Is there a planet present? Are multiple
planets present?

• Orbit estimation — What are the orbital parameters? Are
planets in multiple systems interacting?

• Orbit prediction — What planets will be best positioned for
follow-up observations?

• Population analysis — What types of stars harbor planets?
With what frequency? What is the distribution of planetary
system properties?

• Optimal scheduling — How may astronomers best use limited,
expensive observing resources to address these goals?

Spectral

Data

Radial Velocity 

Curves

Planet 

Detection & 

Measurement

Exoplanet Population 

Properties
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Conventional RV Orbit Fitting
Analysis method: Identify best candidate period via periodogram;
fit parameters with nonlinear least squares/min χ2

System: HD 3651

P = 62.23 d

e = 0.63

m sin i = 0.20 M_J

a = 0.28 AU 

Fisher et al. 2003
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Schuster Periodogram (1898)

Setting
Find “hidden periodicities” in terrestrial phenomena: weather,
earthquakes, magnetic storms

Describe periodicity via:

• Period τ (e.g., seconds, days)

• (Natural) frequency ν = 1/τ (e.g., Hz, cycles/day)

• Angular frequency ω = 2πν (e.g., rad/s, rad/day)

Data are N uniformly sampled measurements contaminated by
additive noise:

di = f (ti ) + ǫi , ti = iδt

Data spacing is δt
Data span a total duration T = tN − t1 Noise std dev’n σ
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Periodogram
“It is convenient to have a word for some representation of a
variable quantity which shall correspond to the ‘spectrum’ of a
luminous radiation. I propose the word periodogram. . . ”

By analogy with Fourier analysis of a signal:

P(ω) ≡ 1

N

[

C 2(ω) + S2(ω)
]

,

where

C (ω) =
∑

i

di

σ
cos(ωti), S(ω) =

∑

i

di

σ
sin(ωti ).

Use to test compatibility of data with null hypothesis of just noise;
report p-value
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Frequency spacing

26 samples from H0

Sampling interval δt = 1 s

Duration T = 25 s

Fourier spacing δν = 1/Nδt ≈ 1/T

N/2 Fourier frequencies

χ
2

2
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Connection to (parametric) harmonic analysis (Lomb, Scargle)
Fit a single sinusoid model via least squares/max likelihood:

di = A cos(ωti + φ) + ǫi

= A1 cos ωti + A2 sinωtiǫi

Sum-squared residuals (∝ log likelihood):

χ2(ω,A, φ) =
∑

i

[di − A cos(ωti − φ)]2

A (linearly) separable nonlinear model (linear in amplitudes)
→ Â(ω) = [Â1(ω), Â2(ω)] via linear least squares

Profile likelihood Lp(ω) ∝ e−χ2
p(ω)/2, with

χ2
p(ω) ≡ χ2(ω, Â(ω))

= χ2(A = 0) − P(ω) = ∆χ2(ω)

Use this to define periodogram for non-uniformly sampled data →
Lomb-Scargle periodogram
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Bayesian counterpart (Jaynes, Bretthorst)
Marginal likelihood for frequency (flat or broad conjugate
prior):

Lm(ω) ≡
∫

dA1

∫

dA2 π(A1,A2) L(A1,A2, ω)

∝∼ exp[P(ω)/2]

Normality + linearity → extremizing and marginalizing lead to
similar inferences for estimation of ω
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Frequentist vs. Bayesian detection

Frequentist approach:
Maximize P(ν)

Bayesian approach:
Integrate exp[P(ν)]

Frequentist p-value must adjust for # of frequencies examined; p ≈ Np̂
Change sinusoid to Keplerian RV curve → Kepler periodogram

Note: There is no fundamental requirement for a frequentist approach to maximize;

Bickel+ (2006) integrate a statistic derived from the score function, over phase and

frequency. 15 / 69



The Crab Pulsar
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Pulsars from Radio to Gamma Rays
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Getting the Gammas: Fermi

Launched June 2008
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Fermi’s Large Area Telescope

Particle physics in space!

e e

!
LAT

GBM
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Silicon Tracker: Complex Data

LAT Tracker 

Data

Gamma Ray 

Properties

Pulsar 

Detection & 

Measurement

Time, direction, energy

Calorimeter
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Gamma Ray Data: Photon Arrival Times

t

Data D: {ti} for i = 1 to N

Non-homogeneous Poisson point process sampling distribution,
rate r(t; θ):

p(D|θ,M) = exp

[

−
∫

T

dt r(t)

] N
∏

i=1

r(ti )
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Conventional Approaches
Try to reject a “null” (constant rate) hypothesis with an omnibus
test for candidate ω; report p-value adjusted for # trials.

• Rayleigh statistic:

R2(ω) =
1

N





(

N
∑

i=1

cos ωti

)2

+

(

N
∑

i=1

sinωti

)2




• Z 2
n statistic:

Z 2
n (ω) =

n
∑

j=1

R2(jω)

• χ2-Epoch folding:

• Fold data with trial period → phases θi = ωti mod 2π;
bin → nj , j = 1 to M

• Calculate Pearson’s χ2(ω) vs. nj = N/M ; average over phase
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Needle in a Huge Haystack

Recall the frequency scale: δν ≈ 1/T .

For gamma-ray pulsars T ∼ weeks to months for N ∼ 103 to 105:

1/T ∼ .1 to 1 µHz νmax ∼ 3 kHz

→ ∼ 109 frequencies to examine

Actually much worse: pulsars spin down → need ν̇ parameter;
∼ 103 ν̇ values to explore

Clever tricks reduce this burden by a few orders of magnitude:

• Tapered time difference FFTs (Atwood+ 2006)

• Tapering + dynamic programming (Meinshausen+ 2008)

Still need simple yet sensitive methods
What statistic is “best”? What role is there for Bayesian models?
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Fermi’s Pulsars

Detected 46 (54?) gamma ray pulsars to date, 16 (24?) unknown
at other wavelengths
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Population-Level Pulsar Science

Emission physics

GSFC

Radio & Gamma From Cap

Gamma From Gap

Fermi data point to separate regions for radio and gamma emission

LAT Tracker 

Data

Gamma Ray 

Properties

Pulsar 

Detection & 

Measurement

Pulsar Population 

Properties
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Neutron star formation (radio pulsars)

Arzoumanian+ (2002):

• Data = Locations, velocities,
spins, luminosities of radio
pulsars

• Model birth, motion, beam
geometry, lifetime

• Bayesian multilevel model
accounts for selection &
uncertainties

• Compare rival models with
Bayes factors

Dist’n of Pulsar Birth Kicks
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Measuring the Cosmic Microwave Background
From space: WMAP

Measures the whole sky
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From the South Pole
BOOMERanG QUaD

Measure small patches at high resolution to learn about small
angular scales
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Church (2005)
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CMB Measurements

Diff'l 

Radiometer 

Time Series

Also get polarization maps and spectra
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Modeling the CMB
Expand temperature fluctuations in spherical harmonics:

∆T (n)

T̄
≡ T (n) − T̄

T̄

=

∞
∑

l=1

l
∑

m=−l

almYlm(n)

Make two assumptions (approximations?):

• Large-scale isotropy

• Gaussianity

Then a theory with parameters θ predicts variances (power
spectrum) Cl(θ) such that:

p(alm|Cl) =
1√

2πCl

exp

(

−1

2

|alm|2
Cl

)

Note: Only 2l + 1 measurements constrain Cl → “cosmic variance”
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What the Universe is Made Of

Coles 2009
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Testing Assumptions

Look for non-Gaussianity, unusual anisotropy (e.g., from nontrivial
topology):

• Low quadrupole?

• Patterns in m-dependence?

• Hot/cold spots?

• Alignment of multipoles?

• . . .

Methods use wavelets, needlets,
higher-order corr’n functions. . .
Issues:

• What can spatial statistics offer?

• When you look so hard for something
unusual in voluminous data, aren’t
you bound to find something?
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The Highest Energy Particle Physics

Pierre Auger Observatory

• 3000 sq km sites, Argentina

• SDs: 1600 H2O Cerenkov tanks/site

• FDs: 4 flourescence tel/station

• Northern (CO):  R&D funded; plan 

4000 improved SDs over 20k sq km
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Ultra-High Energy Cosmic Rays

CRs with E > 1019.5 eV are suppressed by interaction with the
CMB.

GZK Cutoff!

Auger Collab'n 2008
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Coincidences Among UHE Cosmic Rays?
AGASA data above GZK cutoff (Hayashida et al. 2000)

h12

Supergalactic Plane

+60

-60

-30

+30

0

o

o

o

o
Galactic Plane

Dec

RA
h h

24

AGASA + A20

• 58 events with E > 4 × 1019 eV

• Energy-dependent direction uncertainty ∼ 2◦

• Significance test — Search for coincidences < 2.5◦:

• 6 pairs; <∼1% significance

• 1 triplet; <∼1% significance
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Auger UHE CR Data: AGN Association?
Auger data above GZK cutoff (Nov 2007)

• 27 events with E > 5.7 × 1019 eV

• Energy-dependent direction uncertainty <∼1◦

• Crosses = 472 AGN with distance D < 75 Mpc

• Significance test of correlation with AGN:

• Tune E , D, angle cutoffs with early events

• Apply to 13 new events → p-value 1.7 × 10−3
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Issues In Coincidence Assessment

Directional, spatial, spatio-temporal

• Directional uncertainties — “Hard” box/annulus, spherical
“normal” distributions; extended sources

• Choice of statistic — How to measure “close”?
Nearest neighbor distance, correlation functions, Mahalanobis
distance, likelihood ratio, Bayes factor

• Proximity criterion — How close is “close enough”?
Significance level/p-value, power, odds/Bayes factor

• Multiple testing — How to account for number of
candidates? Bonferroni, FDR, Bayes; exploration algorithms
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Bayesian Model Comparison

• Calculate p(D|Hi) for each Hi

• Favor the hypothesis that makes the observed data most
probable (up to a prior factor)

H0

H1

H2

p
(D

|H
i
)

D

Dobs

If the data are improbable under H0, the hypothesis may be wrong,
or a rare event may have occured. Significance tests reject the
latter possibility at the outset.
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Bayesian Coincidence Assessment
Two-Source Case

n2

D2D1

n1

π(n)

D5

π(n)

n

D1 D2

Not associated Associated

n1

ℓ1(n1)

ℓ2(n2)

n2

ℓ1(n)ℓ2(n)

n
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Direction uncertainties accounted for via likelihoods for object
directions:

ℓi(n) = p(di |n), normalized w.r.t. n (convention)

E.g., Fisher distribution for azimuthally symmetric errors

H0: No repetition

p(d1, d2|H0) =

∫

dn1 p(n1|H0) ℓ1(n1) ×
∫

dn2 · · ·

=
1

4π

∫

dn1 ℓ1(n1) × 1

4π

∫

dn2 · · ·

=
1

(4π)2
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H1: Associated (same direction!)

p(d1, d2|H0) =

∫

dn p(n|H0) ℓ1(n) ℓ2(n)

Odds favoring association:

O = 4π

∫

dn ℓ1(n) ℓ2(n)

≈ 2C

σ2
12

exp

[

−Cθ2
12

2σ2
12

]

; σ2
12 = σ2

1 + σ2
2

Odds O
Angular error θ12 = 26◦ θ12 = 0◦

σ1 = σ2 = 10◦ ≈ 1.5 ≈ 75

σ1 = σ2 = 25◦ ≈ 7 ≈ 12
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Challenge: Large hypothesis spaces

For N = 2 events, there was a single coincidence hypothesis, M1

above.

For N = 3 events:

• Three doublets: 1 + 2, 1 + 3, or 2 + 3

• One triplet

The number of alternatives (partitions, ̟) grows combinatorially:

• Must assign sensible priors to partitions

• Must deal with computational challenge of summing over
them
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D1D2

n1 n2 nM

D3 D5D8 D4
D9

π(nα), ̟

θ
Astrophysical model parameters:

hosts, luminosity, B field...

Site distribution, partition
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Small-N Brute Force Example

Bayesian Coincidence Assessment for AGASA UHECRs

N = 58 directions; search for coincidences

n2 n3 N

1 0 1653
2 0 1,272,810
3 0 607,130,370
0 1 30,856
0 2 404,753,580

Method:

• Identify all pairs (13) and triplets (3) with
multiplet Bayes factors > 1

• Generate & sum over all partitions including
those multiplets (gives lower bound)

• Use flat prior over all possible (n2, n3)

Odds for repetition: 1.4 (i.e., no significant
evidence)

n_3
n

_2

48 / 69



Advantages of Bayesian Approach

Several “tuning” issues in conventional approaches are addressed
by averaging over choices:

• No angular cuts: Introduce latent ni and marginalize

• Energy cut may be similarly dealt with by introducing
distances and B field parameters and marginalizing

• Inter/intra-galactic B field scatter similarly dealt with via
parameters controlling inflation of uncertainties

Remaining issue: Choice of candidate population(s) to associate
with.

Is there any non-subjective way to handle this?
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Some Recurring Statistical Themes

• Accounting for hypothesis multiplicity (“look elsewhere?”)

• Choosing a test statistic

• Building chains of discovery & measurement
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Penalizing for Searching
Bayes factors and “Occam factors”

p, L

θ
∆θ

δθ
Prior

Likelihood

p(D|Mi) =

∫

dθi p(θi |M) L(θi) ≈ p(θ̂i |M)L(θ̂i )δθi

≈ L(θ̂i)
δθi

∆θi

= Maximum Likelihood × Occam Factor

Models with more parameters often make the data more
probable — for the best fit

Occam factor penalizes models for “wasted” volume of
parameter space

Quantifies intuition that models shouldn’t require fine-tuning
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Frequentist multiplicity corrections

Frequentist periodicity searches test the null at N statistically
independent frequencies. If p̂ is the largest p-value, the
reported p-value is calculated with a Bonferonni correction for
test multiplicity:

p = 1 − (1 − p̂)N ≈ Np̂ for small p̂

This controls the “family-wise error rate” (FWER) at level p;
we seek to not have a single false rejection among any of the
N tests.
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Questions
Since N ∝ the frequency range, this behaves similarly to the
Occam factor. Does this ameliorate the Jeffreys-Lindley
“paradox” in this setting (in favor of Bayes-like behavior)?

The periodogram is just a log MLR (for periodic vs. constant
alternatives). Why is period uncertainty treated differently
here than in the usual Wilks’s theorem setting (∆χ2 with
DOF = # new params)?

Put differently: Bayesian model assessment always takes into
account the range of the space searched; MLR tests usually
only account for the dimension. What conditions require
range-dependent corrections (from frequentist POV)?

54 / 69



Optimal Searching Under Cost Constraints

The number of periodogram bumps grows linearly with size &
duration of data; the size of period-drift search space grows
quadratically. How to efficiently search?

Meinshausen, Bickel & Rice (2009):
“Recursive coarsening”

• Throw out some information in the
data (e.g., tapered time series)

• Reduces sensitivity to small
signals (decreases power)

• But also reduces
computational cost for
searching

• Use search with coarsened data to
focus subsequent search with
less-coarsened data

• Use dynamic programming to
optimally search subject to cost
constraints
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Alternatives and Choice of Test Statistic
Setting

• Construct a test with small Type I error rate α for H0

• Seek large power β(HA) against alternatives

• Focus on local alternatives: Distance from H0 ∼ C/
√

n

y1

y2

y3

H0

HA

56 / 69



Limitations of Omnibus Goodness-of-Fit Tests

Theorem (Janssen 2000; Lehman & Romano 2005)

• β ≈ α for all HA except those along a finite set of directions
(independent of n)

• The number of directions grows with α

“The results are not surprising. Every statistician knows that it is impossible to
separate an infinite sequence of different parameters simultaneously if only a finite
number of observations is available.”
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Freedman’s Theorems (3 of 5)
“Diagnostics cannot have much power against general
alternatives” (Freedman 2009 & forthcoming book)

• Consider a GoF test for smoothness of data pdf (no
δ-functions):
There are pdfs with large δ’s for which β ≈ α

• Consider a GoF test for 2-D IID hypothesis, α < 1/2:
There are some alternatives with ρ ≈ 1 for which β ≈ 0

• Consider a GoF test of H0 against all HA:
There are some remote HA (various metrics) with
β(HA) → 0
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Outlook

• “Specification error is extremely difficult to evaluate using
internal evidence.”

• Diagnostics should be performed more often; they can pick up
gross modeling errors.

• “Skepticism about diagnostics is warranted . . . a model can
pass diagnostics with flying colors yet be ill-suited for the task
at hand.”

• “A proper choice of test must be based on some knowledge of
the possible set of alternatives for a given experiment.” (L&R
2005)
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Pulsar searching: Bickel, Kleijn & Rice (2007)
No matter how clever you are, no matter how rich the dictionary
from which you adaptively compose a detection statistic, no matter
how multilayered your hierarchical prior, your procedure will not be
globally optimal.

• Uses Bickel+ (2006) framework to concentrate power in set of
a priori specified orthogonal directions

• Uses a finite Fourier basis

• Uses score (derivative of log-L at null) rather than L ratio

• Handles frequency uncertainty via averaging

• Handles frequency derivative
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Score Tests: Lazy Scientist’s MLR?

Maximum likelihood ratio (MLR) test
Consider a model with parameter θ, and two (simple)
hypotheses:

H0 : θ = θ0 H1 : θ = θ1

The most powerful test of H1 vs. H0 rejects H0 if likelihood
ratio exceeds a critical value:

L(θ1)

L(θ0)
≡ p(D|θ1)

p(D|θ0)
> C

If H1 is composite, the MLR test plugs in the MLE for θ1,

L(θ̂1)

L(θ0)
> C

Requires fitting both null and alternative
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Score test
Consider log-likelihood ratio test for θ1 = θ0 + ǫ:

L(θ0 + ǫ) − L(θ0) > log C for L(θ) ≡ logL(θ)

→ ǫ
dL

dθ

∣

∣

∣

θ0

> log C

Define the score function S(θ) ≡ dL/dθ; build a test statistic
from S(θ0).

Can show that:

E[S(θ)|θ] = 0, E[S2(θ)|θ] = I(θ) (Fisher info)

So test the null using Q = S2(θ0)
I(θ0)

∼ χ2
1 (asymp.)

• Does not require any fitting of H1

• Approximately the MLR test for θ1 = θ0 + ǫ

Bickel+ (2006) use this for pulsar searching, testing against
alternatives in a Fourier family.
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Chains of Discovery
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“Feedback” Paths
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Implementing Chains of Discovery

Discoveries must be communicated to facilitate reuse:

• Bayes: report marginal likelihoods for interesting parameters
But priors must be chosen carefully if many possibly related
parameters are marginalized

• Frequentist: report profile likelihoods
But we know that profiling can be bad, tragically so in
measurement error problems

• Frequentist: InCA group’s method for propagating uncertainty
by inverting tests

How to implement “feedback”/adaptivity?
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Feedback Example: Adaptive Threshold vs.

Multilevel Modeling

Setting: Counting sources (real vs. spurious)
Measure N = 100 objects with additive Gaussian noise, σ = 1:

• 30 have A = 2.2

• 70 have A = 0

Detect via 100 tests of H0 : A = 0

Detection Result:
Source Present Negative Positive Total

H0: No T− F+ ν0

H1: Yes F− T+ ν1

Total N− N+ N
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Thresholding Controlling FWER and FDR
Threshold criteria:

• Control family-wise error rate at level α: accept objects with
p-valuesp = α/N, aiming to not make a single false discovery
→ 9 (accurate) discoveries for FWER = 20%

• Control false discovery rate, 〈F+/N+〉 = 20% via
Benjamini-Hochberg → 25 discoveries (4 false)

• Other choices possible
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Rejected 25 nulls in 100 tests
30 true non-nulls present

4 false discoveries

100% null prediction
20% FDR cutoff
FDR null accepted
FDR null rejected
FW null rejected

Issue with FRD control:
Astronomers will use detections to
infer distributions; will be biased
for dim sources
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Multilevel Model Approach

Let f = fraction of objects with A = 2.2.

If f were known, it would the prior probability for a Bayesian odds
calculation.

Treat f as unknown (flat prior); infer it from the data:
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One can say there are about 30
sources present, without being
able to say for sure whether many
of the candidates are sources or
not.
Caution: The “upper level” prior
needs some care in more complex
settings (Scott & Berger 2008;
MLM literature)

68 / 69



Final Provocation

Thesis: Important data analyses are often used sequentially

• Sequential experimentation/exploration

• Chains of discovery (individual → population)

Herman Chernoff on sequential analysis (1996):

I became interested in the notion of experimental design in a
much broader context, namely: what’s the nature of scientic
inference and how do people do science? The thought was not
all that unique that it is a sequential procedure. . .

Although I regard myself as non-Bayesian, I feel in sequential
problems it is rather dangerous to play around with
non-Bayesian procedures.... Optimality is, of course, implicit in
the Bayesian approach.
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