A Parking Function Bijection Suggested by the Haglund-Morse-Zabrocki Conjecture

Angela Hicks

University of California- San Diego

November 16, 2010

Background

Background

Dyck Paths

Dyck Paths

1	4	5	2	3	6

1	4	5	2	3	6

1	1	5	7	3	6
	4)	6
\bigcap	1	7	2	1	$\overline{\Lambda}$
\Box		<u></u>	_		U

1	4	5	2	3	6
0	1	2	\mathbf{Q}	1	0

- (Dyck Path Condition) $D_1 = 0$ and $0 \le D_i \le D_{i-1} + 1$.
- (Increasing Column Condition) If $D_i = D_{i-1} + 1$, $C_{i-1} < C_i$.

Definition

The area of a parking function is $\sum D_i$.

Definition

The area of a parking function is $\sum D_i$.

Figure: area(PF) = 6

Primary Dinv

When s < b,

S		b
d	•••	d

Primary Dinv

When s < b,

S	•••	b
d	•••	d

1	4	5	2	3	6
0	1	2	2	1	0

Primary Dinv

s	 b
d	 d

Secondary Dinv

When s < b,

b	•••	S
d+1	•••	d

Secondary Dinv

When s < b,

b	•••	S
d+1	•••	d

1	4	5	2	3	6
0	1	2	2	1	0

Secondary Dinv

b	 s	
d+1	 d	

Definition

The *dinv* of a parking function is the number of primary and secondary diagonal inversions it contains.

$$\mathsf{dinv}(PF) = 2$$

Word

Word

Word

[2,5,3,4]

Word

[2,5,3,4,6,1]

I-descents

Definition

The *i-descent set* of a permutation P, is

$$ides(P) = \{i : i \text{ occurs after } i+1 \text{ in } P\}.$$

Definition

Let ides(PF) = ides(word(PF)).

I-descents

$$ides(PF) = ides([2, 5, 3, 4, 6, 1]) = \{1, 4\}$$

Definition

The weight of a parking function is defined as:

$$\operatorname{wt}(PF) = t^{\operatorname{area}(PF)} q^{\operatorname{dinv}(PF)} Q_{\operatorname{ides}(PF)}.$$

Composition

Figure: comp(PF) = [3, 2, 1]

Conjectures

Conjectures

Conjecture (Haglund, Haiman, Loehr, Remmel, Ulyanov.)

The "Shuffle Conjecture" states that

$$abla e_n = \sum_{PF \in PF_n} t^{area(PF)} q^{dinv(PF)} Q_{ides(PF)},$$

Conjecture (Haglund, Haiman, Loehr, Remmel, Ulyanov.)

The "Shuffle Conjecture" states that

$$\nabla e_n = \sum_{PF \in PF_n} t^{area(PF)} q^{dinv(PF)} Q_{ides(PF)},$$

Conjecture (Haglund, Morse, Zabrocki)

$$abla \mathcal{C}_{\mathcal{P}_1} \mathcal{C}_{\mathcal{P}_2} \dots \mathcal{C}_{\mathcal{P}_k} 1 = \sum_{\mathsf{comp}(\mathit{PF}) = [p_1, \cdots, p_k]} t^{\mathit{area}(\mathit{PF})} q^{\mathit{dinv}(\mathit{PF})} Q_{\mathit{ides}(\mathit{PF})}$$

A Commutativity Relation

When
$$k < n - k$$
,

$$q(\mathcal{C}_k\mathcal{C}_{n-k}+\mathcal{C}_{n-k-1}\mathcal{C}_{k+1})=\mathcal{C}_{n-k}\mathcal{C}_k+\mathcal{C}_{k+1}\mathcal{C}_{n-k-1}$$

Definition

$$\mathcal{F}_p = \{PF : \mathsf{comp}(PF) = p\}$$

Definition

$$\mathcal{A}_{\it P} = \sum_{\it PF \in \mathcal{F}_{\it P}} t^{\sf area(\it PF)} q^{\sf dinv(\it PF)} Q_{\sf ides(\it PF)}.$$

Conjecture

For k < n - k.

$$q(\mathcal{A}_{\{k,n-k\}} + \mathcal{A}_{\{n-k-1,k+1\}}) = \mathcal{A}_{\{n-k,k\}} + \mathcal{A}_{\{k+1,n-k-1\}}$$

Conjecture

Then there exists a bijective map

$$\begin{split} f: \mathcal{F}_{\{k,n-k\}} \cup \mathcal{F}_{\{n-k-1,k+1\}} &\Leftrightarrow \\ \mathcal{F}_{\{n-k-1,k+1\}} \cup \mathcal{F}_{\{n-k,k\}} \end{split}$$

such that $q \operatorname{wt}(f(PF)) = \operatorname{wt}(PF)$.

We'd like a map f such that:

- \bullet dinv(f(PF)) = dinv(PF) 1
- ides(f(PF)) = ides(PF)
- \blacksquare area(f(PF)) = area(PF)
- f is "local"

$$\mathsf{diag}(PF) = \mathsf{diag}(f(PF))$$

$$\mathsf{diag}(PF) = \mathsf{diag}(f(PF))$$

We'd like a map f such that:

(Now considering f which rearranges elements within a diagonal:)

- \bullet dinv(f(PF)) = dinv(PF) 1
- $\bullet \operatorname{ides}(f(PF)) = \operatorname{ides}(PF)$
 - iff $\begin{bmatrix} c \\ d \end{bmatrix}$ does not move past $\begin{bmatrix} c+1 \\ d \end{bmatrix}$
- \blacksquare area(f(PF)) = area(PF)
 - True for all domino permutations
- f is "local"
 - True for all domino permutations

Theorem

$$q(A_{\{1,n-1\}} + A_{\{n-2,2\}}) = A_{\{n-1,1\}} + A_{\{2,n-2\}}$$

 \sqsubseteq When k=1

└A First Map

When k=1

When
$$k = 1$$

$$f_1: \mathcal{A}_{\{2,n-2\}} \hookrightarrow \mathcal{A}_{\{1,n-1\}}$$

When
$$k = 1$$

$$f_1: \mathcal{A}_{\{2,n-2\}} \hookrightarrow \mathcal{A}_{\{1,n-1\}}$$

When
$$k = 1$$

$$f_1: \mathcal{A}_{\{2,n-2\}} \hookrightarrow \mathcal{A}_{\{1,n-1\}}$$

$$f_1: \mathcal{A}_{\{2,n-2\}} \hookrightarrow \mathcal{A}_{\{1,n-1\}}$$

$$f_1: \mathcal{A}_{\{2,n-2\}} \hookrightarrow \mathcal{A}_{\{1,n-1\}}$$

$$f_1: \mathcal{A}_{\{2,n-2\}} \hookrightarrow \mathcal{A}_{\{1,n-1\}}$$

When
$$k = 1$$

$$f_1: \mathcal{A}_{\{2,n-2\}} \hookrightarrow \mathcal{A}_{\{1,n-1\}}$$

When
$$k = 1$$

$$f_1: \mathcal{A}_{\{2,n-2\}} \hookrightarrow \mathcal{A}_{\{1,n-1\}}$$

When
$$k = 1$$

$$f_1: \mathcal{A}_{\{2,n-2\}} \hookrightarrow \mathcal{A}_{\{1,n-1\}}$$

$$f_1: \mathcal{A}_{\{2,n-2\}} \hookrightarrow \mathcal{A}_{\{1,n-1\}}$$

$$f_1: \mathcal{A}_{\{2,n-2\}} \hookrightarrow \mathcal{A}_{\{1,n-1\}}$$

$$f_1: \mathcal{A}_{\{2,n-2\}} \hookrightarrow \mathcal{A}_{\{1,n-1\}}$$

When k = 1

└An Easy Second Map

When k=1 An Easy Second Map

When
$$k = 1$$

$$f_2:S woheadrightarrow\mathcal{A}_{\{n-2,2\}}$$

When k = 1

$$f_2:S woheadrightarrow \mathcal{A}_{\{n-2,2\}}$$

$$f_2:S \twoheadrightarrow \mathcal{A}_{\{n-2,2\}}$$

$$f_2:S \twoheadrightarrow \mathcal{A}_{\{n-2,2\}}$$

$$f_2:S \twoheadrightarrow \mathcal{A}_{\{n-2,2\}}$$

When k = 1

└An Easy Second Map

Notation

Let C_L be the last car in the main diagonal.

Notation

Say a car is "big" ("small") if it is bigger (smaller) than C_L .

When k=1

When k = 1

└An Easy Second Map

The last car before C_L is big and in the first diagonal.

When k = 1

An Easy Second Map

The last car before C_L is big and in the first diagonal.

Recursive Condition

The last car before C_L is either small or not in the first diagonal.

When k=1

└─The Remaining Map

When k=1 The Remaining Map

When
$$k = 1$$

$$\textit{f}_{3}:\mathcal{A}_{\{n-1,1\}}\rightarrow\mathcal{A}_{\{1,n-1\}}$$

When
$$k=1$$

$$f_3: A_{\{n-1,1\}} \to A_{\{1,n-1\}}$$

When
$$k=1$$

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

When
$$k = 1$$

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

When
$$k=1$$

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

Diagonal Words

[2,5,3,4,1,6]

2 5 3 4 1 6

2 5 3 4 1 6

2	5	3	4	1	6
2	2	1	1	0	0

Ī	2	5	3	4	1	6
	2	2	1	1	0	0

2	5	3	4	1	6
2	2	1	1	0	0

Theorem (Haglund and Loehr)

$$\sum_{\mathsf{diag}(PF) = \tau} t^{\mathsf{area}(PF)} q^{\mathsf{dinv}(PF)} = t^{\mathsf{maj}(\tau)} \prod_{i=1}^n [w_i^\tau]_q$$

- A Recursive Construction

Diagonal Words A Recursive Construction

△ A Recursive Construction

Place the cars in a parking function recursively, working from the end of the diagonal word forward.

Decide the order of the elements in the main diagonal.

Place the cars in a parking function recursively, working from the end of the diagonal word forward.

Decide the order of the elements in the main diagonal.

• Insert the remaining elements recursively in one of two ways:

• Insert the remaining elements recursively in one of two ways:

△ A Recursive Construction

☐A Recursive Construction

△ A Recursive Construction

☐A Recursive Construction

A Recursive Construction

△A Recursive Construction

△ A Recursive Construction

Theorem (Haglund and Loehr)

$$\sum_{\mathsf{diag}(PF) = \tau} t^{\mathsf{area}(PF)} q^{\mathsf{dinv}(PF)} = t^{\mathsf{maj}(\tau)} \prod_{i=1}^n [w_i^\tau]_q$$

Diagonal Word [2, 4, 5, 1, 3]

Diagonal Word [2, 4, 5, 1, 3]

Diagonal Word [2, 4, 5, 1, 3]

Diagonal Word [2, 4, 5, 1, 3]

Diagonal Word [2, 4, 5, 1, 3]

Diagonal Word [2, 4, 5, 1, 3]

☐A Recursive Construction

$c_1 >$	> c ₂		
	c ₂	 c_1	
	d	 d	

△ A Recursive Construction

c ₁ <	< c ₂		
	c_2	 c_1	
	d	 d-1	

☐A Recursive Construction

$$t^{\text{maj}([2,4,5,1,3])}$$
 $\overbrace{(1)}^{3}$ $\overbrace{(1+q)}^{1}$ $\overbrace{(1+q)}^{5}$ $\overbrace{(1+q+q^2)}^{4}$ $\overbrace{(1+q+q^2)}^{2}$

△A Recursive Construction

$$t^{\mathsf{maj}([2,4,5,1,3])}\overbrace{(1)}^{3}\overbrace{(1+q)}^{1}\overbrace{(1+q)}^{5}\overbrace{(1+q+q^2)}^{4}\overbrace{(1+q+q^2)}^{2}$$

☐A Recursive Construction

$$t^{\text{maj}([2,4,5,1,3])}\overbrace{(1)}^{3}\overbrace{(1+q)}^{1}\overbrace{(1+q)}^{5}\overbrace{(1+q+q^2)}^{4}\overbrace{(1+q+q^2)}^{2}$$

☐A Recursive Construction

$$t^{\text{maj}([2,4,5,1,3])}\overbrace{(1)}^{3}\overbrace{(1+q)}^{1}\overbrace{(1+q)}^{5}\overbrace{(1+q+q^2)}^{4}\overbrace{(1+q+q^2)}^{2}$$

△ A Recursive Construction

Theorem (Haglund and Loehr)

$$\sum_{\mathsf{diag}(PF) = \tau} t^{\mathsf{area}(PF)} q^{\mathsf{dinv}(PF)} = t^{\mathsf{maj}(\tau)} \prod_{i=1}^n [w_i^\tau]_q$$

└─The Dinv of a Car

Diagonal Words The Dinv of a Car

☐ The Diny of a Car

$$t^{\text{maj}([2,4,5,1,3])}\overbrace{(1)}^{3}\overbrace{(1+q)}^{1}\overbrace{(1+q)}^{5}\overbrace{(1+q+q^{2})}^{4}\overbrace{(1+q+q^{2})}^{2}$$
$$\underbrace{\text{dinv}(2)=2}$$

└─The Dinv of a Car

$$t^{\text{maj}([2,4,5,1,3])}\overbrace{(1)}^{3}\overbrace{(1+q)}^{1}\overbrace{(1+q)}^{5}\overbrace{(1+q+q^{2})}^{4}\overbrace{(1+q+q^{2})}^{2}$$

$$t^{\text{maj}([2,4,5,1,3])}\overbrace{(1)}^{3}\overbrace{(1+q)}^{1}\overbrace{(1+q)}^{5}\overbrace{(1+q+q^2)}^{4}\overbrace{(1+q+q^2)}^{2}$$

car	dinv
3	0
1	0
5	1
4	2
2	2

Changing the Dinv

Diagonal Words Changing the Dinv

$$t^{\text{maj}([2,4,5,1,3])}\overbrace{(1)}^{3}\overbrace{(1+q)}^{1}\overbrace{(1+q)}^{5}\overbrace{(1+q+q^2)}^{4}\overbrace{(1+q+q^2)}^{2}$$

car	dinv
3	0
1	0
5	1
4	2
2	2

$$t^{\mathsf{maj}([2,4,5,1,3])}\overbrace{(1)}^{3}\overbrace{(1+q)}^{1}\overbrace{(1+q)}^{5}\overbrace{(1+q+q^2)}^{4}\overbrace{(1+q+q^2)}^{2}$$

car	dinv
3	0
1	0
5	1
4	1
2	2

Definition

Say $Dec(C_i, PF)$ is the unique parking function PF' such that:

- 2 For $j \neq i$, dinv $(C_j, PF) = \text{dinv}(C_j, PF')$.
- $\exists \ \operatorname{dinv}(C_i, PF') = \operatorname{dinv}(C_i, PF) 1.$

Define $(Inc(C_i, PF))$ analogously.

Definition

Let

$$\mathsf{Change}(C_j, C_k, PF) = \mathsf{Dec}(C_k, \mathsf{Inc}(C_j, PF)).$$

Changing the Dinv

$\mathsf{Change}(4,6,\mathit{PF})$

Changing the Dinv

Changing the Dinv


```
When k=1
```

When k = 1The Remaining Map (returned)

When k=1

└─ The Remaining Map (returned)

When
$$k = 1$$

Definition (Troublesome Set)

$$T(PF) = \{C_j : 2 < j < L, D_j = 1, \text{ and } C_j \text{ is big.}\}.$$

```
When k = 1
```

Big Idea

- **1** Recursively use a series of dinv changes to reduce the size of T(PF).
- 2 Apply f_1 when T(PF) is empty.

When
$$k = 1$$

Notation

Notation

Notation

Notation

Definition

Let PF' = Inc(c, PF). Say PF' is a **local** increase of PF if any car to the left of M(PF) in PF is to the left of c in PF'.

Inc(7, PF)

Definition

Let PF' = Inc(c, PF). Say PF' is a **local** increase of PF if any car to the left of M(PF) in PF is to the left of c in PF'.

Inc(6, PF)

When k = 1

└─The Remaining Map (returned)

Definition

Say a dinv change is **local** if its dinv increase is local.

Procedure

Beginning with a parking function PF, we can construct $f_3(PF)$ by forming a sequence

$$PF = PF^1, PF^2, \cdots, PF^s = f_3(PF)$$

by repeatedly applying the following:

- 11 If $T(PF^i) = \emptyset$, $f_3(PF) = f_1(PF^i)$.
- 2 Otherwise, if $PF' = \text{Change}(C_{m(PF^i)+1}, C_{m(PF^i)}, PF^i)$ is a parking function and is local, then let $PF^{i+1} = PF'$.
- 3 Otherwise, if $PF' = \text{Change}(C_{m(PF^i)}, C_{m(PF^i)-1}, PF^i)$ is a parking function, then let $PF^{i+1} = PF'$.
- 4 Otherwise, let $PF^{i+1} = \text{Change}(C_L, C_2, PF^i)$.

When
$$k = 1$$

$$f_3:\mathcal{A}_{\{n-1,1\}} o \mathcal{A}_{\{1,n-1\}}$$

$$f_3: A_{\{n-1,1\}} \to A_{\{1,n-1\}}$$

When k = 1

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

When
$$k = 1$$

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

When
$$k=1$$

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

When
$$k=1$$

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

When
$$k=1$$

$$f_3:\mathcal{A}_{\{n-1,1\}} o \mathcal{A}_{\{1,n-1\}}$$

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

When
$$k=1$$

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

When
$$k = 1$$

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

When k = 1

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

When
$$k = 1$$

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

When
$$k=1$$

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

When
$$k=1$$

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

When k = 1

$$f_3:\mathcal{A}_{\{n-1,1\}}\to\mathcal{A}_{\{1,n-1\}}$$

When
$$k = 1$$

$$f_3:\mathcal{A}_{\{n-1,1\}} o \mathcal{A}_{\{1,n-1\}}$$

Why f_3 works:

- **1** The procedure terminates, since |T| decreases by one with each iteration.
- 2 One of the four cases will always produce a valid parking function.
 - (Recursive Condition) The last car before C_L is either small or not in the first diagonal.
- The dinv (PF^i) = dinv (PF^{i+1}) and f_1 decreases the dinv by exactly one, so dinv $(f_3(PF))$ = dinv(PF) + 1
- 4 The comp $(f_3(PF)) = (1, n-1)$
- 5 The $ides(PF^i) = ides(PF^{i+1})$.
- $\mathbf{6}$ f_3 is invertible.

Final Conclusions

Final Conclusions

Theorem (H.)

Then there exists a bijective map

$$\begin{split} f: \mathcal{F}_{\{1,n-1\}} \cup \mathcal{F}_{\{n-2,2\}} &\Leftrightarrow \\ \mathcal{F}_{\{n-2,2\}} \cup \mathcal{F}_{\{n-1,1\}} \end{split}$$

such that $q \operatorname{wt}(f(PF)) = \operatorname{wt}(PF)$ and $\operatorname{diag}(f(PF)) = \operatorname{diag}(PF)$.

Corollary

$$q(A_{\{1,n-1\}} + A_{\{n-2,2\}}) = A_{\{n-1,1\}} + A_{\{2,n-2\}}$$

Theorem (H.)

Then there exists a bijective map

$$f: \mathcal{F}_{\{1,n-1\}} \cup \mathcal{F}_{\{n-2,2\}} \Leftrightarrow$$

$$\mathcal{F}_{\{n-2,2\}} \cup \mathcal{F}_{\{n-1,1\}}$$

such that $q \operatorname{wt}(f(PF)) = \operatorname{wt}(PF)$ and $\operatorname{diag}(f(PF)) = \operatorname{diag}(PF)$.

Corollary

For p, p' compositions,

$$q(\mathcal{A}_{\{p,1,n-1,p'\}} + \mathcal{A}_{\{p,n-2,2,p'\}}) = \mathcal{A}_{\{p,n-1,1,p'\}} + \mathcal{A}_{\{p,2,n-2,p'\}}$$

For Further Reading

J. Haglund and N. Loehr.

A conjectured combinatorial formula for the Hilbert series for diagonal harmonics.

Discrete Math., 298(1-3):189-204, 2005.

James Haglund, Jennifer Morse, and Mike Zabrocki. Dyck paths with forced and forbidden touch points and q,t-catalan building blocks, 2010.