Significance In the On-Off Problem

Jim Linnemann Michigan State University Banff/Birs July 12, 2010

What Can HEP and Astrophysics Practice Teach Each Other? Astrophysics (especially γ ray) aims at simple formulae (very fast) calculates σ 's directly (Asymptotic Normal) hope it's a good formula HEP (especially Fermilab practice) calculates probabilities by MC (general; slow) translates into σ 's for communication loses track of analytic structure

Cousins, Linnemann, Tucker, NIM A 595 (2008) 480-501

Observed vs. Prospective Significance

- This discussion: Observed Significance (of my data)
 - Post-hoc: (after data)
 - Need definition of Z
 - Choice of Zmin for observational claim

= max P(observed|background)

- Prospective Observability (before data, to optimize expt.)
 - Should consider \underline{Pr} (Z > Zmin) (making observational claim)

Backgrounds in Astro and HEP

Astrophysics: On-source vs. Off-source
 – side observation with τ = Toff/Ton (sensitivity ratio)

$$\hat{\mu}_b = n_{off} / \tau;$$

 HEP: estimate background in defined sideband region
 τ is ratio of signal and sideband region

Li and Ma (Gamma Ray)

$$Z_{PL} = \sqrt{2} \sqrt{x \bullet Ln[(1+\tau)(\frac{x}{x+y})]} + y \bullet Ln[(\frac{1+\tau}{\tau})(\frac{y}{x+y})]$$
$$x = Non; \quad y = Noff$$

Generic test for composite hypothesis + Wilks' Theorem (conditions not satisfied)

Binomial Proportion Test: Ratio of Poisson Means

P-value = Pr Binomial(\geq Non | p, k) where $p = \alpha/(1+\alpha)$ $p - value = \sum_{j=x}^{k} {k \choose j} p^{j} (1-p)^{k-j}$

Holds k = Non + Noff fixed (k a nuisance parameter)

UMPU (Uniformly Most Powerful Unbiased)

for **Composite Hypothesis test** $\mu_{on} / \alpha \mu_{off} > 1$

Optimal? Not continuous—issues for small n

Not in common use; probably should be

Known in HEP and Astrophysics: but not as optimal, nor standard procedure

- Zhang and Ramsden claim too conservative for Z small Even if true, we want Z > 4
- Closed form in term of special functions, or sums
 - Applying for large N requires some delicacy; **ZPL**

Bayesian Methods

- In common use in HEP
 - Cousins & Highland "smeared likelihood" efficiency
- Predictive Posterior (after background measurement)
 P(Non | Noff) (integrate posterior μ_b)
 A flat prior for background, gives Gamma dist. for p(μ_b | Noff)
 - P value calc using Gamma:(also Alexandreas--Astro)IDENTICAL to Frequentist Binomial Test

Predictive Posterior Bayes P-value (HEP)

In words: tail sum averaged over Bayes posterior for mean

or: integrate before sum

$$P-value(x, y) = \sum_{j=x}^{\infty} p(j|y)$$

$$p(j \mid y) = \int p(j \mid \mu) p(\mu \mid y) d\mu$$
$$p(j \mid \mu) = \frac{\mu^{j} e^{-\mu}}{j!}$$

$$p_{\Gamma}(\mu \mid y) = \frac{\beta^{y} e^{-\beta}}{y!}, \quad \beta = \mu / \alpha$$

 $p_N(\mu \mid y) = Normal \left[(\mu - b) / \delta b \right]$

Comparing the Methods

Some test cases from published literature And a few artificial cases Range of Non, Noff values Different τ values (mostly > 1)

Can show some approximate Z's strictly > others including popular shortcut formulas
Others cross over as τ varies

Coverage Calculations (Tucker, Cousins)

Reference	[40]	[41]	[42]	[43]	[44]	[44]	[45]	[46]
n_{on} n_{off} au $\hat{\mu}_b$ $s = n_{on} - \hat{\mu}_b$ σ_b $f = \sigma_b / \hat{\mu}_b$ Reported p Reported Z	4 5 5.0 1.0 3.0 0.447 0.447	6 18.78 14.44 1.3 4.7 0.3 0.231 0.003 2.7	9 17.83 4.69 3.8 5.2 0.9 0.237 0.027 1.9	17 40.11 10.56 3.8 13.2 0.6 0.158 2E-06 4.6	50 55 2.0 27.5 22.5 3.71 0.135	67 15 0.5 30.0 37 7.75 0.258	200 10 0.1 100.0 100 31.6 0.316	523 2327 5.99 388.6 134 8.1 0.0207 5.9
See conclusion $Z_{\text{Bi}} = Z_{\Gamma}$ binomial Z_{N} Bayes Gaussian Z_{PL} profile likelihood Z_{ZR} variance stabilization	1.66 1.88 1.95 1.93	2.63 2.71 2.81 2.66	1.82 1.94 1.99 1.98	4.46 4.55 4.57 4.22	2.93 3.08 3.02 3.00	2.89 3.44 3.04 3.07	2.20 2.90 2.38 2.39	5.93 5.93 5.93 5.86
Not recommended $Z_{\text{BiN}} = s/\sqrt{n_{\text{tot}}/\tau}$ $Z_{\text{nn}} = s/\sqrt{n_{\text{on}} + n_{\text{off}}/\tau^2}$ $Z_{\text{ssb}} = s/\sqrt{\mu_{\text{b}} + s}$ $Z_{\text{bo}} = s/\sqrt{n_{\text{off}}(1 + \tau)/\tau^2}$	2.24 1.46 1.50 2.74	3.59 1.90 1.92 3.99	2.17 1.66 1.73 2.42	5.67 3.17 3.20 6.47	3.11 2.82 3.18 3.50	2.89 3.28 4.52 3.90	2.18 2.89 7.07 3.02	6.16 5.54 5.88 6.31
Ignore σ_b Z_P Poisson: ignore σ_b $Z_{sb} = s/\sqrt{\hat{\mu}_b}$	2.08 3.00	2.84 4.12	2.14 2.67	4.87 6.77	3.80 4.29	5.76 6.76	8.76 10.00	6.44 6.82
Unsuccessful ad hockery Poisson: $\mu_{\rm b} \rightarrow \hat{\mu}_{\rm b} + \sigma_{\rm b}$ $s/\sqrt{\hat{\mu}_{\rm b} + \sigma_{\rm b}}$	1.56 2.49	2.51 3.72	1.64 2.40	4.47 6.29	3.04 4.03	4.24 6.02	5.51 8.72	6.01 6.75

What did we learn?

- Shapes of tails matter at 3-5 sigma ZBi: no undercoverage; can overcover for small N Recommended
- ZPL quite reasonable behavior (despite Wilks); pretty fast to calculate ZN undercovers, worse at high Z (Cranmer) S/√B and S/√(S+B): just don't: tails are wrong Small τ is hard to get right

Summary

Should use Binomial Test for small N, large Zmin

Good Frequentist Properties
smallest N, overcovers a bit
numerically, more work than ZPL
Binomial Test and L. Ratio have roots in Hyp Testing

For high and moderate N, ZPL Likelihood Ratio Good Not so much for low N or negative

Most wrong formulae overestimate significance S/\sqrt{B} is way too optimistic—ignores uncertainty in B You MUST check properties ZN has coverage problems at large Zmin

References

Li & Ma Astroph. Journ. 272 (1983) 314-324 Zhang & Ramsden Experimental Astronomy 1 (1990) 145-163 Fraser Journ. Am. Stat. Soc. 86 (1990) 258-265 Alexandreas et. al. Nuc. Inst. & Meth. A328 (1993) 570-577

Gelman et. al., Bayesian Data Analysis, Chapman & Hall (1998) (predictive p-value terminology)