HERMITIAN COMPACT SCHEMES FOR THE NAVIER-STOKES EQUATIONS

Jean-Pierre Croisille

Univ. Paul Verlaine-Metz

Banff, Nov. 22-26, 2010

Jean-Pierre CROISILLE - Univ. Metz, France Hermitian Compact Schemes for the Navier-Stokes Equations

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Joint work with

M. Ben-Artzi, Hebrew University, Jerusalem

D. Fishelov, Tel-Aviv Academic College of Engineering and School of Mathematical Sciences, Tel Aviv University

- The Pure Streamfunction Formulation of the Navier-Stokes equations
- Compact finite-difference schemes for biharmonic problems
- Fast resolution procedure
- Compact finite-difference schemes for the Navier-Stokes equation

Navier-Stokes equations in 2D

Velocity-pressure formulation:

Find $u(x,t) \in \mathbb{R}^2$, $p(x,t) \in \mathbb{R}$ solutions of

$$(NS) \begin{cases} u_t + u.\nabla u - \nu\Delta u + \nabla p = 0, & x \in \Omega \subset \mathbb{R}^2, t > 0\\ \operatorname{div} u = 0, & x \in \Omega, & t > 0\\ u = 0, & x \in \partial\Omega, & t > 0\\ u(x, 0) = u_0(x), & x \in \Omega \end{cases}$$

Streamfunction formulation:

• $u = (-\psi_y, \psi_x) = \nabla^{\perp} \psi, \nabla \wedge u = \Delta \psi$. The streamfunction ψ evolves according to

$$-\partial_t(\Delta\psi)+(
abla^\perp\psi)\cdot
abla(\Delta\psi)-
u\Delta^2\psi=0~,~~x\in\Omega~,~~t>0$$

(Landau-Lifschitz, Fluid Dynamics).

• The boundary conditions are given for all points $(x, y) \in \partial \Omega$,

 $\psi(x, y, t) = 0$ no-leak condition + gauge condition $\frac{\partial \psi}{\partial n}(x, y, t) = 0$ tangential velocity given

Initial data: $\psi_0(x,y) = \psi(x,y,t)|_{t=0}, \quad (x,y) \in \Omega.$

Jean-Pierre CROISILLE - Univ. Metz, France Hermitian Compact Schemes for the Navier-Stokes Equations

Navier-Stokes equations in 2D

Velocity-pressure formulation:

Find $u(x,t) \in \mathbb{R}^2$, $p(x,t) \in \mathbb{R}$ solutions of

$$(NS) \begin{cases} u_t + u.\nabla u - \nu\Delta u + \nabla p = 0, & x \in \Omega \subset \mathbb{R}^2, t > 0\\ \operatorname{div} u = 0, & x \in \Omega, & t > 0\\ u = 0, & x \in \partial\Omega, & t > 0\\ u(x, 0) = u_0(x), & x \in \Omega \end{cases}$$

Streamfunction formulation:

• $u = (-\psi_y, \psi_x) = \nabla^{\perp} \psi, \nabla \wedge u = \Delta \psi$. The streamfunction ψ evolves according to

$$\partial_t(\Delta\psi) + (
abla^\perp\psi)\cdot
abla(\Delta\psi) -
u\Delta^2\psi = 0 \ , \ x\in\Omega \ , \ t>0$$

(Landau-Lifschitz, Fluid Dynamics).

• The boundary conditions are given for all points $(x, y) \in \partial \Omega$,

 $\psi(x, y, t) = 0$ no-leak condition + gauge condition $\frac{\partial \psi}{\partial n}(x, y, t) = 0$ tangential velocity given

Initial data: $\psi_0(x, y) = \psi(x, y, t)|_{t=0}, \quad (x, y) \in \Omega.$

Jean-Pierre CROISILLE - Univ. Metz, France Hermitian Compact Schemes for the Navier-Stokes Equations

Navier-Stokes equations in 2D

Velocity-pressure formulation:

Find $u(x,t) \in \mathbb{R}^2$, $p(x,t) \in \mathbb{R}$ solutions of

$$(NS) \begin{cases} u_t + u.\nabla u - \nu\Delta u + \nabla p = 0, & x \in \Omega \subset \mathbb{R}^2, t > 0\\ \operatorname{div} u = 0, & x \in \Omega, & t > 0\\ u = 0, & x \in \partial\Omega, & t > 0\\ u(x, 0) = u_0(x), & x \in \Omega \end{cases}$$

Streamfunction formulation:

• $u = (-\psi_y, \psi_x) = \nabla^{\perp} \psi, \nabla \wedge u = \Delta \psi$. The streamfunction ψ evolves according to

$$\partial_t(\Delta\psi) + (\nabla^{\perp}\psi) \cdot \nabla(\Delta\psi) - \nu\Delta^2\psi = 0 \ , \ x \in \Omega \ , \ t > 0$$

(Landau-Lifschitz, Fluid Dynamics).

• The boundary conditions are given for all points $(x, y) \in \partial \Omega$,

 $\left\{ \begin{array}{l} \psi(x,y,t)=0 \ \text{ no-leak condition } + \text{ gauge condition} \\ \frac{\partial \psi}{\partial n}(x,y,t)=0 \ \text{ tangential velocity given} \end{array} \right.$

Initial data: $\psi_0(x, y) = \psi(x, y, t)|_{t=0}$, $(x, y) \in \Omega$.

(1)

Definition

Suppose given $(u_i)_{i\in\mathbb{Z}}$. The hermitian derivative is $(u_{x,i})_{i\in\mathbb{Z}}$ given by

$$\frac{1}{6}u_{x,i-1} + \frac{2}{3}u_{x,i} + \frac{1}{6}u_{x,i+1} = \frac{u_{i+1} - u_{i-1}}{2h}, \quad i \in \mathbb{Z}$$
⁽²⁾

Finite Difference form

Can be rewritten as

$$\sigma_x u_{x,i} = \delta_x u_i, \quad i \in \mathbb{Z} \tag{3}$$

where σ_x , δ_x are

$$\sigma_x u_i = \frac{1}{6} u_{i-1} + \frac{2}{3} u_i + \frac{1}{6} u_{i+1}, \quad \delta_x u_i = \frac{u_{i+1} - u_{i-1}}{2h}$$
(4)

Fourth order accuracy

$$u_{x,i} = u'(x_i) + O(h^4)$$
 (5)

Connection to cubic splines

$$u_{x,i} = u_s^\prime(x_i)$$

vhere $u_s(x)$ is the cubic spline approximation to u(x).

Jean-Pierre CROISILLE - Univ. Metz, France

Definition

Suppose given $(u_i)_{i\in\mathbb{Z}}$. The hermitian derivative is $(u_{x,i})_{i\in\mathbb{Z}}$ given by

$$\frac{1}{6}u_{x,i-1} + \frac{2}{3}u_{x,i} + \frac{1}{6}u_{x,i+1} = \frac{u_{i+1} - u_{i-1}}{2h}, \ i \in \mathbb{Z}$$
(2)

Finite Difference form

Can be rewritten as

$$\sigma_x u_{x,i} = \delta_x u_i, \quad i \in \mathbb{Z}$$
(3)

where σ_x , δ_x are

$$\sigma_x u_i = \frac{1}{6} u_{i-1} + \frac{2}{3} u_i + \frac{1}{6} u_{i+1}, \quad \delta_x u_i = \frac{u_{i+1} - u_{i-1}}{2h}$$
(4)

Fourth order accuracy

$$u_{x,i} = u'(x_i) + O(h^4)$$
 (5)

Connection to cubic splines

$$u_{x,i} = u_s'(x_i)$$

)

where $u_s(x)$ is the cubic spline approximation to u(x).

Jean-Pierre CROISILLE - Univ. Metz, France

Definition

Suppose given $(u_i)_{i\in\mathbb{Z}}$. The hermitian derivative is $(u_{x,i})_{i\in\mathbb{Z}}$ given by

$$\frac{1}{6}u_{x,i-1} + \frac{2}{3}u_{x,i} + \frac{1}{6}u_{x,i+1} = \frac{u_{i+1} - u_{i-1}}{2h}, \ i \in \mathbb{Z}$$
(2)

Finite Difference form

Can be rewritten as

$$\sigma_x u_{x,i} = \delta_x u_i, \quad i \in \mathbb{Z}$$
(3)

where σ_x , δ_x are

$$\sigma_x u_i = \frac{1}{6} u_{i-1} + \frac{2}{3} u_i + \frac{1}{6} u_{i+1}, \quad \delta_x u_i = \frac{u_{i+1} - u_{i-1}}{2h}$$
(4)

Fourth order accuracy

$$u_{x,i} = u'(x_i) + O(h^4)$$
 (5)

Connection to cubic splines

$$u_{x,i} = u_s'(x_i)$$

(6)

where $u_s(x)$ is the cubic spline approximation to u(x).

Jean-Pierre CROISILLE - Univ. Metz, France

Definition

Suppose given $(u_i)_{i\in\mathbb{Z}}$. The hermitian derivative is $(u_{x,i})_{i\in\mathbb{Z}}$ given by

$$\frac{1}{6}u_{x,i-1} + \frac{2}{3}u_{x,i} + \frac{1}{6}u_{x,i+1} = \frac{u_{i+1} - u_{i-1}}{2h}, \quad i \in \mathbb{Z}$$
⁽²⁾

Finite Difference form

Can be rewritten as

$$\sigma_x u_{x,i} = \delta_x u_i, \quad i \in \mathbb{Z}$$
(3)

where σ_x , δ_x are

$$\sigma_x u_i = \frac{1}{6} u_{i-1} + \frac{2}{3} u_i + \frac{1}{6} u_{i+1}, \quad \delta_x u_i = \frac{u_{i+1} - u_{i-1}}{2h}$$
(4)

Fourth order accuracy

$$u_{x,i} = u'(x_i) + O(h^4)$$
 (5)

Connection to cubic splines

$$u_{x,i} = u_s^\prime(x_i)$$

where $u_s(x)$ is the cubic spline approximation to u(x).

Jean-Pierre CROISILLE - Univ. Metz, France

Hermitian Compact Schemes for the Navier-Stokes Equations

(6)

Three-Point Biharmonic Operator

Definition

Suppose given $(u_i)_{i\in\mathbb{Z}}$ and $(u_{x,i})_{i\in\mathbb{Z}}$ the corresponding hermitian derivative. The Three-Point Biharmonic $(\delta_x^4 u_i)_{i\in\mathbb{Z}}$ is $(\delta_x^2 u_i = (u_{i+1} + u_{i-1} - 2u_i)/h^2)$,

$$\delta_x^4 u_i = \frac{12}{h^2} \left(\delta_x u_{x,i} - \delta_x^2 u_i \right) \tag{7}$$

Fourth order accuracy

$$\delta_x^4 u_i = u^{(4)}(x_i) + O(h^4) \tag{8}$$

Connection to cubic splines

Denote by $u_s(x)$ the cubic spline interpolation of the data $(u_i)_{0 \le i \le N}$ with endpoints derivatives $u_{x,0}, u_{x,N}$. For gridfunctions $(\mathfrak{u}_i)_{0 \le i \le N}, (\mathfrak{v}_i)_{0 \le i \le N}$ with $\mathfrak{u}_0 = \mathfrak{u}_N = \mathfrak{v}_0 = \mathfrak{v}_N = 0$,

$$(\delta_x^4 \mathfrak{u}, \mathfrak{v})_h = \int_0^1 u_s''(x) v_s''(x) dx \tag{9}$$

where $(\mathfrak{u},\mathfrak{v})_h=h\sum_{i=1}^{N-1}\mathfrak{u}_i\mathfrak{v}_i$

Three-Point Biharmonic Operator

Definition

Suppose given $(u_i)_{i\in\mathbb{Z}}$ and $(u_{x,i})_{i\in\mathbb{Z}}$ the corresponding hermitian derivative. The Three-Point Biharmonic $(\delta_x^4 u_i)_{i\in\mathbb{Z}}$ is $(\delta_x^2 u_i = (u_{i+1} + u_{i-1} - 2u_i)/h^2)$,

$$\delta_x^4 u_i = \frac{12}{h^2} \left(\delta_x u_{x,i} - \delta_x^2 u_i \right) \tag{7}$$

Fourth order accuracy

$$\delta_x^4 u_i = u^{(4)}(x_i) + O(h^4)$$

(8)

Connection to cubic splines

Denote by $u_s(x)$ the cubic spline interpolation of the data $(u_i)_{0 \le i \le N}$ with endpoints derivatives $u_{x,0}, u_{x,N}$. For gridfunctions $(\mathfrak{u}_i)_{0 \le i \le N}, (\mathfrak{v}_i)_{0 \le i \le N}$ with $\mathfrak{u}_0 = \mathfrak{u}_N = \mathfrak{v}_0 = \mathfrak{v}_N = 0$,

$$(\delta_x^4 \mathfrak{u}, \mathfrak{v})_h = \int_0^1 u_s''(x) v_s''(x) dx \tag{9}$$

where $(\mathfrak{u},\mathfrak{v})_h=h\sum_{i=1}^{N-1}\mathfrak{u}_i\mathfrak{v}_i$

Three-Point Biharmonic Operator

Definition

Suppose given $(u_i)_{i\in\mathbb{Z}}$ and $(u_{x,i})_{i\in\mathbb{Z}}$ the corresponding hermitian derivative. The Three-Point Biharmonic $(\delta_x^4 u_i)_{i\in\mathbb{Z}}$ is $(\delta_x^2 u_i = (u_{i+1} + u_{i-1} - 2u_i)/h^2)$,

$$\delta_x^4 u_i = \frac{12}{h^2} \left(\delta_x u_{x,i} - \delta_x^2 u_i \right) \tag{7}$$

Fourth order accuracy

$$\delta_x^4 u_i = u^{(4)}(x_i) + O(h^4) \tag{8}$$

Connection to cubic splines

Denote by $u_s(x)$ the cubic spline interpolation of the data $(u_i)_{0 \le i \le N}$ with endpoints derivatives $u_{x,0}, u_{x,N}$. For gridfunctions $(\mathfrak{u}_i)_{0 \le i \le N}, (\mathfrak{v}_i)_{0 \le i \le N}$ with $\mathfrak{u}_0 = \mathfrak{u}_N = \mathfrak{v}_0 = \mathfrak{v}_N = 0$,

$$(\delta_x^4 \mathfrak{u}, \mathfrak{v})_h = \int_0^1 u_s''(x) v_s''(x) dx \tag{9}$$

where $(\mathfrak{u}, \mathfrak{v})_h = h \sum_{i=1}^{N-1} \mathfrak{u}_i \mathfrak{v}_i$

One-dimensional biharmonic problem

Solve on I = [0, 1] $\begin{cases}
u^{(4)}(x) = f(x) , & 0 < x < 1 \\
u(0) = u'(0) = u(1) = u'(1) = 0
\end{cases}$ (10)

Compact scheme

The approximate problem is : find $u = [u_0, u_1, \cdots, u_{N-1}, u_N]$ solution of

$$\begin{cases}
\delta_x^4 u_j = \frac{12}{h^2} \left(\delta_x u_{x,j} - \delta_x^2 u_j \right) = f(x_j) , & 1 \le j \le N - 1 \\
\frac{1}{6} u_{x,j-1} + \frac{2}{3} u_{x,j} + \frac{1}{6} u_{x,j+1} = \delta_x u_j , & 1 \le j \le N - 1 \\
u_0 = u_N = u_{x,0} = u_{x,N} = 0
\end{cases}$$
(11)

One-dimensional biharmonic problem

Solve on
$$I = [0, 1]$$

$$\begin{cases} u^{(4)}(x) = f(x) , & 0 < x < 1 \\ u(0) = u'(0) = u(1) = u'(1) = 0 \end{cases}$$
(10)

Compact scheme

The approximate problem is : find $u = [u_0, u_1, \cdots, u_{N-1}, u_N]$ solution of

< 回 > < 回 > < 回 >

Theorem

Let \tilde{u} be the approximate solution of the biharmonic problem $u^{(4)}(x) = f(x)$ with Dirichlet B.C. . Let u(x) be the exact solution and u^* its evaluation at grid points. The error $e = \tilde{u} - u^* = [u_1, \dots, u_{N-1}]$ satisfies

$$e|_h \le Ch^4$$

where C depends only on f.

Proof

Not straightforward result, due to the boundary conditions ! Method of proof: careful analysis of the structure of the matrix of δ_x^4 on a bounded domain $[0, \cdots, N]$.

Accuracy

The pointwise truncation error on a bounded domain cannot be deduced from the fourth order acuracy in the "free" space. Here the pointwise truncation of δ_x^4 is 1 at $i = 1, 2, \dots, N-1$.

Energy method

Energy methods (as in FEM) provide only a suboptimal error estimate (so far)

Jean-Pierre CROISILLE - Univ. Metz, France H

Theorem

Let \tilde{u} be the approximate solution of the biharmonic problem $u^{(4)}(x) = f(x)$ with Dirichlet B.C. . Let u(x) be the exact solution and u^* its evaluation at grid points. The error $e = \tilde{u} - u^* = [u_1, \dots, u_{N-1}]$ satisfies

$$|e|_h \le Ch^4$$

(12)

where C depends only on f.

Proof

Not straightforward result, due to the boundary conditions ! Method of proof: careful analysis of the structure of the matrix of δ_x^4 on a bounded domain $[0, \cdots, N]$.

Accuracy

The pointwise truncation error on a bounded domain cannot be deduced from the fourth order acuracy in the "free" space. Here the pointwise truncation of δ_x^4 is 1 at $i = 1, 2, \dots, N-1$.

Energy method

Energy methods (as in FEM) provide only a suboptimal error estimate (so far)

Jean-Pierre CROISILLE - Univ. Metz, France Hermitian Compact Schemes for the Navier-Stokes Equations

Theorem

Let \tilde{u} be the approximate solution of the biharmonic problem $u^{(4)}(x) = f(x)$ with Dirichlet B.C. . Let u(x) be the exact solution and u^* its evaluation at grid points. The error $e = \tilde{u} - u^* = [u_1, \dots, u_{N-1}]$ satisfies

$$|e|_h \le Ch^4$$

(12)

where C depends only on f.

Proof

Not straightforward result, due to the boundary conditions ! Method of proof: careful analysis of the structure of the matrix of δ_x^4 on a bounded domain $[0, \cdots, N]$.

Accuracy

The pointwise truncation error on a bounded domain cannot be deduced from the fourth order acuracy in the "free" space. Here the pointwise truncation of δ_x^4 is 1 at $i = 1, 2, \cdots, N-1$.

Energy method

Energy methods (as in FEM) provide only a suboptimal error estimate (so far)

Theorem

Let \tilde{u} be the approximate solution of the biharmonic problem $u^{(4)}(x) = f(x)$ with Dirichlet B.C. . Let u(x) be the exact solution and u^* its evaluation at grid points. The error $e = \tilde{u} - u^* = [u_1, \dots, u_{N-1}]$ satisfies

$$|e|_h \le Ch^4$$

(12)

where C depends only on f.

Proof

Not straightforward result, due to the boundary conditions ! Method of proof: careful analysis of the structure of the matrix of δ_x^4 on a bounded domain $[0, \cdots, N]$.

Accuracy

The pointwise truncation error on a bounded domain cannot be deduced from the fourth order acuracy in the "free" space. Here the pointwise truncation of δ_x^4 is 1 at $i = 1, 2, \cdots, N-1$.

Energy method

Energy methods (as in FEM) provide only a suboptimal error estimate (so far).

Jean-Pierre CROISILLE - Univ. Metz, France Hermitian Compact Schemes for the Navier-Stokes Equations

The nine-point Biharmonic Operator for the 2D bih. problem

A compact Biharmonic operator

Biharmonic operator:

$$\Delta^2 \psi = \partial_x^4 \psi + \partial_y^4 \psi + 2\partial_x^2 \partial_y^2 \psi \tag{13}$$

Approximation by:

$$\Delta_h^2 \psi_{i,j} = \delta_x^4 \psi_{i,j} + \delta_y^4 \psi_{i,j} + 2\delta_x^2 \delta_y^2 \psi_{i,j}$$
(14)

where the discrete gradient $\nabla_h \psi = \left(\psi_{x,i,j}, \psi_{y,x,y}\right)$ is defined by the hermitian relations

$$\begin{cases} \frac{1}{6}\psi_{x,i-1,j} + \frac{2}{3}\psi_{x,i,j} + \frac{1}{6}\psi_{x,i+1,j} = \delta_x\psi_{i,j} , & 1 \le i \le N-1 \\ \frac{1}{6}\psi_{y,i,j-1} + \frac{2}{3}\psi_{y,i,j} + \frac{1}{6}\psi_{y,i,j+1} = \delta_y\psi_{i,j} , & 1 \le j \le N-1 \end{cases}$$
(15)

Stephenson Biharmonic

This operator is the same than the one introduced by J.W. Stephenson (*Jour. Comp. Phys.* 1984).

The nine-point Biharmonic Operator for the 2D bih. problem

A compact Biharmonic operator

Biharmonic operator:

$$\Delta^2 \psi = \partial_x^4 \psi + \partial_y^4 \psi + 2\partial_x^2 \partial_y^2 \psi \tag{13}$$

Approximation by:

$$\Delta_h^2 \psi_{i,j} = \delta_x^4 \psi_{i,j} + \delta_y^4 \psi_{i,j} + 2\delta_x^2 \delta_y^2 \psi_{i,j}$$
(14)

where the discrete gradient $\nabla_h \psi = \left(\psi_{x,i,j}, \psi_{y,x,y}\right)$ is defined by the hermitian relations

$$\begin{cases} \frac{1}{6}\psi_{x,i-1,j} + \frac{2}{3}\psi_{x,i,j} + \frac{1}{6}\psi_{x,i+1,j} = \delta_x\psi_{i,j} , & 1 \le i \le N-1 \\ \frac{1}{6}\psi_{y,i,j-1} + \frac{2}{3}\psi_{y,i,j} + \frac{1}{6}\psi_{y,i,j+1} = \delta_y\psi_{i,j} , & 1 \le j \le N-1 \end{cases}$$
(15)

Stephenson Biharmonic

This operator is the same than the one introduced by J.W. Stephenson (*Jour. Comp. Phys.* 1984).

Stephenson scheme for the 2D Biharmonic Problem

Continuous Biharmonic problem

$$\begin{array}{l} \Delta^2\psi(x,y)=f(x,y), \ \ (x,y)\in\Omega\\ \psi(x,y)=g_1(x,y), \ \ (x,y)\in\partial\Omega\\ \frac{\partial\psi}{\partial n}(x,y)=g_2(x,y), \ \ (x,y)\in\partial\Omega \end{array}$$

(16)

Discrete Biharmonic problem in a square

Solve the system in $\psi_{i,j}$, $0 \le i, j \le N$

$$\Delta_h^2 \psi_{i,j} = f^*(x_i, y_j), \quad 1 \le i, j \le N - 1$$
(17)

subject to the boundary conditions

$$\begin{split} \psi_{i,j} &= g_1^*(x_i, y_j), \ \{i = 0, N, \quad 0 \le j \le N\} \quad \text{or} \quad \{j = 0, N, \quad 0 \le i \le N\}, \\ \psi_{x,i,j} &= -g_2^*(x_i, y_j), \quad i = 0, \quad 0 \le j \le N, \\ \psi_{x,i,j} &= g_2^*(x_i, y_j), \quad i = N, \quad 0 \le j \le N, \\ \psi_{y,i,j} &= -g_2^*(x_i, y_j), \quad j = 0, \quad 0 \le i \le N, \\ \psi_{y,i,j} &= g_2^*(x_i, y_j), \quad j = N, \quad 0 \le i \le N. \end{split}$$

Stephenson scheme for the 2D Biharmonic Problem

Continuous Biharmonic problem

$$\begin{aligned} & \Delta^2 \psi(x,y) = f(x,y), \quad (x,y) \in \Omega \\ & \psi(x,y) = g_1(x,y), \quad (x,y) \in \partial\Omega \\ & \frac{\partial \psi}{\partial n}(x,y) = g_2(x,y), \quad (x,y) \in \partial\Omega \end{aligned}$$

Discrete Biharmonic problem in a square

Solve the system in $\psi_{i,j}$, $0 \le i, j \le N$

$$\Delta_h^2 \psi_{i,j} = f^*(x_i, y_j), \quad 1 \le i, j \le N - 1$$
(17)

(16)

subject to the boundary conditions

$$\begin{array}{l} \psi_{i,j} = g_1^*(x_i, y_j), \ \{i = 0, N, \quad 0 \le j \le N\} \quad \text{or} \quad \{j = 0, N, \quad 0 \le i \le N\}, \\ \psi_{x,i,j} = -g_2^*(x_i, y_j), \quad i = 0, \quad 0 \le j \le N, \\ \psi_{x,i,j} = g_2^*(x_i, y_j), \quad i = N, \quad 0 \le j \le N, \\ \psi_{y,i,j} = -g_2^*(x_i, y_j), \quad j = 0, \quad 0 \le i \le N, \\ \psi_{y,i,j} = g_2^*(x_i, y_j), \quad j = N, \quad 0 \le i \le N. \end{array}$$

$$\begin{array}{l} (18) \end{array}$$

Stencil of the nine-point Bih. operator

Properties of the Stephenson scheme for the 2D Bih. Problem

No artificial BC on the vorticity $\Delta \psi$

Only the natural BC on ψ are required by the scheme. In the Dirichlet case, it is ψ , $\frac{\partial \psi}{\partial n}$.

Second order accuracy

The operator Δ_h^2 is second order accurate. The one-dimensional operators $\delta_x^4\psi$, $\delta_y^4\psi$ are 4th order accurate (in the "free" setting). The second order accuracy is due only to the mixed term $\delta_x^2\delta_y^2\psi$.

Properties of the Stephenson scheme for the 2D Bih. Problem

No artificial BC on the vorticity $\Delta \psi$

Only the natural BC on ψ are required by the scheme. In the Dirichlet case, it is ψ , $\frac{\partial \psi}{\partial n}$.

Second order accuracy

The operator Δ_h^2 is second order accurate. The one-dimensional operators $\delta_x^4\psi$, $\delta_y^4\psi$ are 4th order accurate (in the "free" setting). The second order accuracy is due only to the mixed term $\delta_x^2 \delta_u^2 \psi$.

(日)

Matrix operator of δ_x^2 and δ_x^4

Matrix operators

One has $-\delta_x^2={\it T}/{\it h}^2$ with

$$T = \begin{bmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & -1 & 2 & -1 \\ 0 & \dots & 0 & -1 & 2 \end{bmatrix} \in \mathbb{M}_{N-1}(\mathbb{R})$$
(19)

(20)

The symmetric positive definite matrix P is deduced from T by

P = 6I - T,

The nine-point Biharmoni

$$\Delta_{h}^{2} = \frac{1}{h^{4}} \begin{bmatrix} 6P^{-1}T^{2} \otimes I + 6I \otimes P^{-1}T^{2} + 2T \otimes T \end{bmatrix}$$

$$+ \frac{36}{h^{4}} \begin{bmatrix} v_{1}, v_{2} \end{bmatrix} \begin{bmatrix} v_{1}^{T} \\ v_{2}^{T} \end{bmatrix} \otimes I_{N-1} + \frac{36}{h^{4}} I_{N-1} \otimes \begin{bmatrix} v_{1}, v_{2} \end{bmatrix} \begin{bmatrix} v_{1}^{T} \\ v_{2}^{T} \end{bmatrix}$$

$$\begin{cases} v_{1} = (\alpha - \beta)^{1/2}P^{-1} \left(\frac{\sqrt{2}}{2}e_{1} - \frac{\sqrt{2}}{2}e_{N-1}\right) \in \mathbb{R}^{N-1} \\ v_{2} = (\alpha + \beta)^{1/2}P^{-1} \left(\frac{\sqrt{2}}{2}e_{1} + \frac{\sqrt{2}}{2}e_{N-1}\right) \in \mathbb{R}^{N-1} \end{cases}$$

$$(22)$$

Jean-Pierre CROISILLE - Univ. Metz, France Hermitian Compact Schemes for the Navier-Stokes Equations

Matrix operator of δ_x^2 and δ_x^4

Matrix operators

One has $-\,\delta_x^2\,=\,T\,/\,h^2$ with

$$T = \begin{bmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & -1 & 2 & -1 \\ 0 & \dots & 0 & -1 & 2 \end{bmatrix} \in \mathbb{M}_{N-1}(\mathbb{R})$$
(19)

(20)

The symmetric positive definite matrix P is deduced from T by

P = 6I - T,

The nine-point Biharmonic

$$\Delta_{h}^{2} = \frac{1}{h^{4}} \left[6P^{-1}T^{2} \otimes I + 6I \otimes P^{-1}T^{2} + 2T \otimes T \right]$$

$$+ \frac{36}{h^{4}} \left[v_{1}, v_{2} \right] \left[\begin{array}{c} v_{T}^{T} \\ v_{T}^{T} \end{array} \right] \otimes I_{N-1} + \frac{36}{h^{4}} I_{N-1} \otimes \left[v_{1}, v_{2} \right] \left[\begin{array}{c} v_{T}^{T} \\ v_{T}^{T} \end{array} \right].$$
(21)

$$\begin{cases} v_1 = (\alpha - \beta)^{1/2} P^{-1} \left(\frac{\sqrt{2}}{2} e_1 - \frac{\sqrt{2}}{2} e_{N-1} \right) \in \mathbb{R}^{N-1} \\ v_2 = (\alpha + \beta)^{1/2} P^{-1} \left(\frac{\sqrt{2}}{2} e_1 + \frac{\sqrt{2}}{2} e_{N-1} \right) \in \mathbb{R}^{N-1} \end{cases}$$
(22)

Jean-Pierre CROISILLE - Univ. Metz, France Hermitian Compact Schemes for the Navier-Stokes Equations

Fast solver

Shermann-Morrison formula

The matrix of Δ_h^2 is a low-rank perturbation (due to the BC) of a diagonal operator (in a spectral basis), which represents the biharmonic in the "free space":

$$\mathcal{A} = \mathcal{B} + \frac{36}{h^4} \mathcal{R} \mathcal{R}^T, \tag{23}$$

The Sherman-Morrison formula gives

$$\bar{\mathcal{A}}^{-1} = \bar{\mathcal{B}}^{-1} - 36\mathcal{B}^{-1}\mathcal{R} \bigg[I_{4(N-1)} + 36\mathcal{R}^T \mathcal{B}^{-1} \mathcal{R} \bigg]^{-1} \mathcal{R}^T \bar{\mathcal{B}}^{-1}.$$
 (24)

Fast resolution procedure

A fast solver $(N^2 \ln_2(N))$ is deduced in 8 steps. The key steps are:

- Using the FFT to compute BU = F (system in $\mathbb{R}^{(N-1)^2}$)
- Using the PCG to solve

 $I_{4(N-1)} + 36\mathcal{R}^T \mathcal{B}^{-1}\mathcal{R} \left(V = G, \quad (\text{system in } \mathbb{R}^{4(N-1)}). \right)$

Fast solver

Shermann-Morrison formula

The matrix of Δ_h^2 is a low-rank perturbation (due to the BC) of a diagonal operator (in a spectral basis), which represents the biharmonic in the "free space":

$$\mathcal{A} = \mathcal{B} + \frac{36}{h^4} \mathcal{R} \mathcal{R}^T, \tag{23}$$

The Sherman-Morrison formula gives

$$\bar{\mathcal{A}}^{-1} = \bar{\mathcal{B}}^{-1} - 36\mathcal{B}^{-1}\mathcal{R} \Big[I_{4(N-1)} + 36\mathcal{R}^T \mathcal{B}^{-1} \mathcal{R} \Big]^{-1} \mathcal{R}^T \bar{\mathcal{B}}^{-1}.$$
 (24)

Fast resolution procedure

A fast solver $(N^2 \ln_2(N))$ is deduced in 8 steps. The key steps are:

- Using the FFT to compute BU = F (system in $\mathbb{R}^{(N-1)^2}$).
- Using the PCG to solve

$$\left(I_{4(N-1)} + 36\mathcal{R}^T \mathcal{B}^{-1} \mathcal{R}\right) V = G, \quad (\text{system in } \mathbb{R}^{4(N-1)}).$$
 (4)

Fast solver

Shermann-Morrison formula

The matrix of Δ_h^2 is a low-rank perturbation (due to the BC) of a diagonal operator (in a spectral basis), which represents the biharmonic in the "free space":

$$\mathcal{A} = \mathcal{B} + \frac{36}{h^4} \mathcal{R} \mathcal{R}^T, \tag{23}$$

(日)

The Sherman-Morrison formula gives

$$\bar{\mathcal{A}}^{-1} = \bar{\mathcal{B}}^{-1} - 36\mathcal{B}^{-1}\mathcal{R} \Big[I_{4(N-1)} + 36\mathcal{R}^T \mathcal{B}^{-1} \mathcal{R} \Big]^{-1} \mathcal{R}^T \bar{\mathcal{B}}^{-1}.$$
 (24)

Fast resolution procedure

A fast solver $(N^2 \ln_2(N))$ is deduced in 8 steps. The key steps are:

- Using the FFT to compute BU = F (system in $\mathbb{R}^{(N-1)^2}$)
- Using the PCG to solve

$$\left(I_{4(N-1)} + 36\mathcal{R}^T \mathcal{B}^{-1} \mathcal{R}\right) V = G, \quad \text{(system in } \mathbb{R}^{4(N-1)}\text{)}.$$
(25)

Fourth order Biharmonic

It is possible to modify the mixed term in the Stephenson operator to obtain a 4th order accurate scheme. Simply replace $\delta_x^2 \delta_y^2 u$ by

$$\widetilde{\delta_x^2 \delta_y^2} \psi_{i,j} = 3\delta_x^2 \delta_y^2 \psi_{i,j} - \delta_x^2 \delta_y \psi_{y,i,j} - \delta_y^2 \delta_x \psi_{x,i,j} = \partial_x^2 \partial_y^2 \psi_{i,j} + O(h^4).$$
(26)

Fast solver for the fourth order Biharmonic

The fast solver follows the same principle than for the second order Biharmonic.

Fourth order Biharmonic

It is possible to modify the mixed term in the Stephenson operator to obtain a 4th order accurate scheme. Simply replace $\delta_x^2 \delta_y^2 u$ by

$$\widetilde{\delta_x^2 \delta_y^2} \psi_{i,j} = 3\delta_x^2 \delta_y^2 \psi_{i,j} - \delta_x^2 \delta_y \psi_{y,i,j} - \delta_y^2 \delta_x \psi_{x,i,j} = \partial_x^2 \partial_y^2 \psi_{i,j} + O(h^4).$$
(26)

Fast solver for the fourth order Biharmonic

The fast solver follows the same principle than for the second order Biharmonic.

Computing efficiency

N	N=128	N=256	N=512	N=1024	N=2048
CPU _{tot}	0.11s	0.45s	1.84s	7.91s	34.63s
CPU_{∞}	0.093s	0.39s	1.47s	6.46s	27.72s
$CPU_{tot} / (N^2 Log(N))$	1.37(-6)	1.24(-6)	1.16(-6)	1.09(-6)	1.07(-6)

Table: Indicative CPU time on a Laptop

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨ のなべ

Fourth order accuracy for ψ , $\nabla \psi$, $\Delta \psi$

N	$\ \psi - \psi_h\ _{\infty,h}$	$\ \psi_x - \psi_{x,h}\ _{\infty,h}$	$\ \psi - \psi_{y,h}\ _{\infty,h}$	$\ \Delta \psi - \ddot{\Delta}_h \psi_h\ _{\infty,h}$
N = 16	3.42(-5)	1.00(-4)	1.00(-4)	3.99(-4)
conv. rate	4.04	4.01	4.01	4.00
N = 32	2.08(-6)	6.21(-6)	6.21(-6)	2.48(-5)
conv. rate	4.01	4.00	4.00	4.00
N = 64	1.29(-7)	3.87(-7)	3.87(-7)	1.55(-6)
conv. rate	4.00	4.00	4.00	4.00
N = 128	8.06(-9)	2.41(-8)	2.41(-8)	9.68(-8)
conv. rate	3.99	3.99	3.99	3.83
N = 256	5.04(-10)	1.51(-9)	1.51(-9)	6.77(-9)
conv. rate	3.74	4.02	4.02	-0.22
N = 512	3.76(-11)	9.27(-11)	9.07(-11)	7.90(-9)
conv. rate	-0.13	0.19	0.19	0.59
N = 1024	4.12(-11)	8.09(-11)	8.09(-11)	5.22(-8)

Table: Error and convergence rate for Test Case 1 with the fourth orderscheme

Navier-Stokes equation in streamfunction

$$\partial_t \Delta \psi + (\nabla^{\perp} \psi) \cdot \nabla (\Delta \psi) - \nu \Delta^2 \psi = 0 , \quad x \in \Omega , \quad t > 0$$
 (27)

+ Dirichlet B.C on ψ .

Approximation in space (method of lines)

$$\begin{split} \psi(x_i, y_j, t) &\simeq \tilde{\psi}_{i,j}(t), \text{ solution of} \\ \partial_t \Delta_h \tilde{\psi}_{i,j} - \tilde{\psi}_{y,i,j} \Delta_h \tilde{\psi}_{x,i,j} + \tilde{\psi}_{x,i,j} \Delta_h \tilde{\psi}_{y,i,j} - \nu \Delta_h^2 \tilde{\psi}_{i,j} = 0 \quad , \quad x \in \Omega \quad , \quad t > 0 \quad (28) \\ + \text{ Dirichlet B C on } \tilde{\psi}_{i,j} + \tilde{\psi}_{$$

Fuly centered second order scheme

The operator in space are just translated on the discrete grid using:

Second order Laplacian, second order Biharmonic Five-point Laplacian:

$$\Delta\psi(x_i, y_j) \simeq \Delta_h \tilde{\psi}_{i,j}, \quad \Delta^2\psi(x_i, y_j) \simeq \Delta_h^2 \tilde{\psi}_{i,j} \tag{29}$$

Second order convective term

 $(\nabla^{\perp}\psi(x_i, y_j)) \cdot \nabla(\Delta\psi(x_i, y_j)) \simeq -\tilde{\psi}_{y,i,j} \Delta_h \tilde{\psi}_{x,i,j} + \tilde{\psi}_{x,i,j} \Delta_h \tilde{\psi}_{y,i,j}$ (36)

Navier-Stokes equation in streamfunction

$$\partial_t \Delta \psi + (\nabla^\perp \psi) \cdot \nabla (\Delta \psi) - \nu \Delta^2 \psi = 0 , \quad x \in \Omega , \quad t > 0$$
 (27)

+ Dirichlet B.C on ψ .

Approximation in space (method of lines)

 $\psi(x_i, y_j, t) \simeq \tilde{\psi}_{i,j}(t)$, solution of $\partial_t \Delta_h \tilde{\psi}_{i,j} - \tilde{\psi}_{y,i,j} \Delta_h \tilde{\psi}_{x,i,j} + \tilde{\psi}_{x,i,j} \Delta_h \tilde{\psi}_{y,i,j} - \nu \Delta_h^2 \tilde{\psi}_{i,j} = 0$, $x \in \Omega$, t > 0 (28) + Dirichlet B.C on $\tilde{\psi}_{i,j}, \tilde{\psi}_{x,i,j}, \tilde{\psi}_{y,i,j}$.

Fuly centered second order scheme

The operator in space are just translated on the discrete grid using:

Second order Laplacian, second order Biharmonic Five-point Laplacian:

 $\Delta\psi(x_i, y_j) \simeq \Delta_h \tilde{\psi}_{i,j}, \quad \Delta^2\psi(x_i, y_j) \simeq \Delta_h^2 \tilde{\psi}_{i,j} \tag{29}$

Second order convective term

 $(\nabla^{\perp}\psi(x_i, y_j)) \cdot \nabla(\Delta\psi(x_i, y_j)) \simeq -\tilde{\psi}_{y,i,j} \Delta_h \tilde{\psi}_{x,i,j} + \tilde{\psi}_{x,i,j} \Delta_h \tilde{\psi}_{y,i,j} = (3$

Navier-Stokes equation in streamfunction

$$\partial_t \Delta \psi + (\nabla^\perp \psi) \cdot \nabla (\Delta \psi) - \nu \Delta^2 \psi = 0 , \quad x \in \Omega , \quad t > 0$$
 (27)

+ Dirichlet B.C on ψ .

Approximation in space (method of lines)

$$\begin{split} \psi(x_i, y_j, t) &\simeq \tilde{\psi}_{i,j}(t), \text{ solution of} \\ \partial_t \Delta_h \tilde{\psi}_{i,j} - \tilde{\psi}_{y,i,j} \Delta_h \tilde{\psi}_{x,i,j} + \tilde{\psi}_{x,i,j} \Delta_h \tilde{\psi}_{y,i,j} - \nu \Delta_h^2 \tilde{\psi}_{i,j} = 0 \ , \ x \in \Omega \ , \ t > 0 \ (28) \\ + \text{ Dirichlet B.C on } \tilde{\psi}_{i,j}, \tilde{\psi}_{x,i,j}, \tilde{\psi}_{y,i,j} . \end{split}$$

Fuly centered second order scheme

The operator in space are just translated on the discrete grid using:

Second order Laplacian, second order Biharmonic Five-point Laplacian:

$$\Delta \psi(x_i, y_j) \simeq \Delta_h \tilde{\psi}_{i,j}, \quad \Delta^2 \psi(x_i, y_j) \simeq \Delta_h^2 \tilde{\psi}_{i,j}$$
(29)

Second order convective term

$$(
abla^{\perp}\psi(x_i, y_j)) \cdot
abla(\Delta\psi(x_i, y_j)) \simeq -\tilde{\psi}_{y,i,j}\Delta_h\tilde{\psi}_{x,i,j} + \tilde{\psi}_{x,i,j}\Delta_h\tilde{\psi}_{y,i,j}$$
 (30)

Navier-Stokes equation in streamfunction

$$\partial_t \Delta \psi + (\nabla^\perp \psi) \cdot \nabla (\Delta \psi) - \nu \Delta^2 \psi = 0 , \quad x \in \Omega , \quad t > 0$$
 (27)

+ Dirichlet B.C on ψ .

Approximation in space (method of lines)

$$\begin{split} \psi(x_i, y_j, t) &\simeq \tilde{\psi}_{i,j}(t), \text{ solution of} \\ \partial_t \Delta_h \tilde{\psi}_{i,j} - \tilde{\psi}_{y,i,j} \Delta_h \tilde{\psi}_{x,i,j} + \tilde{\psi}_{x,i,j} \Delta_h \tilde{\psi}_{y,i,j} - \nu \Delta_h^2 \tilde{\psi}_{i,j} = 0 \ , \ x \in \Omega \ , \ t > 0 \ (28) \\ + \text{ Dirichlet B.C on } \tilde{\psi}_{i,j}, \tilde{\psi}_{x,i,j}, \tilde{\psi}_{y,i,j} . \end{split}$$

Fuly centered second order scheme

The operator in space are just translated on the discrete grid using:

• Second order Laplacian, second order Biharmonic Five-point Laplacian:

$$\Delta\psi(x_i, y_j) \simeq \Delta_h \tilde{\psi}_{i,j}, \quad \Delta^2\psi(x_i, y_j) \simeq \Delta_h^2 \tilde{\psi}_{i,j}$$
(29)

Second order convective term

$$(\nabla^{\perp}\psi(x_i, y_j)) \cdot \nabla(\Delta\psi(x_i, y_j)) \simeq -\tilde{\psi}_{y,i,j}\Delta_h\tilde{\psi}_{x,i,j} + \tilde{\psi}_{x,i,j}\Delta_h\tilde{\psi}_{y,i,j}$$
(30)

Theorem

Let T > 0. Then there exist constants $C, h_0 > 0$, depending possibly on T, ν and on the exact solution ψ , such that, for all $0 \le t \le T$,

 $|\delta_x^+(\psi(t) - \tilde{\psi}(t))|_h^2 + |\delta_y^+(\psi(t) - \tilde{\psi}(t))|_h^2 \le Ch^3 \quad , \quad 0 < h \le h_0$ (31)

where $\psi(t) = \psi_{i,j}(t)$ is the pointwise interpolated exact solution and $\tilde{\psi}_{i,j}(t)$ is the solution of the semidiscrete scheme.

Properties

- Second order centered approximation (no upwinding).
- No need of boundary conditions on the vorticity and no uncontrolled pressure modes.

Theorem

Let T > 0. Then there exist constants $C, h_0 > 0$, depending possibly on T, ν and on the exact solution ψ , such that, for all $0 \le t \le T$,

 $|\delta_x^+(\psi(t) - \tilde{\psi}(t))|_h^2 + |\delta_y^+(\psi(t) - \tilde{\psi}(t))|_h^2 \le Ch^3 \quad , \quad 0 < h \le h_0$ (31)

where $\psi(t) = \psi_{i,j}(t)$ is the pointwise interpolated exact solution and $\tilde{\psi}_{i,j}(t)$ is the solution of the semidiscrete scheme.

Properties

- Second order centered approximation (no upwinding).
- No need of boundary conditions on the vorticity and no uncontrolled pressure modes.

Fourth order scheme for the Navier-Stokes equation

Centered fourth order scheme

The operators in space are just translated from the continuous ones on the discrete grid using:

Fourth order Laplacian, fourth order Biharmonic

$$\Delta \psi(x_i, y_j) \simeq \Delta_h \psi_{i,j} - \frac{h^2}{12} \left(\delta_x^4 \psi_{i,j} + \delta_y^4 \psi_{i,j} \right)$$
$$\Delta^2 \psi(x_i, y_j) \simeq \Delta_h^2 \psi - \delta_x^4 \left(I - \frac{h^2}{6} \delta_y^2 \right) \psi_{i,j} + \delta_y^4 \left(I - \frac{h^2}{6} \delta_x^2 \right) \psi_{i,j} + 2\delta_x^2 \delta_y^2 \psi_{i,j}$$
(32)

Fourth order convective term

$$\begin{aligned} (\nabla^{\perp}\psi(x_i,y_j))\cdot\nabla(\Delta\psi(x_i,y_j)) &\simeq & -\psi_{y,i,j}\Delta_h\psi_{x,i,j} + \psi_{x,i,j}\Delta_h\psi_{y,i,j} \\ &- & \frac{h^2}{12}\bigg(-\delta_x\left(\psi_{y,i,j}(\delta_x^4\psi_{i,j} + \delta_y^4\psi_{i,j})\right) \\ &+ & \delta_y\left(\psi_{x,i,j}(\delta_x^4\psi_{i,j} + \delta_y^4\psi_{i,j})\right)\bigg) \end{aligned}$$

Fourth order scheme for the Navier-Stokes equation

Centered fourth order scheme

The operators in space are just translated from the continuous ones on the discrete grid using:

• Fourth order Laplacian, fourth order Biharmonic

$$\Delta \psi(x_i, y_j) \simeq \Delta_h \psi_{i,j} - \frac{h^2}{12} \left(\delta_x^4 \psi_{i,j} + \delta_y^4 \psi_{i,j} \right)$$

$$\Delta^2 \psi(x_i, y_j) \simeq \Delta_h^2 \psi - \delta_x^4 \left(I - \frac{h^2}{6} \delta_y^2 \right) \psi_{i,j} + \delta_y^4 \left(I - \frac{h^2}{6} \delta_x^2 \right) \psi_{i,j} + 2\delta_x^2 \delta_y^2 \psi_{i,j}$$

$$(32)$$

Fourth order convective term

$$\begin{aligned} (\nabla^{\perp}\psi(x_i, y_j)) \cdot \nabla(\Delta\psi(x_i, y_j)) &\simeq & -\psi_{y,i,j}\Delta_h\psi_{x,i,j} + \psi_{x,i,j}\Delta_h\psi_{y,i,j} \\ &- & \frac{h^2}{12} \bigg(-\delta_x \left(\psi_{y,i,j}(\delta_x^4\psi_{i,j} + \delta_y^4\psi_{i,j})\right) \\ &+ & \delta_y \left(\psi_{x,i,j}(\delta_x^4\psi_{i,j} + \delta_y^4\psi_{i,j})\right) \bigg) \end{aligned}$$

Fourth order scheme for the Navier-Stokes equation

Centered fourth order scheme

The operators in space are just translated from the continuous ones on the discrete grid using:

Fourth order Laplacian, fourth order Biharmonic

$$\Delta\psi(x_i, y_j) \simeq \Delta_h \psi_{i,j} - \frac{h^2}{12} \left(\delta_x^4 \psi_{i,j} + \delta_y^4 \psi_{i,j} \right)$$
$$\Delta^2 \psi(x_i, y_j) \simeq \Delta_h^2 \psi - \delta_x^4 \left(I - \frac{h^2}{6} \delta_y^2 \right) \psi_{i,j} + \delta_y^4 \left(I - \frac{h^2}{6} \delta_x^2 \right) \psi_{i,j} + 2\delta_x^2 \delta_y^2 \psi_{i,j}$$
(32)

Fourth order convective term

$$\begin{aligned} (\nabla^{\perp}\psi(x_i,y_j))\cdot\nabla(\Delta\psi(x_i,y_j)) &\simeq & -\psi_{y,i,j}\Delta_h\psi_{x,i,j} + \psi_{x,i,j}\Delta_h\psi_{y,i,j} \\ & - & \frac{h^2}{12}\bigg(-\delta_x\left(\psi_{y,i,j}(\delta_x^4\psi_{i,j}+\delta_y^4\psi_{i,j})\right) \\ & + & \delta_y\left(\psi_{x,i,j}(\delta_x^4\psi_{i,j}+\delta_y^4\psi_{i,j})\right)\bigg) \end{aligned}$$

High order IMEX time-scheme (Spalart-Moser-Rogers)

Algorithm: 3 biharmonic solving by time-step

$$\begin{aligned} U &= \tilde{\Delta}_{h} \psi \\ D &= \nu \tilde{\Delta}_{h}^{2} (\psi) \\ C &= \tilde{C}_{h} (\psi), \end{aligned}$$

The scheme is

$$\begin{cases} U^{1} = \tilde{\Delta}_{h} \psi^{n} \\ U^{2} = U^{1} + \Delta t \left(\gamma_{1}(-C_{h}^{1}) + \alpha_{1}D_{h}^{1} + \beta_{1}D_{h}^{2} \right) + \frac{8}{15} \Delta t F^{n+4/15} \\ U^{3} = U^{2} + \Delta t \left(\gamma_{2}(-C_{h}^{2}) + \zeta_{1}(-C_{h}^{1}) + \alpha_{2}D_{h}^{2} + \beta_{2}D_{h}^{3} \right) + \Delta t \left(\frac{2}{3}F^{n+1/3} - \frac{8}{15}F^{n+4/15} \right) \\ U^{4} = U^{3} + \Delta t \left(\gamma_{3}(-C_{h}^{3}) + \zeta_{2}(-C_{h}^{2}) + \alpha_{3}D_{h}^{3} + \beta_{3}D_{h}^{4} \right) + \Delta t \left(\frac{1}{6}F^{n} + \frac{2}{3}F^{n+1/2} + \frac{1}{6}F^{n+1} - \frac{2}{3}F^{n+1/3} \right) \end{cases}$$
(34)

The values of the parameters are

$$\begin{aligned} \alpha_1 &= \frac{29}{96}, \quad \alpha_2 &= \frac{-3}{40}, \quad \alpha_3 &= \frac{1}{6} \\ \beta_1 &= \frac{37}{160}, \quad \beta_2 &= \frac{5}{2^{44}}, \quad \beta_3 &= \frac{1}{3} \\ \gamma_1 &= \frac{15}{15}, \quad \gamma_2 &= \frac{5}{12}, \quad \gamma_3 &= \frac{3}{4} \\ \zeta_1 &= \frac{-17}{60}, \quad \zeta_2 &= \frac{-5}{12}. \end{aligned}$$
(35)

Cost of one time-step

Three biharmonic problems of the form $(\Delta - \alpha \Delta^2)\psi = f$ to solve at each time step

Jean-Pierre CROISILLE - Univ. Metz, France

High order IMEX time-scheme (Spalart-Moser-Rogers)

Algorithm: 3 biharmonic solving by time-step

$$\begin{array}{l} U = \tilde{\Delta}_{h} \psi \\ D = \nu \tilde{\Delta}_{h}^{2}(\psi) \\ C = \tilde{C}_{h}(\psi), \end{array}$$

The scheme is

$$\begin{cases} U^{1} = \tilde{\Delta}_{h} \psi^{n} \\ U^{2} = U^{1} + \Delta t \left(\gamma_{1}(-C_{h}^{1}) + \alpha_{1}D_{h}^{1} + \beta_{1}D_{h}^{2} \right) + \frac{8}{15} \Delta t F^{n+4/15} \\ U^{3} = U^{2} + \Delta t \left(\gamma_{2}(-C_{h}^{2}) + \zeta_{1}(-C_{h}^{1}) + \alpha_{2}D_{h}^{2} + \beta_{2}D_{h}^{3} \right) + \Delta t \left(\frac{2}{3}F^{n+1/3} - \frac{8}{15}F^{n+4/15} \right) \\ U^{4} = U^{3} + \Delta t \left(\gamma_{3}(-C_{h}^{3}) + \zeta_{2}(-C_{h}^{2}) + \alpha_{3}D_{h}^{3} + \beta_{3}D_{h}^{4} \right) + \Delta t \left(\frac{1}{6}F^{n} + \frac{2}{3}F^{n+1/2} + \frac{1}{6}F^{n+1} - \frac{2}{3}F^{n+1/3} \right) \end{cases}$$
(34)

The values of the parameters are

$$\begin{aligned} \alpha_1 &= \frac{29}{96} & \alpha_2 = \frac{-3}{40} & \alpha_3 = \frac{1}{6} \\ \beta_1 &= \frac{37}{160} & \beta_2 = \frac{5}{5^{24}} & \beta_3 = \frac{1}{7} \\ \gamma_1 &= \frac{15}{15} & \gamma_2 = \frac{12}{12} & \gamma_3 = \frac{3}{4} \\ \zeta_1 &= \frac{-17}{60} & \zeta_2 = \frac{-5}{12} \\ \end{aligned}$$
(35)

Cost of one time-step

Three biharmonic problems of the form $(\Delta - \alpha \Delta^2)\psi = f$ to solve at each time step

Jean-Pierre CROISILLE - Univ. Metz, France

Assessing the fourth order accuracy

 $e = absolute error for \psi$, $e_r =$, relative error for ψ_x , $e_x = absolute error for <math>\psi_x$.

mesh	9 imes 9	Rate	17 imes17	Rate	33 × 33	Rate	65 imes 65
$t = 0.25 \ e$	5.0867(-3)	4.06	3.0525(-4)	4.02	1.8835(-5)	4.00	1.1734(-6)
e_r	9.4936(-3)		5.7441(-4)		3.5460(-5)		2.2092(-6)
e_x	2.6390(-3)	3.89	1.7837(-4)	3.93	1.1670(-5)	3.98	7.3752(-7)
t = 0.5 e	3.2224(-3)	4.00	2.0085(-4)	4.00	1.2541(-5)	4.00	7.8361(-7)
e_r	7.7407(-3)		4.8536(-4)		3.0317(-5)		1.8944(-6)
e_x	3.2285(-3)	4.02	1.9896(-4)	4.00	1.2436(-5)	4.00	7.7745(-7)
$t = 0.75 \ e$	2.4887(-3)	4.00	1.5508(-4)	4.00	9.6887(-6)	4.00	6.0551(-7)
e_r	7.6730(-3)		4.8119(-4)		3.0075(-5)		1.8796(-6)
e_x	2.5516(-3)	4.02	1.5723(-4)	4.00	9.8187(-6)	4.00	6.1364(-7)
t = 1 e	1.9376(-3)	4.00	1.2074(-4)	4.00	7.5434(-6)	4.00	4.7145(-7)
e_r	7.6796(-3)		4.8103(-4)		3.0066(-5)		1.8791(-6)
e_x	1.9885(-3)	4.02	1.2255(-4)	4.00	7.6526(-6)	4.00	4.7826(-7)

Table 1: Compact scheme for Navier-Stokes with exact solution: $\psi = (1 - x^2)^3 (1 - y^2)^3 e^{-t}$ on $[-1, 1] \times [-, 1]$. We represent e_i : the l_2 error for the streamfunction and e_x the max error in the U^x velocity $= -\partial_y \psi$. $\Delta t = Ch^2$.

- ロ ト - (同 ト - (回 ト -) 回 ト -) 回

Max $|\psi|$ behaviour at Re = 10000

Figure: Driven Cavity for Re = 10000 : Max streamfunction. Computations are done with N = 65, with $\Delta t = 1/90$.

Isolines, Re = 7500, Re = 10000

Figure: Driven Cavity for Re = 7500, 10000: Streamfunction Contours with the fourth-order scheme

Velocity in the middle of the cavity, Re = 7500, Re = 10000

FigUIP: Velocity components for the driven cavity problem. Left: Re = 7500, fourth-order scheme with N = 65 (solid line), Ghia-Ghia-Shin. with N = 257 (circles). Right: Re = 10000 fourth-order scheme with N = 65 (solid Line), Ghia-Ghia-Shin with N = 257 (circles).

(D) (A) (B) (B)

Computing efficiency for NS (driven cavity)

N = 65, Re = 1000	N = 129, Re = 1000	N = 256, Re = 5000
8000 it., $\Delta t = 1/60$	12000 it., $\Delta t = 1/60$	50000 it., $\Delta t = 1/180$
4 min (0.03 sec/it.)	23min30sec. (0.11sec/it.)	7h 50min.(0.56sec/it.)

Table: Indicative CPU time for the driven cavity on a Laptop

Outline

- Fourth order scheme with fast solver in $O(N^2 \ln_2(N))$. Fortran90 code.
- Driven cavity computations up to Re = 10000, beyond the first Hopf bifurcation.
- Numerical analysis
- Derivation and first implementation of the 3D NS equations in streamfunction formulation in a cube
- Design and tests of a cartesian embedded biharmonic scheme for irregular geometries
- Application to other models involving biharmonic equations (e.g. image processing).

Outline

- Spectral analysis of fourth order problems. Application to the Stokes modes in a square/cube.
- Still enhance the fast solver (also in 3D)
- Other applications to fourth order problems solving: HJ (Hamilton-Jacobi), KS (Kuramoto-Sivashinsky), MEMS (Micro-Electro-Mechanical Systems).
- Driven cavity in a cube.
- Irregular geometries on cartesian grids using embedded/immersed boundaries seem tractable.