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Aim

Stationary compressible Navier-Stokes equations in a bounded
open set of Rd , d = 2 or 3, with EOS p = ργ .

I γ > 1 if d = 2.

I γ > 3 if d = 3 (aim: γ > 3
2 ).

Discretization by a numerical scheme

I MAC scheme : FV on staggered grid, often used in CFD
codes: simple, cheap, and robust.

I Nonconforming FE (Crouzeix Raviart) on velocity and FV on
density, used at IRSN.

 Existence of solutions (P. L. Lions, E. Feireisl, A. Novotny & I.
Strabaska . . . )
No uniqueness result.



Stationary compressible Navier Stokes equations

Ω : bounded open set of Rd , d = 2 or 3,
with Lipschitz continuous boundary ∂Ω,
γ ≥ 1, f ∈ L2(Ω)d and M > 0

div(ρu⊗u)−∆u+∇p = f in Ω, u = 0 on ∂Ω, (MOM)

div(ρ u) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω
ρ(x) = M, (MASS)

p = ργ in Ω (EOS)

Functional spaces if d = 2, of d = 3, γ ≥ 3:
u ∈ H1

0 (Ω)d , p ∈ L2(Ω), ρ ∈ L2γ(Ω).

If d = 3 and 3
2 < γ < 3 : p ∈ L

3(γ−1)
γ (Ω), ρ ∈ L3(γ−1)(Ω).

If d = 3 and γ = 3
2 , p ∈ L1(Ω), ρ ∈ Lγ(Ω).



Weak formulation

Functional spaces : u ∈ H1
0 (Ω)d , p ∈ L2(Ω), ρ ∈ L2γ(Ω)

I Momentum equation:

For all v ∈ H1
0 (Ω)d ,∫

Ω
∇u · ∇v −

∫
Ω
ρu⊗ u : ∇v dx −

∫
Ω
p divv =

∫
Ω
f · v (MOM)w

I Mass equation:∫
Ω
ρ u · ∇ϕ = 0 for all ϕ ∈ C∞c (Ω) (MASS)w

ρ ≥ 0 a.e.,

∫
Ω
ρ = M

I EOS: p = ργ



Main result

I Discretization of (MOM) : grid cell pressure and density
unknowns: (pK )K∈T , (ρK )K∈T
 MAC scheme (most commonly used scheme for
incompressible and compressible Navier Stokes equations)
velocity unknowns (uσ)σ∈E approximation of the normal
velocities
 Crouzeix-Raviart Finite Element (used by IRSN) velocity
unknowns (uσ)σ∈E approximation of the full velocities

I Discretization of the mass equation (and total mass
constraint) by classical upwind Finite Volume

I Existence of a solution for the discrete problem.

I Proof of the convergence (up to subsequence) of the solution
of the discrete problem towards a weak solution of the
continuous problem (no uniqueness result for this problem) as
the mesh size goes to 0



MAC scheme, choice of the discrete unknowns

I T : Cartesian rectangular mesh of Ω, mesh size: h
E : edges of T

I Discretization of u, p and ρ by piecewise constant functions.

nσ is the normal vector to σ, with nσ ≥ 0.

Unknowns for uT :
uσ, σ ∈ E . uσ is an approximate value for u · nσ (uσ ∈ R)
uσ = 0 if σ ⊂ ∂Ω

nσ
σ

K
Unknowns for pT and ρT :
pK , ρK , K ∈ T



MAC scheme, discrete functional spaces, d = 2

I pT , ρT ∈ XT , pT = pK , ρT = ρK in K , K ∈ T (black cell)

I uT = (u
(1)
T , u

(2)
T ) ∈ HT

u
(1)
T = uσ in the pink cell

u
(2)
T = uσ in the green cell

K
pK , ρK

σ
uσ

σ′
uσ′



Discretization of the momentum equation: diffusive term

u, v ∈ HT , the discretization of 〈u, v〉T is:

〈u, v〉T = 〈u1, v1〉T1 + 〈u2, v2〉T2

where 〈u1, v1〉T1 is the usual inner product associated to the
discrete FV Laplace operator on the mesh T1, that is:

〈u1, v1〉T1 = −
∫

Ω
∆T1u1v1 =

∑
σ1=(K1,L1)

|σ1|dσ1

uK1 − uL1

dσ1

vK1 − vL1

dσ1



Discretization of the momentum equation : gradient term

I v ∈ HT . divT v is constant on K , K ∈ T and

|K |divKv =
∑
σ∈EK

sgK ,σvσ|σ|

sgK ,σ = sign(nσ · nK ,σ), nK ,σ is the normal vector to σ,
outward to K

I Pressure gradient term

∫
Ω
pdivvdx is then discretized by∫

Ω
pT divT vT dx =

∑
K∈T
|K |pKdivKv



Discretization of the mass equation div(ρu) = 0,
∫

Ω ρ = M

For K ∈ T ,
∫
∂K ρu · nK ,σ = 0,

∑
K∈T

∫
Ω ρ = M

�∑
σ∈EK

FK ,σ + MK = 0

I discrete mass flux FK ,σ = |σ|ρσsgK ,σuσ
I and upwind choice for ρσ, that is

ρσ =

{
ρK if uσ ≥ 0,

ρL if uσ < 0,
σ = K |L

I MK = |K |hα(ρK − M
|Ω|) with ρ∗K = M

|Ω| and α > 0.

|K |hα(ρK − ρ∗K ) +
∑
σ∈EK

FK ,σ = 0 (MASS)T

Upwinding is enough to ensure (with M) existence (and
uniqueness) of a positive solution ρT , to the discrete mass
equation, for a given uT .



Discretization of the momentum equation : nonlinear
convection term

Nonlinear convection operator compatible with mass balance  
kinetic energy control in the transient case.
Discrete equivalent of the continuous (formal) result:

∂tρ+ div(ρu) = 0
u = 0 on ∂Ω

}
⇒
∫

Ω
(∂t(ρz) + div(ρuz)) =

1

2

d

dt

∫
Ω
ρz2.

Problem: mass balance discretized on p, ρ cells,
nonlinear convection operator on u1, u2 velocity cells.

Solution: Ad hoc computation of the fluxes on the u1, u2 cell
boundaries



Example: nonlinear convection term on a u1 cell (Dσ):

K

σ̃

Dσ Dσ

ε̃

σ

L

σ̃′

σ′ε

Half sum of mass balances on K and L yields mass balance on Dσ:

hα|Kσ|(ρ̃σ − ρ̃∗σ) +
∑

Fσ,ε = 0

ρ̃σ = 1
2|Kσ | (|K |ρK + |L|ρL), ρ̃∗σ = M

|Ω| , Fσ,ε = 1
2

(
FK ,σ + FK ,σ′

)
Compatible discretization of momentum balance:

C (1)
σ = hα|Kσ|(ρ̃σ − ρ̃∗σ)uσ +

∑
ε⊂∂Kσ

Fσ,εuσ

CT =
(
C

(1)
T ,C

(2)
T

)t



Discretization of the EOS

Upwinding in the mass equation  ρK > 0 for all K

Discretization of the EOS:

pK = ργK for all K ∈ T



The MAC scheme for the Navier-Stokes equations

uT ∈ HT , pτ ∈ XT , ρτ ∈ XT∫
Ω
CT v + 〈u, v〉T −

∫
Ω
pT divT v =

∫
Ω
fv,∀v ∈ HT

|K |hα(ρK − ρ∗K ) +
∑
σ∈EK

FK ,σ = 0

pK = ργK for all K ∈ T

(NST )

Convergence result: d = 2, γ > 1 or d = 3, γ > 3, then as
hT → 0, up to a subsequence:

I uT → u in L2(Ω)d , u ∈ H1
0 (Ω)d

I pT → p in Lq(Ω) for any 1 ≤ q < 2 and weakly in L2(Ω)

I ρT → ρ in Lq(Ω) for any 1 ≤ q < 2γ and weakly in L2γ(Ω)

where (u, p, ρ) is a weak solution of the compressible Navier-Stokes
equations



Proof of convergence, main steps

1. Discrete H1
0 (Ω) estimate on the components of uT

2. L2(Ω) estimate on pT and L2γ(Ω) estimate on ρT

These two steps give (up to a subsequence), as h→ 0,
I uT → u in L2(Ω) and u ∈ H1

0 (Ω)d

I pT → p weakly in L2(Ω)
I ρT → ρ weakly in L2γ(Ω)

3. (u, p, ρ) is a weak solution of div(ρu⊗ u)−∆u +∇p = f,
div(ρu) = 0
ρ ≥ 0,

∫
Ω ρ = M

4. Main difficulty: passage to the limit in pT = ργT ; proven by
“strong” convergence of pT and ρT



Hints for the proof of convergence
Assume estimates on un, pn, ρn, and that as n→∞:

un → u in L2(Ω)d and weakly in H1
0 (Ω)d ,

pn → p weakly in L2(Ω),

ρn → ρ weakly in L2γ(Ω).

Assume that u, p and ρ satisfy (MASS) and (MOM).

pn = ργn (EOS)T

How to pass to the limit to obtain (EOS) p = ργ ?
Key ideas, assuming un, pn, ρn to be regular solutions of

div(ρnun⊗un)−∆un+un∇pn = fn in Ω, un = 0 on ∂Ω, (MOM)n

div(ρn un) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω
ρn(x) = Mn, (MASS)n

pn = ργn in Ω (EOS)n

with fn → f in L2(Ω) and Mn → M.



Proof of EOS, idea # 1

pn = ργn in Ω

pn and ρn converge only weakly. . . and γ > 1

Idea # 1 : (for d = 2 or d = 3, γ ≥ 3) prove
∫

Ω pnρn →
∫

Ω pρ and
deduce a.e. convergence (of pn and ρn) and p = ργ .

(For d = 3, γ ≤ 3, use pnρ
θ
n).

In the sequel, we take d = 3, γ > 3.
Assume we have shown that

∫
Ω
pnρn →

∫
Ω
pρ.

Then using the fact that y 7→ yγ is an increasing function on R+,

ρn → ρ in Lq(Ω) for all 1 ≤ q < 2γ,

pn = ργn → ργ in Lq(Ω) for all 1 ≤ q < 2,

and p = ργ .



Proof of EOS, idea # 2 : use momentum equation
Take test function vn ∈ H1

0 (Ω)d such that divvn = ρn
Use

∫
Ω∇u : ∇v =

∫
Ω divu divv +

∫
Ω curlu · curlv, ∀u, v ∈ H1

0 (Ω)d∫
Ω
divundivvn +

∫
Ω
curlun · curlvn −

∫
Ω
pndivvn

=

∫
Ω
ρnun ⊗ un : ∇vn +

∫
Ω
fn · vn.

Assume we can also choose vn such that curlvn = 0 and (vn)n∈N
bounded in H1

0 (Ω)d , then, up to a subsequence,
vn → v in L2(Ω)d and weakly in H1

0 (Ω)d ,

curl(v) = 0, div(v) = ρ.∫
Ω

(div(un)− pn)ρn =

∫
Ω
ρnun ⊗ un : ∇vn +

∫
Ω
fn · vn.

If we prove that
∫

Ω ρnun ⊗ un : ∇vn →
∫

Ω ρu⊗ u : ∇v then:

lim
n→∞

∫
Ω

(divun − pn) ρn =

∫
Ω
ρu⊗ u : ∇v +

∫
Ω
f · v.



lim
n→∞

∫
Ω

(divun − pn)ρn =

∫
Ω
ρu⊗ u : ∇v +

∫
Ω
f · v

=

∫
Ω
divu divv +

∫
Ω
curlu · curlv −

∫
Ω
pdivv

=

∫
Ω

(divu− p)ρ

Lemma β > 1 ρ ∈ L2β(Ω), ρ ≥ 0 a.e. in Ω, u ∈ (H1
0 (Ω))d ,

div(ρu) = 0, then: ∫
Ω
ρdivudx = 0∫

Ω
ρβdivudx = 0

⇓

lim
n→∞

∫
Ω
pn ρn =

∫
Ω
p ρ



Proof of EOS,
∫

Ω ρnun ⊗ un : ∇vn →
∫

Ω ρu⊗ u : ∇v
Since div(ρnun) = 0∫

Ω
ρnun ⊗ un : ∇vn =

∫
Ω

(ρnun · ∇)un · vn,

and the sequence ((ρnun · ∇)un)n∈N is bounded in Lr (Ω)d with
1
r = 1

2γ + 1
6 + 1

2 (and r > 6
5 since γ > 3).

Then, up to a subsequence (ρnun · ∇)un → Ψ weakly in Lr (Ω)d .
and vn → v in Lq(Ω)d for all q < 6,∫

Ω
(ρnun · ∇)un · vn →

∫
Ω

Ψ · v

But, ∀w ∈ H1
0 (Ω)d ,∫

Ω
(ρnun · ∇)un ·w =

∫
Ω
ρnun ⊗ un : ∇w→

∫
Ω
ρu⊗ u : ∇w.

⇓
Ψ = (ρu · ∇)u.



Generalizations

I (Easy) Complete Diffusion term: −µ∆u− µ
3∇(div u), with

µ ∈ R?+ given, instead of −∆u.

I (Ongoing work) Navier-Stokes Equations with d = 3 and
3
2γ < γ ≤ 3. (probably sharp result with respect to γ without
changing the diffusion term or the EOS)

I (Ongoing work) More general EOS

I (Open question) Other boundary conditions. Addition of an
energy equation

I (Open question) Evolution equation (Stokes and
Navier-Stokes)
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Preliminary lemma with the numerical scheme (1)
Roughly speaking, upwinding replaces div(ρu) = 0 and∫

Ω ρdx = M by

div(ρu)−hdiv(|u|∇ρ)+hα(ρ− ρ?) = 0

with ρ? = M
|Ω|

This equation has (for a given u) a solution ρ > 0 and we prove∫
Ω
ργndivn undx≤Chα,∫

Ω
ρndivT undx≤Chα.

C depends on Ω, M and γ
Chα is due to hα(ρ− ρ?)
≤ due to upwinding

The first inequality leads to the estimate on the approx. solution.



Preliminary lemma with the numerical scheme (2)

For the passage to the limit on the EOS∫
Ω
ρndivT uT dx ≤ Chα

∫
Ω
ρdiv udx = 0

give limn→∞
∫

Ω pnρndx ≤
∫

Ω pρdx = 0,
which is sufficient to prove the a.e. convergence (up to a
subsequence) of pn and ρn



Passage to the limit in the EOS with the Mac scheme

Miracle with the Mac scheme:

There exists a discrete counterpart of∫
Ω∇u : ∇vdx =

∫
Ω(divudivv + curlu · curlv)dx



Passage to the limit in the EOS with Crouzeix-Raviart

No discrete counterpart with Crouzeix-Raviart. Two possible
solutions

I Use the continuous equality. This is possible with an
additional regularization term in the mass equation (not
needed from the numerical point of view, only needed to
prove the convergence), less diffusive than the upwinding.

I Discretize
∫

Ω(divudivv + curlu · curlv)dx instead of∫
Ω∇u : ∇vdx . Better for passing to the limit in the EOS but

the discretized momentum equation is not coercive (with
Crouzeix-Raviart Finite Element). One needs a penalization
term in the discrete momentum equation (crucial from the
numerical point of view). cf. Karlsen-Karper work for the
compressible Stokes problem.
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