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http://www-dimat.unipv.it/boffi

Nonstandard Discretizations for Fluid Flows



Mass
conservation

of the FE IBM

Daniele Boffi

Immersed
boundary
method

Mass
conservation

Contents

1 Immersed boundary method

The model

FE approximation

CFL condition

Numerical results

2 Mass conservation

Inf-sup condition

Main theorem

Numerical results



Mass
conservation

of the FE IBM

Daniele Boffi

Immersed
boundary
method

The model

FE approx.

CFL condition

Numerical
results

Mass
conservation

IBM – Immersed boundary method

Introduced by Peskin for the simulation of the blood flow in the
heart.

<Peskin ’72–’77>
<McQueen–Peskin ’83–>

<Peskin ’02>

Successfully applied to many biological problems, where a fluid
interacts with a flexible structure.

The main feature is that the structure is considered as a part of
the fluid by introducing suitable additional forces and masses.
The Navier–Stokes equations are solved in the whole domain
(fluid + solid) by finite differences and the interaction with the
structure is obtained by means of singular force and mass terms
defined by a Dirac delta function localized in the solid domain.
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Finite elements for IBM

At the beginning, we used finite elements mainly because we
thought this would simplify the mathematical analysis. Indeed,
it turned out that this is a good choice also from the practical
point of view.

<B.–Gastaldi ’03>
<B.–Gastaldi–Heltai ’04–’07>

<B.–Gastaldi–Heltai–Peskin ’08>

• No need to approximating the Dirac delta functions, since
the variational formulation takes care of it in a natural way

• Better interface approximation (less diffusion, sharp
pressure jump)

• The fluid equations can be approximated with standard
mixed schemes (Q2−P1, Hood–Taylor, P1isoP2−Pc

1 , . . . )
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Immersed elastic bodies

Fluid

Ω Elastic body

Bt

Immersed body of
codimension 0
the fluid domain and the
immersed body have the
same dimension

Elastic boundary

Fluid

Ω

Bt

Immersed body of
codimension 1
the immersed body is either a
curve in 2D or a surface in 3D
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Notation

ω Ω

X(t)

B

Bt

Ω fluid + solid Bt deformable structure domain
Ω ⊂ Rd , d = 2, 3 Bt ⊂ Rm, m = d , d − 1
x Euler. var. in Ω s Lagrangian var. in B

B reference domain
u(x, t) fluid velocity X(·, t) : B → Bt position of the solid

p(x, t) fluid pressure F =
∂X

∂s
deformation grad. (det F > 0)

u(x, t) =
∂X

∂t
(s, t) where x = X(s, t)
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From conservation of momenta, in absence of external forces, it
holds

ρu̇ = ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ ·σ in Ω

In our case the Cauchy stress tensor has the following form

σ =

{
σf in Ω \ Bt

σf + σs in Bt

• Incompressible fluid: σ = σf = −pI + µ(∇u + (∇u)T )

• Visco-elastic material: σ = σf + σs with σs elastic part
of the stress

Moreover, if the structural material has a density ρs different
from the fluid density ρf , we have

ρ =

{
ρf in Ω \ Bt

ρs in Bt
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Virtual work principle (ρs = ρf )

Assume for simplicity that ρs = ρf = ρ, then∫
Ω
ρu̇vdx +

∫
Ω

σf : ∇ v dx = −
∫
Bt

σs : ∇ v dx ∀v

The elastic stress σs can be expressed in Lagrangian variables
by means of the Piola-Kirchhoff stress tensor by:

P(s, t) = |F(s, t)|σs(X(s, t), t)F−T (s, t), s ∈ B

So that∫
Ω
ρu̇vdx +

∫
Ω

σf : ∇ v dx = −
∫
B

P : ∇s v(X(s, t)) ds
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Strong formulation
Navier–Stokes

ρ

(
∂u

∂t
+ u · ∇u

)
− µ∆u +∇ p = g + t in Ω× ]0,T [

div u = 0 in Ω× ]0,T [

Force density in Ω×]0,T [

g(x, t) =

∫
B
∇s ·P(s, t)δ(x− X(s, t))ds

t(x, t) = −
∫
∂B

P(s, t)N(s)δ(x− X(s, t))ds

Immersed structure motion
∂X

∂t
(s, t) = u(X(s, t), t) in B × ]0,T [

Initial and boundary condition

u(x, 0) = u0(x) in Ω X(s, 0) = X0(s) in B
u(x, t) = 0 su ∂Ω×]0,T [
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Variational formulation
Source term∫

Ω
(g + t) · v dx =

∫
B

(∇s ·P) · v(X(s, t)) ds

−
∫
∂B

PN · v(X(s, t)) dA

= −
∫
B

P : ∇s v(X(s, t)) ds

Lemma

For any t ∈ [0,T ], let ∂Bt be C 1 and P be W 1,∞. Then, for
any t ∈ ]0,T [, the force density F = g + t is a distribution
belonging to H−1(Ω)d defined as follows: for any v ∈ H1

0 (Ω)d

H−1〈F(t), v〉H1
0

= −
∫
B

P(F(s, t)) : ∇s v(X(s, t)) ds ∀t ∈ ]0,T [
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Final form of the variational formulation

• Navier–Stokes

ρ
d

dt
(u(t), v) + a(u(t), v)+b(u(t),u(t), v)− (div v, p(t))

=< F(t), v > ∀v ∈ H1
0 (Ω)d

(div u(t), q) = 0 ∀q ∈ L2
0(Ω)

a(u, v) = µ(∇u,∇ v)
b(u, v,w) = ρ

2 ((u · ∇ v,w)− (u · ∇w, v))

• 〈F(t), v〉 = −
∫
B

P(F(s, t)) : ∇s v(X(s, t)) ds ∀v ∈ H1
0 (Ω)d

•
∂X

∂t
(s, t) = u(X(s, t), t) ∀s ∈ B

• u(x, 0) = u0(x) ∀x ∈ Ω, X(s, 0) = X0(s) ∀s ∈ B.
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Virtual work principle (ρs 6= ρf )

Excess Lagrangian mass density: we assume ρ = ρs in Bt and
ρ = ρf in Ω− Bt , with ρs − ρf ≥ 0 (might be relaxed)∫

Ω
ρf u̇vdx +

∫
Ω

σf : ∇ v dx

= −
∫
Bt

(ρs − ρf )u̇vdx−
∫
Bt

σs : ∇ v dx ∀v

Using the Lagrangian description in the solid domain, there is
no need for convective terms and the material derivative is the
same as the time derivative, hence u̇ = ∂2X/∂t2, and we get∫

Ω
ρf u̇vdx +

∫
Ω

σf : ∇ v dx

= −
∫
B

(ρs − ρf )
∂2X

∂t2
v(X(s, t))ds −

∫
B

P : ∇s v(X(s, t)) ds
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Then the variational formulation reads (with the same
definition as above):

• Navier–Stokes

ρf
d

dt
(u(t), v) + a(u(t), v)+b(u(t),u(t), v)− (div v, p(t))

= −
∫
B

(ρs − ρf )
∂2X

∂t2
v(X(s, t))ds

+ < F(t), v > ∀v ∈ H1
0 (Ω)d

(div u(t), q) = 0 ∀q ∈ L2
0(Ω)

• 〈F(t), v〉 = −
∫
B

P(F(s, t)) : ∇s v(X(s, t)) ds ∀v ∈ H1
0 (Ω)d

•
∂X

∂t
(s, t) = u(X(s, t), t) ∀s ∈ B

• u(x, 0) = u0(x) ∀x ∈ Ω, X(s, 0) = X0(s) ∀s ∈ B.
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Stability
<B.–Cavallini–Gastaldi ’10>

Recalling that

∂X

∂t
(s, t) = u(X(s, t), t) ∀s ∈ B

it holds

ρf

2

d

dt
||u(t)||20 + µ||∇u(t)||20 +

d

dt
E (X(t))

+
1

2
(ρs − ρf )

d

dt

∥∥∥∥∂X

∂t

∥∥∥∥2

B

= 0

where E is the total elastic potential energy

E (X(t)) =

∫
B

W (F(s, t)) ds
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Finite element approximation

• Uniform background grid
Th for the domain Ω
(meshsize hx)

• Inf-sup stable finite
element pair

Vh ⊂ H1
0 (Ω)d

Qh ⊂ L2
0(Ω)

• Grid Sh for B (meshsize hs)
• Piecewise linear finite element space for X

Sh = {Y ∈ C 0(B; Ω) : Y ∈ P1}

Notation

• Tk , k = 1, . . . ,Me elements of Sh

• sj , j = 1, . . . ,M vertices of Sh

• Eh set of the edges e of Sh
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Discrete source term
Source term:

〈F(t), v〉 = −
∫
B

P(Fh(s, t)) : ∇s v(Xh(s, t)) ds ∀v ∈ Vh

Xh p.w. linear ⇒ Fh, Ph p.w. constant
By integration by parts

〈Fh(t), v〉h = −
Me∑
k=1

∫
Tk

Ph : ∇s v(X(s, t)) ds

= −
Me∑
k=1

∫
∂Tk

PhNv(X(s, t)) dA

that is

〈Fh(t), v〉h = −
∑
e∈Eh

∫
e
[[Ph]] · v(X(s, t)) dA

[[P]] = P+N+ + P−N− jump of P across e for internal edges
[[P]] = PN jump when e ⊂ ∂B
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The semidiscrete problem becomes: find
(uh, ph) : ]0,T [→ Vh × Qh and Xh : [0,T ]→ Sh such that

ρf
d

dt
(uh(t), v) + a(uh(t), v) + b(uh(t),uh(t), v)

−(div v, ph(t)) = −
∫
B

(ρs − ρf )
∂2Xh

∂t2
v(Xh(s, t))ds

−
∑
e∈Eh

∫
e
[[Ph]] · v(Xh(s, t))dA ∀v ∈ Vh

(div uh(t), q) = 0 ∀q ∈ Qh

dXhi

dt
(t) = uh(Xhi (t), t) ∀i = 1, . . . ,M

uh(0) = u0h in Ω

Xhi (0) = X0(si ) ∀i = 1, . . . ,M



Mass
conservation

of the FE IBM

Daniele Boffi

Immersed
boundary
method

The model

FE approx.

CFL condition

Numerical
results

Mass
conservation

Fully discrete problem
Backward Euler – BE

Find (un+1
h , pn+1

h ) ∈ Vh × Qh e Xn+1
h ∈ Sh such that

〈Fn+1
h , v〉h = −

∑
e∈Eh

∫
e
[[Ph]]n+1 · v(Xn+1

h (s))dA ∀v ∈ Vh

NS



ρf

(
un+1

h − un
h

∆t
, v

)
+ a(un+1

h , v) + b(un+1
h ,un+1

h , v)

−(div v, pn+1
h ) =

−
∫
B

(ρs − ρf )
Xn+1

h − 2Xn
h + Xn−1

h

∆t2
· v(Xn+1

h (s))ds

+ < Fn+1
h , v >h ∀v ∈ Vh

(div un+1
h , q) = 0 ∀q ∈ Qh;

Xn+1
hi − Xn

hi

∆t
= un+1

h (Xn+1
hi ) ∀i = 1, . . . ,M.
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Fully discrete problem
Modified bckward Euler – MBE

Step 1. 〈Fn
h, v〉h = −

∑
e∈Eh

∫
e
[[Ph]]n · v(Xn

h(s, t)) dA ∀v ∈ Vh

Step 2. find (un+1
h , pn+1

h ) ∈ Vh × Qh such that

NS



ρf

(
un+1

h − un
h

∆t
, v

)
+ a(un+1

h , v) + b(un+1
h ,un+1

h , v)

−(div v, pn+1
h ) =

−
∫
B

(ρs − ρf )
Xn+1

h − 2Xn
h + Xn−1

h

∆t2
· v(Xn

h(s))ds

+〈Fn
h, v〉h ∀v ∈ Vh

(div un+1
h , q) = 0 ∀q ∈ Qh;

Step 3.
Xn+1

hi − Xn
hi

∆t
= un+1

h (Xn
hi ) ∀i = 1, . . . ,M.
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Using Step 3 in Step 2 we get:

Step 1. 〈Fn
h, v〉h = −

∑
e∈Eh

∫
e
[[Ph]]n · v(Xn

h(s, t)) dA ∀v ∈ Vh

Step 2. find (un+1
h , pn+1

h ) ∈ Vh × Qh such that

NS



ρf

(
un+1

h − un
h

∆t
, v

)
+ a(un+1

h , v) + b(un+1
h ,un+1

h , v)

−(div v, pn+1
h ) =

−
∫
B

(ρs − ρf )
un+1

h (Xn
h(s))− un

h(Xn−1
h (s))

∆t
· v(Xn

h(s))ds

+〈Fn
h, v〉h ∀v ∈ Vh

(div un+1
h , q) = 0 ∀q ∈ Qh;

Step 3.
Xn+1

hi − Xn
hi

∆t
= un+1

h (Xn
hi ) ∀i = 1, . . . ,M.
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Discrete Energy Estimate

<B.–Cavallini–Gastaldi ’10>

Artificial Viscosity Theorem

Let un
h, pn

h and Xn
h be a solution to the FE-IBM, then

ρf

2∆t

(
‖un+1

h ‖2
0 − ‖un

h‖2
0

)
+ (µ+ µa)‖∇un+1

h ‖2
0

+
1

∆t

(
E
[
Xn+1

h

]
− E [Xn

h]
)

+
1

2∆t
(ρs − ρf )

(
‖un+1

h (Xn
h)‖2

0,B − ‖un
h(Xn−1

h ‖2
0,B
)
≤ 0

CFL Conditions: µ+ µa ≥ 0, ρs ≥ ρf (might be relaxed)
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CFL condition

BE is unconditionally stable, while MBE requires the term µa

to be not too large

µa = −κmaxC
h

(m−2)
s ∆t

h
(d−1)
x

Ln

space dim. solid dim. CFL condition

2 1 Ln∆t ≤ Chxhs

2 2 Ln∆t ≤ Chx

3 2 Ln∆t ≤ Ch2
x

3 3 Ln∆t ≤ Ch2
x/hs
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Some numerical results
Original 2D code in Fortran 77, ported to DEAL.II (c++)
(www.dealii.org) by L. Heltai (Q2 − P1)

2D

Codimension 1

Codimension 0

3D

Codimension 1
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More numerical results

Fortran 90 code written by N. Cavallini (P1isoP2 − Pc
1 )

Densities: ρs = 21 and ρf = 1

κ = 1 κ = 0.1 κ = 0.1

κ = 1 κ = 0.1
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Mass conservation of the IBM

<B.–Cavallini–Gardini–Gastaldi ’10>

Well-known and studied problem

The discrete divergence free condition is imposed in a weak
sense ∫

Ω
div uhqh dx = 0 ∀qh ∈ Qh

which is not exact unless div(Vh) ⊂ Qh

Basic remark

Discontinuous pressure schemes enjoy local mass conservation
properties (average of divergence is zero element by element)
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Our elements

Hood–Taylor P1isoP2 − Pc
1

Enhanced Hood–Taylor Enhanced P1isoP2 − Pc
1

We actually considered generalized Hood–Taylor in two and
three dimensions Pk+1 − Pc

k (k ≥ 1)

Not a new idea

Local mass conservation is guaranteed by extra degree of
freedom: add piecewise constant pressures
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Analysis of our elements

Known facts

Hood–Taylor

• Introduced in 1973 <Hood–Taylor ’73>

• First analysis <Bercovier–Pironneau ’79, Verfürth ’84>

• Full analysis with some restrictions on boundary elements
<Scott–Vogelius ’85, Brezzi–Falk ’91>

• General analysis for the Pk+1 − Pc
k element with no

restrictions (mesh contains at least 3 elements) <B. ’94>

P1isoP2 − Pc
1

• Same analysis as for the Hood-Taylor element can be
carried on <Bercovier–Pironneau ’79, Brezzi–Fortin ’91>

• Error estimates are suboptimal (unbalanced spaces); ease
of implementation makes it appealing, in particular in 3D
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Analysis of our elements (cont’ed)

Pressure enhancement

• Numerical evidence for lowest order Hood-Taylor (triangles
and squares)

<Gresho–Lee–Chan–Leone ’80>
<Griffiths ’82>

<Tidd–Thatcher–Kaye ’88>

• Proof of inf-sup for lowest order Hood-Taylor (triangles
and squares)

<Thatcher ’90>
<Pierre ’94>

<Quin–Zhang ’05>
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Analysis of our elements (cont’ed)

Theorem (B.–Cavallini–Gardini–Gastaldi ’10)

The generalized enhanced Hood-Taylor scheme

Pk+1 − (Pc
k + P0)

in two (k ≥ 1) and three (k ≥ 2) dimensions and the enhanced

P1isoP2 − (Pc
1 + P0)

in two dimensions satisfy the inf-sup condition

Minimal restriction on the mesh: each element has at least one
internal vertex.
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Mesh restrictions

2D: let us understand the restrictions

• Standard schemes: the mesh needs at least three elements

• Enhanced schemes: each element needs at least an
internal vertex

Uniform mesh Symmetric mesh
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Numerical results

Ω =]0, 1[×]0, 1[

f chosen such that exact solution is

u(x , y) = rotϕ(x , y)

ϕ(x , y) = x2(x − 1)2y 2(1− y)2

p(x , y) = x

Solution computed with the four different schemes on uniform
and symmetric meshes, successively refined
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Hood-Taylor
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Enhanced Hood-Taylor
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P1isoP2 − Pc
1
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Enhanced P1isoP2 − (Pc
1 + P0)
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Divergence error: Hood-Taylor
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Divergence error: P1isoP2
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Iterative solver

Number of iterations needed to reach convergence when using
conjugate gradient à la Glowinski

Element type Iterations

hp = 1/8 hp = 1/16 hp = 1/32

P2 − Pc
1 130 169 172

P2 − (Pc
1 + P0) 25 29 29

P1isoP2 − Pc
1 19 24 24

P1isoP2 − (Pc
1 + P0) 30 35 35
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Conclusions

1 The finite element Immersed Boundary Method provides
interesting results for the approximation of fluid-structure
interaction problems. Rigorous proof of a CFL condition
shows that modified BE scheme can be successfully used
in this framework

2 We performed a rigorous analysis of locally mass
preserving Stokes element in a general setting
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