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The Contact Line Paradox

The motion of a viscous incompressible two-fluid system can be
described by
ρt +∇·(ρu) = 0, in Ω× (0,T ],

ρ(ut + u·∇u)−∇· (2ηε(u)) +∇p = ρf + γHnΣδΣ, in Ω× (0,T ],

∇·u = 0, in Ω× (0,T ],

ρ|t=0 = ρ0, u|t=0 = u0, in Ω.

Where:

I Ω ⊂ Rd d = 2, 3 is a fluid domain.

I f is an external driving force density (gravity).

I γHnΣδΣ is the surface tension at the interface Σ between the
fluids.

I ρ > 0–density, u–velocity, p–pressure.
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The Contact Line Paradox

What boundary conditions?

I The “container” is impermeable. Therefore:

u·n|Γ = 0,

where Γ = ∂Ω and n is the unit normal to Γ.

I Impermeability implies that we do not need boundary
conditions for the pressure and density.

I What about u× n?

I The usual condition is no-slip:

u|Γ = 0.
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The Contact Line Paradox

Sliding of a droplet Droplet relaxation Electrowetting on
dielectric

I The no slip condition implies that there is no movement.

I Eppur si muove.

I This is the contact line paradox.
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The Generalized Navier Boundary Condition

I The no-slip condition can be understood as an approximation
of the Navier boundary condition

β (u−U) ·τ + 2ηε(u)n·τ = 0,

where U is the slip velocity and τ is any vector tangent to Γ.

I Usually β � 1, which is why the no-slip condition is
considered.

I At the contact line, it is important to consider the
uncompensated Young stress, i.e., the extra stress due to the
difference between the current contact angle and the contact
angle at equilibrium.
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The Generalized Navier Boundary Condition

Qian et al. (2003-2006) have proposed the so-called generalized
Navier boundary condition

β (u−U) ·τ + 2ηε(u)n·τ + γ ( cos θd − cos θs) t·τ δ∂Σ = 0,

where

I γ is the surface tension coefficient.

I Σ is the interface between the two fluids. ∂Σ = Σ ∩ Γ is the
contact line.

I θs is the static contact angle (at equilibrium), θd is the
current (dynamic) contact angle.

I t = n× t∂Σ, with t∂Σ the tangent vector to Σ.
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Diffuse Interface Approach

I Using a diffuse interface approach, it is possible to derive the
generalized Navier boundary condition from variational
principles (Qian et al. 2006).

I The free energy of the system is expressed by

F =

∫
Ω

[
λ

2
|∇φ|2 + F (φ)

]
+

∫
Γ
γfs(φ),

where:
I F is the double well Ginzburg-Landau potential.
I γfs is the interfacial free energy per unit area at the fluid-solid

interface,

γfs(φ) =
σ

2
cos(θs) sin

(
πφ

2

)
+
σw1 + σw2

2
.

σ is the fluid-fluid and σwi , i = 1, 2 is the fluid-wall interfacial
tension, resp.
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Diffuse Interface Approach

One arrives at a Cahn Hilliard Navier Stokes system with the
generalized Navier boundary condition{

φt + u·∇φ = γ∆µ, µ = F ′(φ)−∆φ, in Ω,

∂nµ = 0, φt + uτ∂τφ = −(λ∂nφ+ γ′fs(φ)), on Γ,

where:

I φ–phase variable.

I µ–chemical potential.

I γ–mobility.

I λ–mixing energy density.
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Diffuse Interface Approach

The velocity and pressure satisfy
ρ(ut + u·∇u)−∇· (2ηε(u)) +∇p = ρf + λµ∇φ, in Ω,

∇·u = 0, in Ω,

un = 0, on Γ,

β(φ)uτ + 2ηε(u)nτ = (λ∂nφ+ γ′fs(φ)) ∂τφ, on Γ.

where ρ = ρ(φ) and η = η(φ). Usually

ρ(φ) =
ρ1 − ρ2

2
φ+

ρ1 + ρ2

2
η(φ) =

η1 − η2

2
φ+

η1 + η2

2



Diffuse Interface Approach

Theorem
Assume f ≡ 0. The Cahn Hilliard Navier Stokes system with
generalized Navier boundary condition has the following energy
law:

d
dt

[∫
Ω

(
1

2
|σu|2 +

λ

2
|∇φ|2 + F (φ)

)
+

∫
Γ
γfs(φ)

]
+

∫
Ω

(
η|ε(u)|2 + λγ|∇µ|2

)
+

∫
Γ

(
β(φ)|uτ |2 + L(φ)2

)
= 0,

where
L(φ) = λ∂nφ+ γ′fs(φ).
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Time Discretization. Difficulties

The Cahn Hilliard equation is a fourth order system. ⇒ Operator
splitting.

I Kim, Kang and Lowengrub, Conservative multigrid method for
Cahn Hilliard fluids JCP 2004.

I Kay and Welford, Efficient numerical solution of Cahn Hilliard
Navier Stokes fluids in 2D, SIAM J. Sci. Comput. 2007.

I Kay, Styles and Welford, Finite element approximation of a
Cahn Hilliard Navier Stokes system, Interfaces Free Bound.
2008.
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Time Discretization. Difficulties
Navier Stokes equations with variable density. ⇒ Fractional
time-stepping based on penalization of the divergence. Solve

∆Φ = Ψ

instead of

∇·
(

1

ρk+1
∇Φ

)
= Ψ

I Guermond, Salgado Error analysis of a fractional
time-stepping technique for incompressible flows with variable
density. Submitted 2009.

I Guermond, Salgado A fractional step method based on a
pressure Poisson equation for incompressible flows with
variable density. JCP 2009.

I Guermond, Salgado. A fractional step method based on a
pressure Poisson equation for incompressible flows with
variable density. CRASI 2008.
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Time Discretization. Difficulties

Nonstandard boundary conditions.

I Several works deal with “moving contact lines” by adding an
ad hoc term to the contact line that does the trick.

I Only one reference deals with this boundary condition:
Gerbeau-Lelièvre Generalized Navier Boundary Condition and
Geometric Conservation Law for surface tension. CMAME
2009 (ALE approach).
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Time Discretization

I Cahn Hilliard: Find (φk+1, µk+1) that solve
φk+1−φk

∆t + uk+1·∇φk+1 = γ∆µk+1, in Ω

µk+1 = F ′(φk) + A
(
φk+1 − φk

)
−∆φk+1, in Ω

φk+1−φk

∆t + uk+1
τ ∂τφ

k+1 = −L(φk+1, φk), on Γ,

∂nµ
k+1 = 0, on Γ,

where

L(φk+1, φk) = λ∂nφ
k+1 + γ′fs(φk) + B

(
φk+1 − φk

)
.
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Time Discretization

I Auxiliary Variables: Define

ρk+1 =
ρ1 − ρ2

2
φk+1 +

ρ1 + ρ2

2
, ρ? =

1

2

(
ρk+1 + ρk

)
,

p] = 2pk − pk−1.

I Velocity: Find uk+1 that solves:
ρ?uk+1−ρkuk

∆t + ρkuk ·∇uk+1 + 1
2∇·

(
ρkuk

)
uk+1

−∇·
(
2ηε(uk+1)

)
+∇p] = ρk fk+1 + λµk+1∇φk+1, in Ω,

uk+1
n = 0, on Γ,

β(φk)uk+1
τ + ηε(uk+1)nτ = L(φk+1, φk)∂τφ

k+1, on Γ.
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Time Discretization

I Pressure: Find pk+1 that solves:

∆
(

pk+1 − pk
)

=
%

∆t
∇·uk+1, ∂n

(
pk+1 − pk

)
= 0.

where
% = min{ρ1, ρ2}.
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Time Discretization

Theorem
The scheme is stable provided that

A ≥ 1

2
sup
x∈R
|F ′′(x)|, B ≥ 1

2
sup
x∈R
|γ′′fs(x)|.

I The Ginzburg-Landau potential F can be modified so that the
condition on A can be easily satisfied.

I The interface free energy γfs is smooth and bounded.

I The the phase field and velocity steps are coupled through
terms of the form uk+1∇φk+1. In practice, these terms can be
treated semi-implicitly, i.e., uk∇φk+1.
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Numerical Experiments. “Couette Flow” (Symmetric)

I ρ1 = 1 ρ2 = 100.

I η1 = η2 = 10−2.

I β1 = β2 = 1.5

I γ = 0.02.

I λ = 0.001.

I θs = π/2.

I V = 0.25.



Numerical Experiments. “Couette Flow” (Asymmetric)

I ρ1 = 1 ρ2 = 100.

I η1 = η2 = 10−2.

I β1 = 1.5, β2 = 0.591

I γ = 0.02.

I λ = 0.001.

I θs is such that cos θs ≈ 0.38.

I V = 0.25.



Numerical Experiments. Couette Flow (Curved Interfaces)

I ρ1 = 1 ρ2 = 100.

I η1 = η2 = 10−2.

I β1 = 1.5, β2 = 0.591

I γ = 0.02.

I λ = 0.001.

I θs is such that cos θs ≈ 0.38.

I V = 0.25.



Numerical Experiments. Couette Flow (Comparison)

Comparison between the steady-state profiles for the symmetric,
asymmetric and curved cases.

— Symmetric — Asymmetric — Curved



Droplet Relaxation

I ρ1 = 1 ρ2 = 100.

I η1 = η2 = 10−2.

I β1 = 1.5, β2 = 0.591

I γ = 0.02.

I λ = 0.001.

I θs = π/4.
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Conclusions

I The generalized Navier boundary condition is one possible
solution to the contact line paradox.

I The Cahn Hilliard Navier Stokes system with generalized
Navier boundary condition has an energy law.

I Unconditionally stable time-discrete scheme.
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Future Work

I Contact line pinning. Pictures

I Efficient solvers for the Cahn Hilliard part.
Bänsch, Morin, Nochetto. Preconditioning a class of fourth
order problems by operator splitting, Numer. Math. 2010.
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Thank you!
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