Multiscale mortar methods for Stokes-Darcy flow

Ivan Yotov Department of Mathematics, University of Pittsburgh

Workshop on Nonstandard Discretizations for Fluid Flows BIRS, November 22-26, 2010

Joint work with Vivette Girault, Paris VI and Danail Vassilev, Pitt

Acknowledgment: Ben Ganis, UT Austin

Coupled Stokes and Darcy flows Γ_s

- surface water groundwater flow
- flow in fractured porous media
- flow through vuggy rocks
- flow through industrial filters
- fuel cells
- blood flow

Outline

- Mathematical model for the coupled Stokes-Darcy flow problem
 - Interface conditions
 - Existence and uniqueness for a global weak formulation
 - Equivalence to a domain decomposition weak formulation
- Multiscale mortar finite element discretizations
 - Fine scale (h) conforming Stokes elements and mixed finite elements for Darcy
 - Coarse scale (H) mortar finite elements on subdomain interfaces
 - Discrete inf-sup condition
 - Existence and uniqueness of a discrete solution
 - Convergence analysis
- Non-overlapping domain decomposition
 - Reduction to a mortar interface problem
 - A multiscale flux basis
- Computational results

Flow equations

Deformation tensor **D** and stress tensor **T** in Ω_s :

$$\mathbf{D}(\mathbf{u}_s) := \frac{1}{2} (\nabla \mathbf{u}_s + (\nabla \mathbf{u}_s)^T), \quad \mathbf{T}(\mathbf{u}_s, p_s) := -p_s \mathbf{I} + 2\mu \mathbf{D}(\mathbf{u}_s).$$

Stokes flow in Ω_s :

$$\begin{aligned} -\nabla \cdot \mathbf{T} &\equiv -2\mu \nabla \cdot \mathbf{D}(\mathbf{u}_s) + \nabla p_s &= \mathbf{f}_s & \text{in } \Omega_s \quad (\text{conservation of momentum}), \\ \nabla \cdot \mathbf{u}_s &= 0 \quad \text{in } \Omega_s \quad (\text{conservation of mass}), \\ \mathbf{u}_s &= 0 \quad \text{on } \Gamma_s \quad (\text{no slip}). \end{aligned}$$

Darcy flow in Ω_d :

$$\mu \mathbf{K}^{-1} \mathbf{u}_d + \nabla p_d = \mathbf{f}_d \text{ in } \Omega_d \text{ (Darcy's law)},$$

$$\nabla \cdot \mathbf{u}_d = q_d \text{ in } \Omega_d \text{ (conservation of mass)},$$

$$\mathbf{u}_d \cdot \mathbf{n}_d = 0 \text{ on } \Gamma_d \text{ (no flow)}.$$

Interface conditions

Mass conservation across Γ_{sd} :

$$\mathbf{u}_s \cdot \mathbf{n}_s + \mathbf{u}_d \cdot \mathbf{n}_d = 0$$
 on Γ_{sd} .

Continuity of normal stress on Γ_{sd} :

$$-\mathbf{n}_s \cdot \mathbf{T} \cdot \mathbf{n}_s \equiv p_s - 2\mu \mathbf{n}_s \cdot \mathbf{D}(\mathbf{u}_s) \cdot \mathbf{n}_s = p_d \text{ on } \Gamma_{sd}.$$

Slip with friction interface condition:

(Beavers-Joseph (1967), Saffman (1971), Jones (1973), Jäger and Mikelić (2000))

$$-\mathbf{n}_s \cdot \mathbf{T} \cdot \boldsymbol{\tau}_j \equiv -2\mu \mathbf{n}_s \cdot \mathbf{D}(\mathbf{u}_s) \cdot \boldsymbol{\tau}_j = \frac{\mu\alpha}{\sqrt{K_j}} \mathbf{u}_1 \cdot \boldsymbol{\tau}_j, \ j = 1, d-1, \text{ on } \Gamma_{sd},$$

where $K_j = \boldsymbol{\tau}_j \cdot \mathbf{K} \cdot \boldsymbol{\tau}_j$.

Some previous results

- Existence and uniqueness of a weak solution
 - Discacciati, Miglio, Quarteroni 2002
 - Layton, Schieweck, Y. 2003
 - NSE-Darcy: Girault, Riviere 2009; Discacciati, Quarteroni 2009
- Numerical approximation with Stokes and Darcy elements
 - Discacciati, Miglio, Quarteroni 2002
 - Layton, Schieweck, Y. 2003
 - Riviere, Y. 2005
 - Galvis, Sarkis 2007
 - Babuska, Gatica 2010
 - Riviere, Kanschat 2010
- Numerical approximation with unified finite elements (Brinkman model)
 - Angot 1999
 - Mardal, Tai, Winther 2002
 - Arbogast, Lehr 2006
 - Burman, Hansbo 2005, 2007
 - Xie, Xu, Xue 2008

Global variational formulation

Stokes: $\mathbf{v}_s \in H^1(\Omega_s)^n$, $\mathbf{v}_s = 0$ on Γ_s ,

$$2\mu \int_{\Omega_s} \mathbf{D}(\mathbf{u}_s) : \mathbf{D}(\mathbf{v}_s) - \int_{\Omega_s} p_s \operatorname{div} \mathbf{v}_s - \int_{\Gamma_{sd}} \mathbf{Tn}_s \cdot \mathbf{v}_s = \int_{\Omega_s} \mathbf{f}_s \cdot \mathbf{v}_s$$

Darcy: $\mathbf{v}_d \in H(\operatorname{div}; \Omega_d)$, $\mathbf{v}_d \cdot \mathbf{n}_d = 0$ on Γ_d

$$\mu \int_{\Omega_d} \mathbf{K}^{-1} \mathbf{u}_d \cdot \mathbf{v}_d - \int_{\Omega_d} p_d \operatorname{div} \mathbf{v}_d + \int_{\Gamma_{sd}} p_d \mathbf{v}_d \cdot \mathbf{n}_d = \int_{\Omega_d} \mathbf{f}_d \cdot \mathbf{v}_d$$

Interface term:

$$I = \sum_{j=1}^{n-1} \int_{\Gamma_{sd}} \frac{\mu \alpha}{\sqrt{K_j}} (\mathbf{u}_s \cdot \boldsymbol{\tau}_j) (\mathbf{v}_s \cdot \boldsymbol{\tau}_j) + \int_{\Gamma_{sd}} p_d[\mathbf{v}] \cdot \mathbf{n}_s$$

Global variational formulation, cont.

$$\tilde{X} = \{ \mathbf{v} \in H(\operatorname{div}; \Omega) ; \, \mathbf{v}_s \in H^1(\Omega_s)^n, \, \mathbf{v}|_{\Gamma_s} = \mathbf{0}, \, (\mathbf{v} \cdot \mathbf{n})|_{\Gamma_d} = 0 \}, \quad W = L_0^2(\Omega)$$

$$\|\mathbf{v}\|_{\tilde{X}} = \left(\|\mathbf{v}\|_{H(\operatorname{div};\Omega)}^2 + |\mathbf{v}_s|_{H^1(\Omega_s)}^2\right)^{1/2}$$

Find $(\mathbf{u},p)\in\tilde{X}\times W$ such that

$$\forall \mathbf{v} \in \tilde{X}, \quad \mu \int_{\Omega_d} \mathbf{K}^{-1} \mathbf{u}_d \cdot \mathbf{v}_d + 2\,\mu \int_{\Omega_s} \mathbf{D}(\mathbf{u}_s) : \mathbf{D}(\mathbf{v}_s) - \int_{\Omega} p \operatorname{div} \mathbf{v}$$

$$+ \sum_{j=1}^{n-1} \int_{\Gamma_{sd}} \frac{\mu \alpha}{\sqrt{K_j}} (\mathbf{u}_s \cdot \boldsymbol{\tau}_j) (\mathbf{v}_s \cdot \boldsymbol{\tau}_j) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v},$$

$$\forall w \in W, \quad \int_{\Omega} w \operatorname{div} \mathbf{u} = \int_{\Omega_d} w q_d.$$

Global variational formulation, cont.

$$\tilde{a}(\mathbf{u},\mathbf{v}) = \mu \int_{\Omega_d} \mathbf{K}^{-1} \mathbf{u}_d \cdot \mathbf{v}_d + 2\,\mu \int_{\Omega_s} \mathbf{D}(\mathbf{u}_s) : \mathbf{D}(\mathbf{v}_s) + \sum_{j=1}^{d-1} \int_{\Gamma_{sd}} \frac{\mu \alpha}{\sqrt{K_j}} (\mathbf{u}_s \cdot \boldsymbol{\tau}_j) (\mathbf{v}_s \cdot \boldsymbol{\tau}_j)$$

$$ilde{b}(\mathbf{v},w) = -\int_{\Omega} w \operatorname{div} \mathbf{v}$$

Find $(\mathbf{u}, p) \in \tilde{X} \times W$ such that

$$\forall \mathbf{v} \in \tilde{X}, \quad \tilde{a}(\mathbf{u}, \mathbf{v}) + \tilde{b}(\mathbf{v}, p) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v},$$

$$\forall w \in W, \quad \tilde{b}(\mathbf{u}, w) = -\int_{\Omega} w \, q_d.$$

Lemma: The variational formulation is equivalent to the PDE system.

Existence and uniqueness of a weak solution

Lemma:

$$\forall w \in W, \quad \sup_{\mathbf{v} \in \tilde{X}} \frac{\tilde{b}(\mathbf{v}, w)}{\|\mathbf{v}\|_{\tilde{X}}} \ge \beta \|w\|_{W}$$

Lemma:

$$\tilde{a}(\mathbf{v}, \mathbf{v}) \ge \gamma \|\mathbf{v}\|_{\tilde{X}}^2 \quad \forall \mathbf{v} \in \tilde{X}_0 = \{\mathbf{v} \in \tilde{X} : \text{div} = 0\}$$

Proof: Korn's inequality:

$$\tilde{a}(\mathbf{v}, \mathbf{v}) \ge C(\|\mathbf{v}_s\|_{H^1(\Omega_s)}^2 + \|\mathbf{v}_d\|_{L^2(\Omega_d)}^2)$$

Poincare-type inequality:

$$\forall \mathbf{v} \in \tilde{X}_{0}, \quad \|\mathbf{v}_{s}\|_{L^{2}(\Omega_{s})} \leq C \left(\|\mathbf{v}_{s}\|_{H^{1}(\Omega_{s})}^{2} + \|\mathbf{v}_{d}\|_{L^{2}(\Omega_{d})}^{2}\right)^{1/2} \quad \Box$$

Lemma: The variational problem has a unique solution.

Domain decomposition variational formulation

Let $\overline{\Omega}_s = \cup \overline{\Omega}_{s,i}$, $\overline{\Omega}_d = \cup \overline{\Omega}_{d,i}$.

Interface conditions

Stokes-Stokes interfaces:

$$[\mathbf{v}_s] = 0, \ [\mathbf{T} \cdot \mathbf{n}] = 0 \quad \text{on } \Gamma_{ss}$$

Darcy-Darcy interfaces:

$$[\mathbf{u}_d \cdot \mathbf{n}] = 0, \ [p_d] = 0 \quad \text{on } \Gamma_{dd}$$

$$X = \{ \mathbf{v} |_{\Omega_{s,i}} \in H^1(\Omega_{s,i})^n, \ \mathbf{v} |_{\Omega_{d,i}} \in H(\operatorname{div}, \Omega_{d,i}) + \ \mathsf{BCs}, \\ \mathbf{v} \cdot \mathbf{n} |_{\Gamma_{ij}} \in H^{-1/2}(\Gamma_{ij}) \ \forall \Gamma_{ij} \subset \Gamma_{dd} \cup \Gamma_{sd} \} \\ \Lambda = \{ \mathbf{\lambda} |_{\Gamma_{ij}} \in H^{-1/2}(\Gamma_{ij})^n \ \forall \Gamma_{ij} \subset \Gamma_{ss}, \\ \lambda |_{\Gamma_{ij}} \in H^{1/2}(\Gamma_{ij}) \ \forall \Gamma_{ij} \subset \Gamma_{dd} \cup \Gamma_{sd} \}.$$

Domain decomposition variational formulation, cont.

$$a_{s,i}(\mathbf{u}_{s,i},\mathbf{v}_{s,i}) = 2 \mu \int_{\Omega_{s,i}} \mathbf{D}(\mathbf{u}_{s,i}) : \mathbf{D}(\mathbf{v}_{s,i}) + \sum_{j=1}^{d-1} \int_{\partial\Omega_{s,i}\cap\Gamma_{sd}} \frac{\mu\alpha}{\sqrt{K_j}} (\mathbf{u}_{s,i}\cdot\boldsymbol{\tau}_j) (\mathbf{v}_{s,i}\cdot\boldsymbol{\tau}_j)$$

$$a_{d,i}(\mathbf{u}_{d,i},\mathbf{v}_{d,i}) = \mu \int_{\Omega_{d,i}} \mathbf{K}^{-1} \mathbf{u}_{d,i} \cdot \mathbf{v}_{d,i}, \quad b_i(\mathbf{v}_i,w_i) = -\int_{\Omega_i} w_i \operatorname{div} \mathbf{v}_i$$

$$a(\cdot,\cdot) = \sum a_{s,i}(\cdot,\cdot) + \sum a_{d,i}(\cdot,\cdot), \quad b(\cdot,\cdot) = \sum b_i(\cdot,\cdot)$$

$$b_{\Gamma}(\mathbf{v},\tilde{\mu}) = \int_{\Gamma_{ss}} [\mathbf{v}] \, \boldsymbol{\mu} + \int_{\Gamma_{dd}} [\mathbf{v}\cdot\mathbf{n}] \, \boldsymbol{\mu} + \int_{\Gamma_{sd}} [\mathbf{v}\cdot\mathbf{n}] \, \boldsymbol{\mu}$$

Domain decomposition variational formulation, cont.

Find $\mathbf{u} \in X$, $p \in W$, $\tilde{\lambda} \in \Lambda$:

$$\forall \mathbf{v} \in X, \ a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, p) + b_{\Gamma}(\mathbf{v}, \tilde{\lambda}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v},$$

$$\forall w \in W, \ b(\mathbf{u}, w) = -\int_{\Omega} w \, q_d,$$

$$\forall \tilde{\mu} \in \Lambda, \ b_{\Gamma}(\mathbf{u}, \tilde{\mu}) = 0.$$

Lemma: The two variational formulations are equivalent.

$$\tilde{\lambda} = -\mathbf{T} \cdot \mathbf{n}$$
 on Γ_{ss} , $\tilde{\lambda} = p_d$ on $\Gamma_{sd} \cup \Gamma_{dd}$

Porous media scales

Full fine scale grid resolution \Rightarrow large, highly coupled system of equations \Rightarrow solution is computationally intractable

Multiscale methods

- Variational Multiscale Method
 - Galerkin FEM: Hughes et al; Brezzi
 - Mixed FEM: Arbogast et al
- Multiscale Finite Elements
 - Galerkin FEM: Hou, Wu, Cai, Efendiev et al
 - Mixed FEM: Chen and Hou; Aarnes et al
- Multiscale Mortar Methods: based on domain decomposition and mortar finite elements
 - Mixed FEM: Arbogast, Pencheva, Wheeler, Y.
 - DG-Mixed: Girault, Sun, Wheeler, Y.

More flexible - easy to improve global accuracy by adapting the local mortar grids

Allows for multiphysics subdomain models

Multiscale finite element/subgrid upscaling methods

$$L_{\epsilon}u = f \quad \Rightarrow \quad u \in V : \ a(u, v) = (f, v) \ \forall v \in V.$$

Multiscale approximation: H - coarse grid, $h \approx \epsilon$ - fine grid (subgrid)

$$V_{H,h} = V_H + V'_h$$

Basis for $V'_h(E)$: $\phi^E_{h,i}$, $i = 1, \dots, N_E$,
$$a_E(\phi^E_{H,i} + \phi^E_{h,i}, v_h) = 0 \quad \forall v_h \in V_h(E)$$

Multiscale solution: $u_{H,h} \in V_{H,h}$,

$$a(u_{H,h}, v_{H,h}) = (f, v_{H,h}) \quad \forall v_{H,h} \in V_{H,h}$$

Multiscale mortar approximation

- Each block is an element of the coarse grid.
- Each block is discretized on the fine scale.
- A coarse mortar space on each interface.
- Result: Multiscale solution, fine scale on subdomains, coarse scale flux matching

Finite element discretization

Partition \mathcal{T}_i^h on Ω_i ; \mathcal{T}_i^h and \mathcal{T}_j^h need not match at Γ_{ij} .

Stokes elements $X_{s,i}^h \times W_1^h$ in $\Omega_{s,i}$: **MINI** (Arnold-Brezzi-Fortin), Taylor-Hood, Bernardi-Raugel; contain at least polynomials of degree r_s and $r_s - 1$ resp.

Mixed finite elements $X_{d,i}^h \times W_{d,i}^h$ in $\Omega_{d,i}$: **RT, BDM, BDFM, BDDF**; contain at least polynomials of degree r_d

$$X^h := \bigoplus X^h_i, \ W^h := \bigoplus W^h_i \cap L^2_0(\Omega)$$

 \mathcal{T}^H_{ij} - partition of Γ_{ij} , possibly different from the traces of \mathcal{T}^h_i and \mathcal{T}^h_j

 Λ^H_{ij} : continuous or discontinuous piecewise polynomials of degree at least m_s on Γ_{ss} or m_d on Γ_{dd} and Γ_{sd}

$$\Lambda^H := \bigoplus \Lambda^H_{ij}$$

Nonconforming approximation: $\Lambda^h \not\subset \Lambda$

Multiscale mortar finite element method Find $\mathbf{u}^h \in X^h$, $p^h \in W^h$, $\lambda^H \in \Lambda^H$:

$$\forall \mathbf{v}^h \in X^h, \ a(\mathbf{u}^h, \mathbf{v}^h) + b(\mathbf{v}^h, p^h) + b_{\Gamma}(\mathbf{v}^h, \lambda^H) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}^h,$$

$$\forall w^h \in W^h, \ b(\mathbf{u}^h, w^h) = -\int_{\Omega} w^h q_d,$$

$$\forall \mu^H \in \Lambda^H, \ b_{\Gamma}(\mathbf{u}^h, \mu^H) = 0.$$

Equivalently, letting

$$V^{h} = \{ \mathbf{v}^{h} \in X^{h} : b_{\Gamma}(\mathbf{v}^{h}, \mu^{H}) = 0 \ \forall \, \mu^{H} \in \Lambda^{H} \},\$$

Find $\mathbf{u}^h \in V^h$, $p^h \in W^h$:

$$\forall \mathbf{v}^h \in V^h, \ a(\mathbf{u}^h, \mathbf{v}^h) + b(\mathbf{v}^h, p^h) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}^h,$$

$$\forall w^h \in W^h, \ b(\mathbf{u}^h, w^h) = -\int_{\Omega} w^h q_d.$$

Mortar compatibility conditions

On $\Gamma_{ij} \subset \Gamma_{dd} \cup \Gamma_{sd}$, i < j (assume that Ω_j is a Darcy domain),

$$\forall \mu^{H} \in \Lambda^{H}, \ \sup_{\varphi_{j}^{h} \in X_{j}^{h} \cdot \mathbf{n}} \frac{\langle \varphi_{j}^{h}, \mu^{H} \rangle_{\Gamma_{ij}}}{\|\varphi_{j}^{h}\|_{L^{2}(\Gamma_{ij})}} \geq \beta_{d} \|\mu^{H}\|_{L^{2}(\Gamma_{ij})}.$$

On $\Gamma_{ij} \subset \Gamma_{ss}$, i < j,

$$\forall \boldsymbol{\mu}^{H} \in \Lambda^{H}, \quad \sup_{\boldsymbol{\varphi}_{j}^{h} \in X_{j}^{h}|_{\Gamma_{ij}} \cap H_{00}^{1/2}(\Gamma_{ij})^{n}} \frac{\langle \boldsymbol{\varphi}_{j}^{h}, \boldsymbol{\mu}^{H} \rangle_{\Gamma_{ij}}}{\|\boldsymbol{\varphi}_{j}^{h}\|_{H^{1/2}(\Gamma_{ij})}} \geq \beta_{s} \|\boldsymbol{\mu}^{H}\|_{H^{-1/2}(\Gamma_{ij})}$$

These are much more general than the mortar conditions used in [Bernardi-Maday-Patera], [Ben Belgacem] for Laplace and Stokes, and in [Layton-Schieweck-Y.], [Riviere-Y.], [Galvis-Sarkis] for Stokes-Darcy.

The above condition on Γ_{dd} is similar to the one used in [Arbogast-Cowsar-Wheeler-Y.] and [Arbogast-Pencheva-Wheeler-Y.].

Weakly continuous interpolants

$$V_s^h = \{ \mathbf{v}^h \in X_s^h : \langle [\mathbf{v}^h], \boldsymbol{\mu}^H \rangle_{\Gamma_{ss}} = 0 \ \forall \, \boldsymbol{\mu}^H \in \Lambda^H \}$$

$$V_d^h = \{ \mathbf{v}^h \in X_d^h : \langle [\mathbf{v}^h \cdot \mathbf{n}], \mu^H \rangle_{\Gamma_{dd}} = 0 \ \forall \, \mu^H \in \Lambda^H \}$$

There exists $\Pi^h_s: H^1(\Omega_s) \to V^h_s$ such that

$$(\operatorname{div}(\mathbf{v} - \Pi_s^h \mathbf{v}), w^h)_{\Omega_{s,i}} = 0 \ \forall w^h \in W^h, \ \forall \Omega_{s,i} \subset \Omega_s,$$

$$\sum \|\Pi_s^h \mathbf{v}\|_{H^1(\Omega_{s,i})} \le C \sum \|\mathbf{v}\|_{H^1(\Omega_{s,i})}$$

There exists $\Pi_d^h: H^1(\Omega_d) \to V_d^h$ such that

$$(\operatorname{div}(\mathbf{v} - \Pi_d^h \mathbf{v}), w^h)_{\Omega_{d,i}} = 0 \ \forall w^h \in W^h, \ \forall \Omega_{d,i} \subset \Omega_d,$$

$$\forall \Gamma_{ij} \subset \Gamma_{sd}, \quad \forall \mu^H \in \Lambda_{sd}^H, \int_{\Gamma_{ij}} \mu^H \big(\Pi_d^h(\mathbf{v}) - \Pi_s^h(\mathbf{v}) \big) \cdot \mathbf{n}_s = 0,$$
$$\sum \|\Pi_d^h \mathbf{v}\|_{H(\operatorname{div};\Omega_{s,i})} \leq C \sum \|\mathbf{v}\|_{H^1(\Omega_{s,i})}$$

Discrete inf-sup condition

Global weakly continuous interpolant:

$$\Pi^h : H^1_0(\Omega) \to V^h, \quad \Pi^h|_{\Omega_s} = \Pi^h_s, \ \Pi^h|_{\Omega_d} = \Pi^h_d$$
$$b(\Pi^h \mathbf{v} - \mathbf{v}, w^h) = 0 \ \forall w^h \in W^h, \quad \|\Pi^h \mathbf{v}\|_X \le C \|\mathbf{v}\|_{H^1(\Omega)}.$$

Lemma:

$$\forall w^h \in W^h, \ \sup_{\mathbf{v}^h \in V^h} \frac{b(\mathbf{v}^h, w^h)}{\|\mathbf{v}^h\|_X} \ge \beta \|w^h\|_W$$

Proof: Given $w^h \in W^h$, let $\mathbf{v} \in H^1(\Omega)^n$:

div
$$\mathbf{v} = -w_h$$
, $\|\mathbf{v}\|_{H^1(\Omega)} \le C \|w_h\|_{L^2(\Omega)}$.

Take $\mathbf{v}^h = \Pi^h \mathbf{v}$. \Box

Coercivity

$$Z^h = \{ \mathbf{v} \in V^h : \forall w^h \in W^h, \, b(\mathbf{v}^h, w^h) = 0 \}$$

Lemma:

$$\forall \mathbf{v}^h \in Z^h, \, a(\mathbf{v}^h, \mathbf{v}^h) \ge \alpha \|\mathbf{v}^h\|_X^2$$

Proof: On Ω_s , discrete Korn and Poincare inequalities (Brenner):

$$\sum a_{s,i}(\mathbf{v}^h, \mathbf{v}^h) \ge \alpha_s \sum \|\mathbf{v}^h\|_{H^1(\Omega_{s,i})}^2$$

On Ω_d ,

$$\sum a_{d,i}(\mathbf{v}^h, \mathbf{v}^h) \ge \alpha_d \sum \|\mathbf{v}^h\|_{H(\operatorname{div};\Omega_{d,i})}^2 \; \forall \mathbf{v}^h \in Z^h \qquad \Box$$

Existence and uniqueness of a discrete solution

Lemma: There exists a unique solution to: Find $\mathbf{u}^h \in V^h$, $p^h \in W^h$:

$$\forall \mathbf{v}^h \in V^h, \ a(\mathbf{u}^h, \mathbf{v}^h) + b(\mathbf{v}^h, p^h) = (\mathbf{f}, \mathbf{v}^h),$$

$$\forall w^h \in W^h, \ b(\mathbf{u}^h, w^h) = -(q_d, w^h).$$

Proof: Follows from coercivity and discrete inf-sup condition. \Box

Constants do not depend on the size of the subdomains.

Approximation properties of V^h

Construct an interpolant $I^h: H^1_0(\Omega) \to V^h$, $I^h \mathbf{v} = (I^h_s \mathbf{v}, I^h_d \mathbf{v})$,

$$\sum \|\mathbf{v} - I_s^h \mathbf{v}\|_{H^1(\Omega_{s,i})} \le C \sum h^{r_s} \|\mathbf{v}\|_{H^{r_s+1}(\Omega_{s,i})},$$

$$\sum \|\mathbf{v} - I_d^h \mathbf{v}\|_{H(\operatorname{div};\Omega_{d,i})} \le C \sum (h^{r_d+1} \|\mathbf{v}\|_{H^{r_d+1}(\Omega_{d,i})} + h^{r_s} \|\mathbf{v}\|_{H^{r_s+1}(\Omega_{s,i})}).$$

Convergence analysis

Theorem:

$$\|\mathbf{u} - \mathbf{u}^h\|_X + \|p - p_h\|_W \le C(h^{r_s} + h^{r_d+1} + H^{m_s+1/2} + H^{m_d+1/2})$$
Proof:

$$\|\mathbf{u} - \mathbf{u}^{h}\|_{X} + \|p - p_{h}\|_{W} \le C(\inf_{\mathbf{v}^{h} \in V^{h}} \|\mathbf{u} - \mathbf{v}^{h}\|_{X} + \inf_{w^{h} \in W^{h}} \|p - w_{h}\|_{W}) + \mathcal{R}^{h},$$

where

$$\mathcal{R}^{h} = \sup_{\mathbf{v}^{h} \in V^{h}} \frac{|a(\mathbf{u}, \mathbf{v}^{h}) + b(\mathbf{v}^{h}, p) - (\mathbf{f}, \mathbf{v}^{h})|}{\|\mathbf{v}^{h}\|_{X}}$$

Bound on the non-conforming error:

$$\begin{split} \Theta(\mathbf{v}^{h}) &:= a(\mathbf{u}, \mathbf{v}^{h}) + b(\mathbf{v}^{h}, p) - (\mathbf{f}, \mathbf{v}^{h}) = -b_{\Gamma}(\mathbf{v}_{h}, \lambda) \\ &|\langle [\mathbf{v}^{h} \cdot \mathbf{n}], \lambda \rangle_{\Gamma_{sd}} | \leq CH^{m_{d}+1} \| \mathbf{v}^{h} \|_{X} \\ &|\langle [\mathbf{v}^{h} \cdot \mathbf{n}], \lambda \rangle_{\Gamma_{dd}} | \leq CH^{m_{d}+1/2} \| \mathbf{v}^{h} \|_{X} \\ &|\langle [\mathbf{v}^{h}], \lambda \rangle_{\Gamma_{ss}} | \leq CH^{m_{s}+1/2} \| \mathbf{v}^{h} \|_{X} \quad \Box \end{split}$$

Convergence test

$$\Omega = \Omega_1 \cup \Omega_2$$
, where $\Omega_1 = [0,1] \times [\frac{1}{2},1]$ and $\Omega_2 = [0,1] \times [0,\frac{1}{2}]$

Taylor-Hood on triangles in $\Omega_1;$ lowest order Raviart-Thomas on rectangules in $\Omega_2.$

$$\mathbf{u}_{1} = \begin{bmatrix} (2-x)(1.5-y)(y-\xi) \\ -\frac{y^{3}}{3} + \frac{y^{2}}{2}(\xi+1.5) - 1.5\xi y - 0.5 + \sin(\omega x) \end{bmatrix},\\ \mathbf{u}_{2} = \begin{bmatrix} \omega \cos(\omega x)y \\ \chi(y+0.5) + \sin(\omega x) \end{bmatrix},\\ p_{1} = -\frac{\sin(\omega x) + \chi}{2K} + \mu(0.5-\xi) + \cos(\pi y),\\ p_{2} = -\frac{\chi}{K}\frac{(y+0.5)^{2}}{2} - \frac{\sin(\omega x)y}{K}, \end{bmatrix}$$

where

$$\mu=0.1,\ K=1,\ \alpha=0.5,\ G=\frac{\sqrt{\mu K}}{\alpha},\ \text{and}\ \omega=6.$$

Computed pressure and velocity

Left: horizontal velocity; Right: vertical velocity

Convergence rates

mesh	$\ \mathbf{u}_1 - \mathbf{u}_{1,h} \ _{1,\Omega_1}$	rate	$ p - p_{1,h} _{0,\Omega_1}$	rate
4x4	3.54e-01		3.00e-02	
8x8	8.60e-02	2.04	7.09e-03	2.08
16×16	2.15e-02	2.00	1.76e-03	2.01
32x32	5.47e-03	1.97	4.44e-04	1.99
64×64	1.40e-03	1.97	1.12e-04	1.99

Table 1: Numerical errors and convergence rates in Ω_1 .

mesh	$\ \mathbf{u}_2-\mathbf{u}_{2,h}\ _{0,\Omega_2}$	rate	$ p - p_{2,h} _{0,\Omega_2}$	rate
4x4	2.16e-01		1.18e-01	
8x8	5.79e-02	1.90	2.87e-02	2.04
16×16	1.47e-02	1.98	7.13e-03	2.01
32x32	3.70e-03	1.99	1.78e-03	2.00
64×64	9.27e-04	2.00	4.45e-04	2.00

Table 2: Numerical errors and convergence rates in Ω_2 .

Solution of the algebraic Stokes-Darcy system

$$\begin{pmatrix} A & B & L \\ B^T & 0 & 0 \\ L^T & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \\ \lambda \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ 0 \end{pmatrix} \quad \Leftrightarrow \quad \begin{pmatrix} R & L \\ L^T & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \lambda \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}$$

 ${\bf x}$ - subdomain unknowns; λ - interface unknowns

Matrix is symmetric but indefinite. Form the Shur complement system:

$$L^T R^{-1} L \lambda = L^T R^{-1} f \tag{1}$$

Iterative method for (1) (e.g. CG). Each iteration requires evaluating

$$R^{-1} = \begin{pmatrix} R_1^{-1} & & \\ & \dots & \\ & & R_n^{-1} \end{pmatrix}, \text{ i.e., solving subdomain problems.}$$

Advantages: subdomain solves in parallel; reuse existing Stokes and Darcy codes

Domain decomposition

Subdomain problems with specified interface normal stress $(R^{-1}L\lambda)$: find $(\mathbf{u}_i^{h,*}(\lambda), p_i^{h,*}(\lambda)) \in X_i^h \times W_i^h$ such that

Complementary subdomain problems $(R^{-1}f)$: find $(\bar{\mathbf{u}}_h, \bar{p}_h) \in X_i^h \times W_i^h$ such that

$$a_{i}(\bar{\mathbf{u}}_{i}^{h}, \mathbf{v}_{i}) + b_{i}(\mathbf{v}_{i}, \bar{p}_{i}^{h}) = \int_{\Omega_{i}} \mathbf{f}_{i} \cdot \mathbf{v}_{i}, \quad \mathbf{v}_{i} \in X_{i}^{h}, \quad \mathbf{BC} = \begin{bmatrix} \mathbf{BC} & \mathbf{BC} \\ \mathbf{q}_{1} & \mathbf{0} & \mathbf{q}_{2} \\ \mathbf{BC} & \mathbf{BC} \end{bmatrix} \mathbf{BC}$$
$$b_{i}(\bar{\mathbf{u}}_{i}^{h}, w_{i}) = -\int_{\Omega_{i}} q_{i} w_{i}, \quad w_{i} \in W_{i}^{h}. \quad \mathbf{BC} = \begin{bmatrix} \mathbf{BC} & \mathbf{BC} \\ \mathbf{BC} & \mathbf{BC} \end{bmatrix} \mathbf{BC}$$

Interface problem: find $\lambda^H \in \Lambda^H$ such that

$$s^{H}(\lambda^{H},\mu) \equiv -b_{\Gamma}(\mathbf{u}^{h,*}(\lambda^{H}),\mu) = b_{\Gamma}(\bar{\mathbf{u}}^{h},\mu), \quad \mu \in \Lambda^{H},$$

Recover global velocity and pressure: $\mathbf{u}^h = \mathbf{u}^{h,*}(\lambda^H) + \bar{\mathbf{u}}^h$, $p^h = p^{h,*}(\lambda^H) + \bar{p}^h$.

Interface operator

Steklov–Poincaré operator: $S^{H}:\Lambda^{H}\to\Lambda^{H}$,

$$(S^H \lambda, \mu) = s^H (\lambda, \mu) \quad \forall \ \lambda, \mu \in \Lambda^H$$

Interface problem: Find $\lambda^H \in \Lambda^H$ such that

$$S^H \lambda^H = g^H.$$

On
$$\Gamma_{sd}$$
 and Γ_{dd} :
 $S^H : \mathbf{n} \cdot \mathbf{T} \cdot \mathbf{n} \ (= \lambda^H) \rightarrow [\mathbf{u}^{h,*}(\lambda^H) \cdot \mathbf{n}]$
On Γ_{ss} :

$$S^H: \mathbf{n} \cdot \mathbf{T} \ (= \lambda^H) \to [\mathbf{u}^{h,*}(\lambda^H)]$$

 S^H is Dirichlet-to-Neumann in Darcy

 S^{H} is Neumann-to-Dirichlet in Stokes

Different number of primary variables on different interfaces.

Interface algorithm

Apply the Conjugate Gradient method for $S^H \lambda^H = g^H$.

Computing the action of the operator (needed at each CG iteration):

• Given mortar data $\lambda^H \in \Lambda^H$, project onto subdomain grids:

$$\lambda^H \to Q_{h,i} \lambda^H$$

- Solve local Stokes and Darcy problems in parallel with boundary data $Q_{h,i}\lambda^H$
- Project velocities onto the mortar space and compute the jump:

$$\mathbf{u}_{h,i} \to Q_{h_i}^T \mathbf{u}_{h,i}, \quad S^H \lambda^H = [Q_h^T \mathbf{u}_h] \text{ on } \Gamma_{ss}; \quad S^H \lambda^H = [Q_h^T \mathbf{u}_h \cdot \mathbf{n}] \text{ on } \Gamma_{sd} \text{ and } \Gamma_{dd}$$

Condition number for two subdomains

Lemma: For all $\lambda \in \Lambda^H$,

 $C_{1,1}h\|\lambda\|_{\Gamma_{sd}}^2 \le s_1(\lambda,\lambda) \le C_{1,2}\|\lambda\|_{\Gamma_{sd}}^2 \quad (S_1:H^{-1/2}(\Gamma_{sd})\to H^{1/2}(\Gamma_{sd}))$

 $C_{2,1} \|\lambda\|_{\Gamma_{sd}}^2 \le s_2(\lambda,\lambda) \le C_{2,2} h^{-1} \|\lambda\|_{\Gamma_{sd}}^2 \quad (S_2: H^{1/2}(\Gamma_{sd}) \to H^{-1/2}(\Gamma_{sd}))$

Theorem: $\operatorname{cond}(S_h) = O(h^{-1})$

Proof:

$$(C_{1,1}h + C_{2,1}) \|\lambda\|_{\Gamma_I}^2 \le s(\lambda,\lambda) \le (C_{1,2} + C_{2,2}h^{-1}) \|\lambda\|_{\Gamma_I}^2$$

Condition number for multiple subdomains

$$C_1(h\|\lambda\|_{\Gamma_{ss}}^2 + \|\lambda\|_{\Gamma_{dd}\cup\Gamma_{sd}}^2) \le s(\lambda,\lambda) \le C_2(\|\lambda\|_{\Gamma_{ss}}^2 + h^{-1}\|\lambda\|_{\Gamma_{dd}\cup\Gamma_{sd}}^2)$$

 $C_1 h \|\lambda\|_{\Gamma}^2 \le s(\lambda,\lambda) \le C_2 h^{-1} \|\lambda\|_{\Gamma}^2$

Theorem: $\operatorname{cond}(S_h) = O(h^{-2})$

Condition number studies: two subdomains

1/h	eigmin	eigmax	iter
5	2.41	4.505	9
10	1.977	7.392	14
20	1.980	14.259	21
40	1.981	28.284	28

Condition number studies: multiple subdomains

4 subdomains

1/h	eigmin	eigmax	iter	
4	0.376	12.528	22	
8	0.247	24.683	34	
16	0.121	50.178	70	
32	0.056	102.63	152	
64	0.023	209.98	337	

Varying number of subdomains

1/H	eigmin	eigmax	iter
1	0.443	1.830	12
2	0.061	4.788	41
4	0.061	12.221	68
8	0.061	47.639	111
16	0.042	75.640	184

Multiscale flux basis

 $\left\{\phi_{H,j}^{(k)}\right\}_{k=1}^{N_{H,j}}$: basis for the mortar space $M_{H,j}$ on Γ_j .

$$\lambda_{H,j} = \sum_{k=1}^{N_{H,j}} \lambda_{H,j}^{(k)} \phi_{H,j}^{(k)}$$

Multiscale flux basis:

$$\psi_{H,j}^{(k)} = A_{H,j} \phi_{H,j}^{(k)}, \quad k = 1, \dots, N_{H,j}$$

Computing $\psi_{H,j}^{(k)}$ requires solving a subdomain problem in Ω_j with Dirichlet boundary data $\phi_{H,j}^{(k)}$.

Using the pre-computed multiscale flux basis in the CG iteration:

$$A_{H,j}\lambda_{H,j} = A_{H,j}\left(\sum_{k=1}^{N_{H,j}} \lambda_{H,j}^{(k)} \phi_{H,j}^{(k)}\right) = \sum_{k=1}^{N_{H,j}} \lambda_{H,j}^{(k)} A_{H,j} \phi_{H,j}^{(k)} = \sum_{k=1}^{N_{H,j}} \lambda_{H,j}^{(k)} \psi_{H,j}^{(k)}.$$

Department of Mathematics, University of Pittsburgh

Coupling Stokes-Darcy flow with transport

concentration of a chemical c(x,t)porosity of the medium $\phi(x)$ diffusion - dispersion tensor $D_t(x,t)$ (symmetric and positive definite) source Q

$$\phi c_t + \nabla \cdot (\mathbf{u}c - D_t \nabla c) = \phi Q \quad , \quad \forall (x,t) \in \Omega \times (0,T)$$

IC: $c(x,0) = c^0(x)$, $\forall x \in \Omega$

BC:
$$\begin{cases} (\mathbf{u}c - D_t \nabla c) \cdot \mathbf{n} = \mathbf{u}c_I \cdot \mathbf{n} & \text{on } \Gamma_{in} \\ (D_t \nabla c) \cdot \mathbf{n} = 0 & \text{on } \Gamma_{out} \end{cases}$$

where $\Gamma_{in} := \{ x \in \partial \Omega : \mathbf{u} \cdot \mathbf{n} < 0 \}$ and $\Gamma_{out} := \{ x \in \partial \Omega : \mathbf{u} \cdot \mathbf{n} \ge 0 \}.$

Stability and accuracy of a discontinuous Galerkin method

 $\mathbf{z} = -D_t \nabla c$; (c_h, \mathbf{z}_h) : approximation of (c, \mathbf{z}) ; Norm for (c_h, \mathbf{z}_h) :

$$\begin{aligned} |||(c_h, \mathbf{z}_h)|||^2 &:= \|\phi^{1/2} c_h(T)\|_{0,\Omega}^2 + \int_0^T \|D_t^{-1/2} \mathbf{z}_h\|_{0,\Omega}^2 dt \\ &+ \int_0^T \left\{ \langle |\mathbf{u}_h \cdot \mathbf{n}|, (c_h^-)^2 \rangle_{\Gamma} + \sum_l \langle |\mathbf{u}_h \cdot n_l|, [c_h]^2 \rangle_{\gamma_l} \right\} dt \end{aligned}$$

where $[c_h]$ is the jump across the interior boundary edge γ_l .

Theorem: (Vassilev and Y.)

$$|||(c_h, \mathbf{z}_h)||| \le \left\{ \|\phi^{1/2} c^0\|_{0,\Omega}^2 + \int_0^T \|c_I |\mathbf{u} \cdot \mathbf{n}|^{1/2}\|_{0,\Gamma_{in}}^2 dt \right\}^{1/2} + \int_0^T \|\phi^{1/2} Q\|_{0,\Omega} dt$$

Theorem: (Vassilev and Y.)

$$|||(c-c_h, \mathbf{z}-\mathbf{z}_h)||| \le C(h^k + ||\mathbf{u}-\mathbf{u}_h||_X)$$

Convergence test

	$\mathcal{D} = 10^{-3} \mathbf{I}$			$\mathcal{D} = 0$		
mesh	$\ c-c_h\ _{L^{\infty}(L^2)}$	rate	$\ \ \mathbf{z} - \mathbf{z}_h \ _{L^2(L^2)}$	rate	$\ c-c_h\ _{L^{\infty}(L^2)}$	rate
4x4	1.99e+00		8.95e-03		2.07e+00	
8x8	3.27e-01	2.60	2.71e-03	1.72	3.39e-01	2.61
16×16	8.48e-02	1.95	1.20e-03	1.18	9.04e-02	1.91
32x32	2.23e-02	1.93	5.33e-04	1.17	2.59e-02	1.80
64×64	5.60e-03	2.00	1.77e-04	1.59	7.76e-03	1.74

Contaminant transport example

Computed velocity

$$\mathcal{D}_{\Omega_2} = \phi d_m \mathbf{I} + d_l |\mathbf{u}| \mathbf{M} + d_t |\mathbf{u}| (\mathbf{I} - \mathbf{M}), \quad \mathbf{M} = \frac{\mathbf{u}\mathbf{u}}{|\mathbf{u}|^2}$$

Transport: inflow

Transport: inflow

Transport: inflow

Summary

- Well-posed mathematical flow model based on continuity of flux and normal stress, and the Beavers-Joseph-Saffman condition
- Error analysis for mortar multiscale finite element approximations with very general mortar conditions
- Fine scale local resolution with coarse scale velocity matching
- Non-overlapping domain decomposition: s.p.d. interface problem; local Stokes and Darcy solves in parallel at every CG iteration
- Condition number of interface problem: $O(h^{-1})$ for two subdomains; $O(h^{-2})$ for multiple subdomains
- Multiscale flux basis provides efficient implementation

Current and future work

- Balancing preconditioner for the interface problem
- A posteriori error estimation and adaptive mesh refinement
- Extensions to Navier-Stokes and Brinkman