Ordering of Trials

Jim Linnemann MSU

Banff Birs Statistics
July 14, 2010

Look Elsewhere

$=$ Trials Effects
= Multiple Comparisons

use this to talk to statisticians

Multiple discoveries possible?
False Discovery Rate

Look Elsewhere Problems

Worst: unknown number of trials

- blind analysis
- tuning sample, then freeze cuts

Next worst:
loss of power due to large Ntrials eg, lots of places to look on sky

How to "spend" trials Importance ordering: write out a protocol

S.D. Biller/Astroparticle Physics 4 (1996) 285-291

How to order?

Your (collaboration's) choice:
Physics interest
Prior probability

MC: expected sensitivity

Result of Ordering

First hypothesis: 1 trial (best sensitivity)
 $2^{\text {nd }}$
 2

Nth
N (full Bonferroni penalty)

On average, $1 / 2$ the trials
Only "last" searches pay the full price

Trials Degrade Apparent Significance

Nominal significance must be de-rated by trials

$$
\begin{aligned}
& \text { pcorrected } \sim N \text { pnominal if you looked at } N \text { plots } \\
& \int_{\sigma}^{\infty} \operatorname{Gau}(0,1)=N \int_{\sigma_{\text {nom }}}^{\infty} \operatorname{Gau}(0,1)
\end{aligned}
$$

To achieve significance σ after trials correction

$\sigma=$| 2 | 3 | 4 | 5 | (corrected σ desired) |
| :---: | :---: | :---: | :---: | :---: |

requires larger $\sigma_{\text {nom }}(N)$ before trials correction for N trials
N equivalent observed significance $\sigma_{\text {nom }}=$

----	----	---	----	----
10	2.9	3.7	4.6	5.5
50	3.4	4.1	4.9	5.7
400	3.9	4.5	5.3	6.1
16 K	4.7	5.3	5.9	6.7

bigger change for smaller corrected σ

Details: Bonferroni Correction Math:

 Derive: pcorrected $\sim q=N \times$ pnominalExact Binomial probability for ≥ 1 of N found above p_{n} :

$$
\begin{gathered}
p_{c}=1-\left(1-p_{n}\right)^{N}=\left(1-e^{-q}\right)+O\left(\frac{q^{2}}{N}\right) \approx q\left(1-\frac{q}{2}\right) \\
\mathrm{p}_{\mathrm{c}}=\mathrm{q} \text { for } \mathrm{N}=1, \text { and } \mathrm{p}_{\mathrm{c}} \sim \mathrm{q} \text { for } \mathrm{q} \ll 1 \\
N \mathrm{p}=\mathrm{q} \text { sufficient for } \mathrm{p}_{\mathrm{c}} \text { of } 2 \sigma \text { or more }
\end{gathered}
$$

$p_{c}=q=N p$ in terms of σ :

$$
p_{c}=\int_{\sigma}^{\infty} \operatorname{Gau}(0,1)=q=N \int_{\sigma_{\text {nom }}}^{\infty} \operatorname{Gau}(0,1)
$$

