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Aim

Stationary compressible Navier-Stokes equations in a bounded
open set of R9 d =2 or 3, with EOS p=p".

»y>1lifd=2.
> v >3if d =3 (aim: v > 3).

Discretization by a numerical scheme

» MAC scheme : FV on staggered grid, often used in CFD
codes: simple, cheap, and robust.

» Nonconforming FE (Crouzeix Raviart) on velocity and FV on
density, used at IRSN.

~~ Existence of solutions (P. L. Lions, E. Feireisl, A. Novotny & |.
Strabaska . ..)
No uniqueness result.



Stationary compressible Navier Stokes equations

Q : bounded open set of RY, d =2 or 3,
with Lipschitz continuous boundary 092,
v>1,fel?2(Q)?and M >0

div(pu®@u)—Au+Vp=Ffin Q, u=0 on 09, (MOM)
div(pu)=0 inQ, p>0 in Q, / p(x) =M, (MASS)
Q
p=p"inQ (EOS)

Functional spaces if d =2, of d = 3,7 > 3:
u € H}(Q)9, p € L2(Q), p € L2(Q).

If d =3 and 3 L pe T (Q), pe 3D
=3and 3 <y<3:pe€ (Q), pe ().
Ifd=3and vy =2 pelY(Q) pel(Q)



Weak formulation
Functional spaces : u € H}(Q)9, p € L%(Q), p € L?7(Q)

» Momentum equation:

For all v € H3(Q)“,
/Vu-Vv—/pu@u:Vvdx—/pdivv:/f-v (MOM),,
Q Q Q Q

» Mass equation:

/ pu-Veo=0for all p € C°(Q) (MASS),,
Q

p >0 a.e., /p:I\/I
Q

» EOS: p=p7



Main result

» Discretization of (MOM) : grid cell pressure and density
unknowns: (pk)keT, (PK)KeT
~» MAC scheme (most commonly used scheme for
incompressible and compressible Navier Stokes equations)
velocity unknowns (uy)sce approximation of the normal
velocities
~~ Crouzeix-Raviart Finite Element (used by IRSN) velocity
unknowns (u,),cg approximation of the full velocities

» Discretization of the mass equation (and total mass
constraint) by classical upwind Finite Volume

» Existence of a solution for the discrete problem.

» Proof of the convergence (up to subsequence) of the solution
of the discrete problem towards a weak solution of the
continuous problem (no uniqueness result for this problem) as
the mesh size goes to 0



MAC scheme, choice of the discrete unknowns
» 7 Cartesian rectangular mesh of 2, mesh size: h
E: edges of T
» Discretization of u, p and p by piecewise constant functions.
n, is the normal vector to o, with n, > 0.

Unknowns for us:

us, 0 € £. U, is an approximate value for u - n, (u, € R)
u, =0 if o C 0Q

Unknowns for py and p7:
Pk, pk, K €T




MAC scheme, discrete functional spaces, d = 2

> pr.p7 € X7, pT = Pk, pT = pk in K, K € T (black cell)

> uy = (ug}), ugg)) € Hr
1)

uy’ = Uy in the pink cell

(2)

uy’ = Uy in the green cell

Pk}l PK o




Discretization of the momentum equation: diffusive term

u,v € Hy, the discretization of (u,v)r is:

<U,V>7‘ = <U1: V1>7-1 + <U2./ V2>7-2

where (u1, v1)7; is the usual inner product associated to the
discrete FV Laplace operator on the mesh 77, that is:

Uky — ULy VK — VL
(U, i) = / Afumvi= Y |oildy, R R
Q 0'1:(K17L1) e &



Discretization of the momentum equation : gradient term

» v € Hy. divyv is constant on K, K € T and

|K|divkv = Z SEk o Volo]

o€k

S¢k » = sign(ny - Nk 5), Nk, is the normal vector to o,
outward to K

» Pressure gradient term / pdivvdx is then discretized by
Q

/pTdivTdex = Z |K|pxdivikv
&z KeT



Discretization of the mass equation div(pu) =0, |, p = M

For K e T, faK pu-nkg , =0, ZKU /Q p=M
U
> Fko+Mc=0

ocelk

» discrete mass flux Fi o = |0|psSgk ,Uo
» and upwind choice for p,, that is
if uy, >0,
Do = PK.l Ug =2 U:K|L
pr if u, <0,

> Mk = |K|h*(pk — () with pl = & and a > 0.

IKIh(pk — pi)+ D> Fko=0  (MASS),

o€k

Upwinding is enough to ensure (with /) existence (and
uniqueness) of a positive solution p7, to the discrete mass
equation, for a given uy.



Discretization of the momentum equation : nonlinear
convection term

Nonlinear convection operator compatible with mass balance ~~
kinetic energy control in the transient case.
Discrete equivalent of the continuous (formal) result:

Oip + div(pu) =0 1d
S =0L fog - S5 o

Problem: mass balance discretized on p, p cells,
nonlinear convection operator on uy, up velocity cells.

Solution: Ad hoc computation of the fluxes on the wuq, uy cell
boundaries



Example: nonlinear convection term on a u; cell (D, ):

Half sum of mass balances on K and L yields mass balance on D,:
Kol (o = 73) + Y Foe =10

po = iy (Ko + LloL). 55 = 1 Foe = 3 (Fio + Ficor)

Compatible discretization of momentum balance:

C) = b Kol (B — F3)ts + D Foetiy
eCOK,

Cr= (C(Tl), C(72)>t



Discretization of the EQS

Upwinding in the mass equation ~~ px > 0 for all K
Discretization of the EOS:

px = pi forall K e T



The MAC scheme for the Navier-Stokes equations

ur € Hr,pr € X7,pr € X7
/ Crv+ (uv)yr — / prdivyv = / fv,Yv € Hf
Q Q

IKIh*(pk = Pk)+ Y Fko =0 (NS7)

o€k
pk =pi forall K e T

Convergence result: d =2,v > 1 or d = 3,7 > 3, then as
h7 — 0, up to a subsequence:
> ur = uin L2(Q)9, ue H}(Q)4
» pr — pin L9(Q) for any 1 < g < 2 and weakly in L?(Q)
> pr — pin L9(Q) for any 1 < g < 27 and weakly in L27(Q)

where (u, p, p) is a weak solution of the compressible Navier-Stokes
equations



Proof of convergence, main steps

1. Discrete H3(2) estimate on the components of ur

2. L2%(Q) estimate on py and L?7(Q) estimate on p1

These two steps give (up to a subsequence), as h — 0,
» ur — uin L2(Q) and u € H}(Q)¢
> pr — p weakly in L?(Q)
> pr — p weakly in L27(Q)
3. (u,p, p) is a weak solution of div(pu @ u) — Au+ Vp =f,
div(pu) =0
p>0, [op=M
4. Main difficulty: passage to the limit in p; = pVT ; proven by
“strong” convergence of p; and p7



Hints for the proof of convergence
Assume estimates on u,, pn, pn, and that as n — oc:

up — uin L2(Q)? and weakly in H3(Q)9,
pn — p weakly in L?(Q),
pn — p weakly in L27(Q).
Assume that u, p and p satisfy (MASS) and (MOM).
Pn = pp (EOS)T

How to pass to the limit to obtain (EOS) p = p7 7
Key ideas, assuming u,, pn, pn to be regular solutions of

div(paup®up)—Auy+u,Vp, =f,in Q, u, =0 on 09, (MOM),,

div(ppup,) =0 inQ, p>0 in Q, / pn(x) = M, (MASS),
Q

Pn = p) in Q (EOS),

with f, — f in L?(Q) and M, — M.



Proof of EQOS, idea # 1

pn = pn in Q
pn and p, converge only weakly...and v > 1

Idea # 1: (for d =2 or d =3, v > 3) prove [ pnpn — Jq Pp and
deduce a.e. convergence (of p, and p,) and p = p”.

(For d =3, v < 3, use pyp?).

In the sequel, we take d = 3, v > 3.
Assume we have shown that [, popn — [, Pp-.
Then using the fact that y — y” is an increasing function on R,

pn— pin L9(Q) for all 1 < g < 27,
pn=p) — p¥in L9(Q) for all 1 < g < 2,
and p=p”.



Proof of EOS, idea # 2 : use momentum equation
Take test function v, € H}(Q)? such that divv, = p,
Use o Vu: Vv = [, divu divv + [, curlu- curlv, Yu,v € H}(Q)¢

/divu,,divv,,+/curlun-curlvn—/ pndivv,
Q Q Q

= p,,u,7®u,,:Vv,,+/f,,-v,,.
Q Q

Assume we can also choose v, such that curlv, = 0 and (v,)nen
bounded in H&(Q)d, then, up to a subsequence,

v, — v in L2(Q)? and weakly in H}(Q)¢,

curl(v) = 0, div(v) = p.

/(div(u,,) — Pn)pn = / PalUp @up, Vv, + / fo v,
Q Q Q

If we prove that [, ppup ® up 1 Vv, — [ pu @ u: Vv then:

lim /(divu,,pn)pn:/pu®u:Vv+/f~v.
n—oo Q Q Q



lim /(divun—pn)pn:/pu®u:Vv+/f-v
n—oo Q Q Q

= / divu divv + / curlu - curlv — / pdivv
Q Q Q

(divu — p)p

5

Lemma B>1p€el?(Q), p>0ae inQ, uec (H}Q)),
div(pu) = 0, then:

pdivudx =0

/Qpﬂdivudx =0
Q

4

lim/pnpn/pp
HA)OOQ Q



Proof of EOS, [, patty @ U, : Vv, = [ pu®@u: Vv

Since div(ppu,) =0

/ PnUp @ Up Vv, = /(pnun : v)un *Vp,
Q Q

and the sequence ((psun - V)up)nen is bounded in L7(Q)9 with

%:%+%+%(andr>%since’y>3).

Then, up to a subsequence (ppu, - V)u, — W weakly in L7(Q)7.
and v, — v in L9(Q)9 for all g < 6,

/(p,,u,,-V)u,,-vn—>/\U-v
Q Q

But, Yw € H}(Q)7,

/(p,,u,,-V)u,,~w—/p,,u,,®u,,:Vw—>/pu®u:Vw.
Q Q Q

I
V= (pu-V)u.



Generalizations

v

(Easy) Complete Diffusion term: —uAu — £V(divu), with
i € R% given, instead of —Au.

v

(Ongoing work) Navier-Stokes Equations with d = 3 and

%’y < v < 3. (probably sharp result with respect to v without
changing the diffusion term or the EOS)

» (Ongoing work) More general EOS

» (Open question) Other boundary conditions. Addition of an
energy equation

» (Open question) Evolution equation (Stokes and
Navier-Stokes)
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Preliminary lemma with the numerical scheme (1)
Roughly speaking, upwinding replaces div(pu) = 0 and
fQ pdx = M by

div(pu)—hdiv(|u|Vp)+h“(p — p*) =0
with p* = IﬁMI
This equation has (for a given u) a solution p > 0 and we prove

/pZdiV,, u,dx<Ch®,
Q

/ pndivy u,dx<Ch”.
Q

C depends on Q, M and v
Ch™ is due to h*(p — p*)
< due to upwinding

The first inequality leads to the estimate on the approx. solution.



Preliminary lemma with the numerical scheme (2)

For the passage to the limit on the EOS

/ pndivyrurdx < Ch®
Q

/ pdivudx =0
Q

give lim,_,o0 [ Prpndx < [ ppdx =0,
which is sufficient to prove the a.e. convergence (up to a
subsequence) of p, and p,



Passage to the limit in the EOS with the Mac scheme

Miracle with the Mac scheme:

There exists a discrete counterpart of
Jo Vu : Vvdx = [ (divudivv + curlu - curlv)dx



Passage to the limit in the EOS with Crouzeix-Raviart

No discrete counterpart with Crouzeix-Raviart. Two possible
solutions

» Use the continuous equality. This is possible with an
additional regularization term in the mass equation (not
needed from the numerical point of view, only needed to
prove the convergence), less diffusive than the upwinding.

» Discretize [,(divudivv + curlu - curlv)dx instead of
fQ Vu : Vvdx. Better for passing to the limit in the EOS but
the discretized momentum equation is not coercive (with
Crouzeix-Raviart Finite Element). One needs a penalization
term in the discrete momentum equation (crucial from the
numerical point of view). cf. Karlsen-Karper work for the
compressible Stokes problem.
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