

Christian-Albrechts-Universität zu Kiel

Mathematisch-Naturwissenschaftliche Fakultät

Stabilized finite elements for Darcy flow and application to hydrothermal flows

Malte Braack

Christian-Albrechts-Universität zu Kiel

Jaime Carpio Huertas Universidad Politécnica de Madrid

Friedhelm Schieweck Otto-von-Guericke Universität Magdeburg

Introduction

- **2** Local projection stabilization (LPS) for Darcy-Brinkman
- Stability and a priori error estimates
- Model problem
- Application to black smokers
 - Effect of numerical scheme to statistical quantities

1. Introduction

Black smokers

- Undersea volcanoes are interesting due to biochemical mineral formation
- Numerical simulation may help to understand their formation:
 - dynamical processes in the ocean's crust (porous media)
 - PDEs with nonlinear mathematical models for the coefficients
- Numerical schemes should be improved when model complexity increases

Governing equations

Darcy + temperature eq:

$$\phi \frac{\partial \rho_f}{\partial t} + \nabla \cdot (\rho_f v) = 0$$
$$\frac{\mu_f}{k} v + \nabla p = \rho_f g$$

$$(\phi \rho_f c_{p_f} + (1 - \phi) \rho_r c_{p_r}) \frac{\partial I}{\partial t} + (\rho_f c_{p_f} v \cdot \nabla) T - \nabla \cdot (D \nabla T) = 0$$

• Model I:
$$\mu = \text{const}, \ \rho_f = \rho_0 + \alpha (T - T_0) + \beta (p - p_0)$$

• Model II: variable μ_f , c_p 's and α, β :

2. Darcy-Brinkman-problem

$$\sigma v - \nu \Delta v + \nabla p = f \quad \text{in } \Omega,$$

$$\operatorname{div} v = g \quad \text{in } \Omega,$$

$$v \cdot n = 0 \quad \text{on } \partial \Omega,$$

$$\nu v \cdot t = 0 \quad \text{on } \partial \Omega$$

Compatibility conditions $\int_{\Omega} g \, dx = 0$, $\int_{\Omega} p \, dx = 0$. Brinkman 1947: consistent bc for Darcy **Different regimes:**

- $\sigma = 0$, g = 0, $\nu > 0$: standard stationary Stokes system
- $\sigma \sim (t_n t_{n-1})^{-1}$, g = 0: one time step of non-stationary Stokes
- $\nu = 0$: Darcy case

Variational spaces:

$$\begin{array}{lll} V & := & \{ v \in H^1(\Omega)^d : v = 0 \text{ on } \partial\Omega \} & \text{for } \nu > 0 \,, \\ V & := & \{ v \in L^2(\Omega)^d : \text{div } v \in L^2(\Omega) \,, v \cdot n = 0 \text{ on } \partial\Omega \} & \text{for } \nu = 0 \,, \\ X & := & V \times L^2_0(\Omega) \end{array}$$

Bilinear form for $u = (v, p), \varphi = (\phi, \xi) \in X$:

$$A(u,\varphi) := (\sigma v, \phi) + (\nu \nabla v, \nabla \phi) - (p, \operatorname{div} \phi) + (\operatorname{div} v, \xi)$$

Uniformly stable and accurate fem with respect to σ and ν ?

- Stable families of finite elements for Stokes and Darcy are usually not the same.
- *H*(*div*)-conforming FE for Darcy are not suitable for Stokes (Mardal et al. 2002)
- Stokes MINI-element not suitable for Darcy

Finite elements for Darcy-Brinkmann

Hetereogeneous approaches:

• Layton, Schieweck, Yotov 2003: RT or Brezzi-Douglas-Marini for Darcy, Taylor-Hood or Mini for Stokes

Unified approaches:

- Karper, Mardal, Winther 2006: non-conforming FE of Crouzeix-Raviart type
- Burman, Hansbo 2007: P_1/P_0 +edge stab.
- Badia, Codina 2009: ASGS and OSS

Aim:

- Discretization with equal-order elements
- stable and accurate for $\nu \in [0,\infty)$, in particular for $\nu = 0$
- stable and accurate for $\sigma \in [0,\infty)$
- uniform approach

Local projection stabilization (LPS)

• Replace X by discrete space $X_h = V_h \times Q_h$:

$$u_h \in X_h$$
: $A(u_h, \varphi) + S_h(u_h, \varphi) = F(\varphi) \quad \forall \varphi \in X_h$

Symmetric stabilization term

$$S_h(u,z) := (\delta \kappa_h(\operatorname{div} v), \kappa_h(\operatorname{div} w)) + (\alpha \kappa_h(\nabla p), \kappa_h(\nabla q))$$

Fluctuation operator $\kappa_h := I - \pi_h$ and local L^2 -projection π_h :

$$\pi_h: L^2(\Omega) \to D_h$$

 D_h : Inf-sup condition, locally L^2 -stable, interpolation property.

- Two-level method: D_h := Q^{dc}_{2h,r-1} Several one-level methods for Oseen (Matthies, Skrzypacz, Tobiska)
- Appropriate scaling of stabilization parameters in dependence of h, σ and ν .

• We show an inf-sup condition with respect to the triplenorm $(\theta > 0)$:

$$|||u|||^{2} := \underbrace{\nu|v|_{1}^{2} + \sigma ||v|_{0}^{2} + S_{h}(y, y)}_{=|\cdot|_{a}^{2}} + \underbrace{\theta^{2}||p||_{0}^{2}}_{=|\cdot|_{b}^{2}}$$

 θ will be fixed later, but *h* independent.

• Stability with respect to $|\cdot|_a$:

$$A_h(u_h, u_h) := A(u_h, u_h) + S_h(u_h, u_h) = |u_h|_a^2 \qquad \forall u_h \in X_h$$

• How do we obtain stability with respect to $|\cdot|_b$?

Abstract stability result

Let $(H, \|\cdot\|_H)$ be a Hilbert space where $\|\cdot\|_H$ is defined by means of two semi-norms $|\cdot|_a$ and $|\cdot|_b$

$$|y||_{H}^{2} := |y|_{a}^{2} + |y|_{b}^{2}$$

Lemma (Br., Schieweck 2010)

Let $B: H \times H \to \mathbb{R}$ bilinear with

$$\begin{aligned} \forall y \in H : \qquad & B(y,y) \geq c_0 |y|_a^2 \\ \forall y \in H \ \exists x \in H : \qquad & B(y,x) \geq c_2 |y|_b^2 - c_1 |y|_a^2 \quad and \quad \|x\|_H \leq \|y\|_H \end{aligned}$$

with $c_0, c_2 > 0$ and $c_1 \ge 0$. Then there is $\gamma > 0$ s.t.

 $\forall y \in H \exists z \in H \setminus \{0\}: \qquad B(y,z) \geq \gamma \|y\|_H \|z\|_H$

$$\gamma = \min\left\{\frac{c_2}{1+\varrho}, \frac{c_2}{1+(c_1+c_2)/c_0}\right\} > 0,$$

where $\rho > 1$ is arbitrary.

Stability of Darcy-Brinkman-LPS

Proposition

For patch-wise constants

$$0 < \alpha_0 h_K^2 \le \alpha_K$$
 and $0 \le \delta_K \le \overline{\delta}$ $\forall K \in \mathcal{T}_{2h}$.

the stabilized Darcy-Brinkman bilinear form satisfies the inf-sup condition

$$\forall y_h \in X_h \exists z_h \in X_h \setminus \{0\}: \qquad A_h(y_h, z_h) \geq \frac{1}{2} ||\!|y_h|\!|| |\!|\!|| |\!|z_h|\!||$$

with $\theta > 0$, and for the the corrsponding discrete problem there exists always a unique solution.

$$\theta = \frac{4\gamma_c}{5c_i\alpha_0^{-2} + 9c_s(\sigma + \nu + c_\kappa^2\overline{\delta})^{1/2}} > 0,$$

 c_i, c_s, c_κ depend on κ_h but not on h. **Proof.** Using previous Lemma and continuous inf-sup condition.

Proposition (A priori estimate)

Under the assumption $v \in H^{r+1}(\Omega)^d$ and $p \in H^{r+1}(\Omega)$, the choice of stabilization constants

$$\alpha = (\sigma + h^{-2}\nu)^{-1} \quad \text{and} \quad \delta = \sigma h^2,$$

leads to the a priori bound

$$|||u - u_h|| \lesssim \varrho_h h^r |v|_{r+1} + \varrho_h^{-1} h^{r+1} |p|_{r+1},$$

where $\varrho_h := \sigma^{1/2} h + \nu^{1/2}$.

Proof.

- Standard techniques on bases of the discrete inf-sup condition for arbitrary coefficients.

- "Optimization" of the parameters.

Extreme cases:

• Stokes:
$$(\alpha = h^2 \nu^{-1}, \delta = 0)$$

 $\|\|u\|\|^2 = \nu |v|_1^2 + \theta^2 \|p\|_0^2 + S_h(u, u)$

A priori est.:

$$|||u - u_h||| \lesssim \nu^{1/2} h^r |v|_{r+1} + \nu^{-1/2} h^r |p|_r$$

optimal

• Darcy: $(\alpha = \sigma^{-1}, \delta = \sigma h^2)$

$$|||u|||^2 = \sigma ||v||_0^2 + \theta^2 ||p||_0^2 + S_h(u, u)$$

A priori est.:

$$|||u - u_h||| \lesssim \sigma^{1/2} h^r |v|_r + \sigma^{-1/2} h^r |p|_{r+1}$$

Not yet optimal for L^2 -errors \rightarrow duality arguments needed

(R1) For $\varphi \in \{\mathbf{0}\} \times L^2_0(\Omega)$, the solution $z \in Y$ of

$$A(w,z) = \langle \varphi, w \rangle \qquad \forall w \in Y$$

is in $H^1(\Omega)^d imes H^2(\Omega)$ and it holds the estimate

$$||z_{\nu}||_{1} + \sigma^{-1} ||z_{\rho}||_{2} \lesssim ||\varphi_{\rho}||.$$

Example: ν = 0, σ > 0, Ω ⊂ ℝ^d, d ∈ {2,3}, is a open convex polyhedron or has C²-boundary ⇒ (R1).

Proposition

Let $\nu = 0$, $\sigma > 0$ and assume that the regularity property (R1) is satisfied. Then

$$\|p-p_h\| \lesssim \sigma h^{r+1} |v|_r + h^{r+1} |p|_{r+1}.$$

Duality argument (2)

(R2) For $\varphi \in L^2(\Omega)^d \times \{0\}$, the solution $z \in Y$ of

$$A(w,z) = \langle \varphi, w \rangle \qquad \forall w \in Y$$

is in $H^2(\Omega)^d \times H^1(\Omega)$ and it holds the estimate

 $\nu \| z_{\nu} \|_{2} + \| z_{p} \|_{1} \lesssim \| \varphi_{\nu} \| \,.$

 Example: ν > 0, σ ≥ 0, Ω ⊂ ℝ^d, d ∈ {2,3}, is a open convex polyhedron or has C²-boundary ⇒ (R2).

Proposition

Let $\nu > 0$, $\sigma \ge 0$ and assume that the regularity property (R2) is satisfied. Then

$$\|oldsymbol{v}-oldsymbol{v}_h\| \hspace{0.1in} \lesssim \hspace{0.1in} h^{r+1}\left((1+rac{\sigma}{
u}h^2)|oldsymbol{v}|_{r+1}+rac{h}{
u}|oldsymbol{p}|_{r+1}
ight)\,.$$

4. Numerical test

- Smooth (not divergence-free) exact solution.
- Q_1/Q_1 FEM with varying ν, σ and varying h.

Error in pressure

• $\nu = 0$ (Darcy): $\mathcal{O}(h^2)$ in both norms (as theory). • $\nu = 10^{-6}$: $\mathcal{O}(h^2)$ in both norms, optimal order • $\nu = 1$ and $\sigma = 0$ (Stokes): $||p - p_h|| = \mathcal{O}(h^{7/4})$, $||p - p_h||_{\infty} = \mathcal{O}(h)$

- $\mathcal{O}(h^2)$ in both norms completely independent of the parameters σ and ν .
- Optimal order of convergence as in theory $(\nu > 0)$ and even for $\nu = 0$.

• $\|\nabla(v - v_h)\| = O(h)$ independent of the parameters σ and ν .

• $\|\nabla(p-p_h)\| = \mathcal{O}(h)$ for $\sigma > 0$ and $\|\nabla(p-p_h)\| = \mathcal{O}(h^{3/4})$ for $\sigma = 0$

σ	ν	$\ p-p_h\ $	$\ p-p_h\ _{\infty}$	$ p - p_h _{H^1}$	$\ v-v_h\ $	$ v - v_h _{H^1}$
0	1	h ^{7/4}	h	$h^{3/4}$	h ²	h
0.5	0.1	h ^{7/4}	h	h	h ²	h
0.5	10^{-6}	h ²	h^2	h	h ²	h
1	0	h ²	h^2	h	h ²	h

Numerical observations:

σ	ν	$\ p-p_h\ $	$\ p-p_h\ _{\infty}$	$ p - p_h _{H^1}$	$\ v-v_h\ $	$ v - v_h _{H^1}$
0	1	h ^{7/4} h	h	$h^{3/4}$	h ² h ²	h <mark>h</mark>
0.5	0.1	h ^{7/4} h	h	h	h ² h ²	h <mark>h</mark>
0.5	10^{-6}	h ² h	h^2	h	h ² h ²	h <mark>h</mark>
1	0	h ² h ²	h ²	h	h² <mark>h</mark>	h

Numerical observations:

theory

5. Numerical schemes for hydrothermal flows

BDF-2 in time 2 alternatives in space for T eq:

• SUPG:

$$(\gamma^{n}T_{h}^{n} + (\beta^{n} \cdot \nabla)T_{h}^{n}, \varphi_{h}) + (D\nabla T_{h}^{n}, \nabla\varphi) + \sum_{K \in \mathcal{T}_{h}} \delta_{K}(\gamma^{n}T_{h}^{n} + (\beta^{n} \cdot \nabla)T_{h}^{n} - \nabla \cdot (D\nabla T_{h}^{n}) - f^{n}, (\beta^{n} \cdot \nabla)\varphi_{h})_{K} = (f^{n}, \varphi),$$

$$f^{n} = \frac{4}{3}\gamma^{n-1}T_{h}^{n-1} - \frac{1}{3}\gamma^{n-2}T_{h}^{n-2}$$

• SLM: Semi-Lagrangian method

$$(\gamma^n T_h^n, \varphi_h) + (D\nabla T_h^n, \nabla \varphi_h) = (\frac{4}{3}\gamma^{n-1}\overline{T}_h^{n-1} - \frac{1}{3}\gamma^{n-2}\overline{T}_h^{n-2}, \varphi)$$

$$\overline{T}_{h}^{n-l}(x) = T_{h}^{n-l}(X(x, t_{n}; t_{n-l})), \quad l = 1, 2.$$

Discrete solutions at the same time instant:

- Configuration of Coumou, Driesner, Geiger et al. (2006)
- Rel. fine mesh with 50,032 quadratic elements. Total time 4,000 a.
- System is unstable, numerical errors trigger instabilities.
- Direct comparison of the discrete solutions are not meaningful.
- One should compare statistical quantities.

Statistical quantities for constant coefficients (Model I)

We concentrate on three different quantities:

- *R*₁: *T* at upper bd averaged over total time and all mesh points
- *R*₂ : momentum ρ_f **v** at top boundary as function of *T*
- R₃: up- and downward mass flux:

$$\dot{m}^{+/-} = \int_{\Gamma_{top}} \left(
ho_f \mathbf{v}_z
ight)^{+/-} ds \, ,$$

Variabel coefficients (Model II)

- Qualitatively similar structure
- Quantitatively: Substantial differences compared to Model I (const coef). 23/25

SLM

Differences quantitatively:

$$E_{i} = \sum_{k=0}^{n} |R_{k,SFEM} - R_{k,SLM}| = \frac{1}{2} \frac{1}{2}$$

i	Model I	Model II
1	10.8 %	123.1 %
2	4.3%	28.1%

SLM

Differences quantitatively:

$$E_{i} = \sum_{k=0}^{n} |R_{k,SFEM} - R_{k,SLM}| = \begin{bmatrix} i & Model I & Model II \\ 1 & 10.8\% & 123.1\% \\ 2 & 4.3\% & 28.1\% \end{bmatrix}$$

Considerable impact of numerical scheme even on statistical quantites.

SLM

Differences quantitatively:

$$E_{i} = \sum_{k=0}^{n} |R_{k,SFEM} - R_{k,SLM}| \qquad \frac{i \quad Model \ I \quad Model \ I}{1 \quad 10.8 \% \quad 123.1 \%} \\ 2 \quad 4.3 \% \quad 28.1 \%$$

Considerable impact of numerical scheme even on statistical quantites.

There is still a demand for improved discretizations for complex nonlinear models.

Conclusion

- Uniform approach with LPS for Darcy-Stokes, i.e. Darcy-Brinkman model,
- **2** Robustness with respect to model parameters, even in extremal cases
 - for Darcy and Stokes: optimal order of convergence
- **③** FEM for hydrothermal flows:
 - large effect of the numerical scheme
 - small effect of the numerical scheme on statistical quantities for eq with constant coefficients
 - considerable effect of the numerical scheme on statistical quantities for eq with variable coefficients.
- Improvement of numerical schemes (accuacy) has to go hand in hand with increasing model complexity.

Conclusion

- Uniform approach with LPS for Darcy-Stokes, i.e. Darcy-Brinkman model,
- **2** Robustness with respect to model parameters, even in extremal cases
 - for Darcy and Stokes: optimal order of convergence
- **③** FEM for hydrothermal flows:
 - large effect of the numerical scheme
 - small effect of the numerical scheme on statistical quantities for eq with constant coefficients
 - considerable effect of the numerical scheme on statistical quantities for eq with variable coefficients.
- Improvement of numerical schemes (accuacy) has to go hand in hand with increasing model complexity.

Thanks a lot !