> Significance In the On-Off Problem

Jim Linnemann

Michigan State University
Banff/Birs
July 12, 2010

What Can HEP and Astrophysics Practice Teach Each Other?

Astrophysics (especially γ ray) aims at simple formulae (very fast) calculates o's directly (Asymptotic Normal) hope it's a good formula
HEP
(especially Fermilab practice)
calculates probabilities by MC (general; slow) translates into σ 's for communication loses track of analytic structure

Cousins, Linnemann, Tucker, NIM A 595 (2008) 480-501

Observed vs. Prospective

Significance

- This discussion: Observed Significance (of my data)
- Post-hoc: (after data)
- Need definition of Z
- Choice of Zmin for observational claim $=\max \mathrm{P}$ (observed|background)
- Prospective Observability (before data, to optimize expt.)

Backgrounds in Astro and HEP

- Astrophysics: On-source vs. Off-source
- side observation with $\tau=$ Toff/Ton (sensitivity ratio)

$$
\hat{\mu}_{b}=n_{\text {off }} / \tau ;
$$

- HEP: estimate background in
defined sideband region
τ is ratio of signal and sideband region

Li and Ma (Gamma Ray)

$$
\begin{gathered}
Z_{P L}=\sqrt{2} \sqrt{x \bullet \operatorname{Ln}\left[(1+\tau)\left(\frac{x}{x+y}\right)\right]+y \bullet \operatorname{Ln}\left[\left(\frac{1+\tau}{\tau}\right)\left(\frac{y}{x+y}\right)\right]} \\
x=\mathrm{Non} ; \mathrm{y}=\mathrm{Noff}
\end{gathered}
$$

Generic test for composite hypothesis

+ Wilks' Theorem (conditions not satisfied)

Binomial Proportion Test: Ratio of Poisson Means

P-value $=\operatorname{Pr} \operatorname{Binomial}(\geq \operatorname{Non} \mid \mathrm{p}, \mathrm{k})$ where $\mathrm{p}=\alpha /(1+\alpha)$

$$
p-\text { value }=\sum_{j==}^{k}\left(\begin{array}{l}
k \\
j
\end{array} p^{j}(1-p)^{k-j}\right.
$$

Holds $\mathrm{k}=$ Non + Noff fixed (k a nuisance parameter)
UMPU (Uniformly Most Powerful Unbiased)
for Composite Hypothesis test $\mu_{\text {on }} / \alpha \mu_{\text {off }}>1$
Optimal? Not continuous-issues for small n
Not in common use; probably should be
Known in HEP and Astrophysics: but not as optimal, nor standard procedure

- Zhang and Ramsden claim too conservative for Z small Even if true, we want $Z>4$
- Closed form in term of special functions, or sums
- Applying for large N requires some delicacy; ZpL

Bayesian Methods

- In common use in HEP
- Cousins \& Highland "smeared likelihood" efficiency
- Predictive Posterior (after background measurement)
$\mathrm{P}($ Non \mid Noff $) \quad$ (integrate posterior μ_{b})
A flat prior for background, gives Gamma dist. for $\mathrm{p}\left(\mu_{\mathrm{b}} \mid\right.$ Noff $)$

P value calc using Gamma: (also Alexandreas--Astro)
IDENTICAL to Frequentist Binomial Test

Predictive Posterior Bayes P-value (HEP)

In words: tail sum averaged over Bayes posterior for mean or: integrate before sum

$$
P-\operatorname{value}(x, y)=\sum_{j=x}^{\infty} p(j \mid y)
$$

$$
p(j \mid y)=\int p(j \mid \mu) p(\mu \mid y) d \mu
$$

$$
p(j \mid \mu)=\frac{\mu^{j} e^{-\mu}}{j!}
$$

$$
p_{\Gamma}(\mu \mid y)=\frac{\beta^{y} e^{-\beta}}{y!}, \quad \beta=\mu / \alpha
$$

$$
p_{N}(\mu \mid y)=\operatorname{Normal}[(\mu-b) / \delta b]
$$

Comparing the Methods

Some test cases from published literature
And a few artificial cases
Range of Non, Noff values
Different τ values (mostly >1)

Can show some approximate Z's strictly > others including popular shortcut formulas
Others cross over as τ varies

Coverage Calculations (Tucker, Cousins)

Reference	[40]	[41]	[42]	[43]	[44]	[44]	[45]	[46]
$n_{\text {on }}$	4	6	9	17	50	67	200	523
$n_{\text {off }}$	5	18.78	17.83	40.11	55	15	10	2327
τ	5.0	14.44	4.69	10.56	2.0	0.5	0.1	5.99
$\hat{\mu}_{\text {b }}$	1.0	1.3	3.8	3.8	27.5	30.0	100.0	388.6
$s=n_{\text {on }}-\hat{\mu}_{\mathrm{b}}$	3.0	4.7	5.2	13.2	22.5	37	100	134
σ_{b}	0.447	0.3	0.9	0.6	3.71	7.75	31.6	8.1
$f=\sigma_{\mathrm{b}} / \hat{\mu}_{\mathrm{b}}$	0.447	0.231	0.237	0.158	0.135	0.258	0.316	0.0207
Reported p		0.003	0.027	2E-06				
Reported Z		2.7	1.9	4.6				5.9
See conclusion								
$Z_{\mathrm{Bi}}=Z_{\Gamma}$ binomial	1.66	2.63	1.82	4.46	2.93	2.89	2.20	5.93
Z_{N} Bayes Gaussian	1.88	2.71	1.94	4.55	3.08	3.44	2.90	5.93
$Z_{\text {PL }}$ profile likelihood	1.95	2.81	1.99	4.57	3.02	3.04	2.38	5.93
$Z_{\text {ZR }}$ variance stabilization	1.93	2.66	1.98	4.22	3.00	3.07	2.39	5.86
Not recommended								
$Z_{\text {BiN }}=s / \sqrt{n_{\text {tot }} / \tau}$	2.24	3.59	2.17	5.67	3.11	2.89	2.18	6.16
$Z_{\mathrm{nn}}=s / \sqrt{n_{\text {on }}+n_{\text {off }} / \tau^{2}}$	1.46	1.90	1.66	3.17	2.82	3.28	2.89	5.54
$Z_{\text {ssb }}=s / \sqrt{\mu_{\mathrm{b}}+s}$	1.50	1.92	1.73	3.20	3.18	4.52	7.07	5.88
$Z_{\mathrm{b} 0}=s / \sqrt{n_{\text {off }}(1+\tau) / \tau^{2}}$	2.74	3.99	2.42	6.47	3.50	3.90	3.02	6.31
Ignore σ_{b}								
Z_{P} Poisson: ignore σ_{b}	2.08	2.84	2.14	4.87	3.80	5.76	8.76	6.44
$Z_{\text {sb }}=s / \sqrt{\mu_{\mathrm{b}}}$	3.00	4.12	2.67	6.77	4.29	6.76	10.00	6.82
Unsuccessful ad hockery								
Poisson: $\mu_{\mathrm{b}} \rightarrow \hat{\mu}_{\mathrm{b}}+\sigma_{\mathrm{b}}$	1.56	2.51	1.64	4.47	3.04	4.24	5.51	6.01
$s / \sqrt{\mu_{\mathrm{b}}+\sigma_{\mathrm{b}}}$	2.49	3.72	2.40	6.29	4.03	6.02	8.72	6.75

What did we learn?

Shapes of tails matter at 3-5 sigma

ZBi: no undercoverage; can overcover for small N Recommended
ZPL quite reasonable behavior (despite Wilks); pretty fast to calculate
ZN undercovers, worse at high Z (Cranmer)
$\mathrm{S} / \sqrt{\mathrm{B}}$ and $\mathrm{S} / \sqrt{ }(\mathrm{S}+\mathrm{B})$: just don't: tails are wrong
Small τ is hard to get right

Summary

Should use Binomial Test for small N, large Zmin
Good Frequentist Properties
smallest N, overcovers a bit
numerically, more work than ZpL
Binomial Test and L. Ratio have roots in Hyp Testing
For high and moderate N, Zpl Likelihood Ratio Good
Not so much for low N or negative
Most wrong formulae overestimate significance
$\mathrm{S} / \sqrt{ } \mathrm{B}$ is way too optimistic-ignores uncertainty in B
You MUST check properties
Zn has coverage problems at large Zmin

References

Li \& Ma Astroph. Journ. 272 (1983) 314-324 Zhang \& Ramsden Experimental Astronomy 1 (1990) 145-163 Fraser Journ. Am. Stat. Soc. 86 (1990) 258-265 Alexandreas et. al. Nuc. Inst. \& Meth. A328 (1993) 570-577

Gelman et. al., Bayesian Data Analysis, Chapman \& Hall (1998) (predictive p -value terminology)

