
Integrability and Laplacian growth: another view on

the Schwarz potential

Razvan Teodorescu

November 5, 2010



The Laplacian Growth problem

Let D+(t) be a simply-connected, bounded domain in C, ∂D+(t) a real
algebraic curve and D− := C \D+(t):

(LG) Laplacian Growth:



∆p = 0 on D−(t) \ {∞},

p = 0 on D+(t)

Vn = −∂np on ∂D−(t),

p→ − log |z| z →∞

Question: Is it possible to find a monotonic chain {D+(t)} such that
D(s) ⊂ D(t), (∀)0 < s < t ∈ [0, T ] ⊂ R, satisfying (LG)?





Solutions from conformal mapping

Theorem [Polubarinova-Kochina, Galin, Kufarev cca. 1945] Let z(w, t) be

the conformal map C \ D z(w,t)−→ D−(t), such that z′(∞, t) = r(t) ∈ R,
z(∞, t) =∞ and denote w(z, t) its inverse:

z(w, t) = r(t)w +
∑
k≥1

uk(t)w−k, |w| ≥ 1.

LG solution: p(z, t) = − log |w(z, t)|, Vn = |w′(z, t)|.

Consequence: Solutions exist as long as |w′(z∗, t)| → ∞ only at points
z∗ ∈ D+(t).



Real fluid dynamics

Navier-Stokes:

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p+ µ∇2v,

Small gap limit b→ 0⇒ Re = ρV b/µ→ 0, just Stokes:

µ∇2~v = ~∇p.

Poisseuille profile, averaging over the vertical direction:

~v = − b2

12µ
~∇p = −K~∇p.



Richardson’s theorem

Theorem [Richardson, 1972] Harmonic moments of D−(t) do not change
in time.

Moments : tk(t) = − 1
kπ

∫
D−(t)

z−kdA(z), t0 = t =
1
π

∫
D+(t)

dA(z).

dtk
dt

=
∮
∂D(t)

Vn
zk
d` =

∮
∂D(t)

(p∂nz−k−z−k∂np)d` = −
∫
D−(t)

z−k∆pdA(z).

Solutions revisited: z(w, t0, {tk}) = r(t0, {tk})w +
∑
k≥1 uk(t0, {tk})w−k.

Note: Interior Richardson theorem by inversion:
∫
D+

zkdA(z) preserved.



Conformal map – harmonic moments relationships: an inverse

moment problem

Area formula: t0 = r2 −
∑
k≥1 k|uk|2

Example: the Joukowski map z(w) = rw + u0 + u
w−a

Correspondence: 
t0 = r2 − |u|2

(1−|a|2)2,

ᾱ = t0 − r2 + ur
a2 ,

β = r
ā + u0 + uā

1−|a|2

γ = ū
ā − ū0,

V (z) :=
∑
k≥1

tkz
k = γz + α log

(
1− z

β

)
.



Existence of infinite-time solutions

Question: For which sets of values {tk}∞k=1 is it possible to find a
solution valid for arbitrary t→∞?

Example: t3 6= 0, all others vanish:

z(w) = rw + 3t3r2w−2, t0 = r2 − 18|t3|2r4, t0 ≤ tc =
1
2
.

dt0
dr

= 0, at t0 = tc,
dz
dw

= 0, at w = 1.

Known cases: circle, ellipse.



Schwarz function

• Schwarz function S(z) = z̄ on boundary Γ = ∂D, with Laurent expansion
around Γ:

S(z) =
∑
k>0

ktkz
k−1 +

t0
z

+
∑
p>0

vp
zp

∂t0S(z, t0) = −∂zp(z, t0)

• meromorphic - quadrature domains: Sakai, Gustafsson, Putinar∫
D+

f(z)dA(z) =
n∑
k=1

nk∑
p=1

akpf
(p)(zk), (∀)f ∈ L1(D+), analytic.



Inverse moment problem as determination of equilibrium

measure (the Maxwell problem)

Find the support D of distribution ρ(z) solving
∫
D
ρ(z)dA(z) = t0, and

δ

δρ(z)

∫
D

ρ(z)
[
−|z|2 + V (z) + V (z) +

∫
D

ρ(ζ) log |z − ζ|2dA(ζ)
]

dA(z) = 0

• Smooth solution: characteristic function of D, ρ(z) = χD(z)

• Equivalent exterior potential created by distribution of singularities of the
Schwarz function (poles, cuts) ρs(z)∫

f(z)ρ(z)d2z =
∫
f(z)ρs(z)d2z, f(z) L1 − integrable



Schottky doubles: Laplacian Growth on Riemann surfaces

• Riemann surface: F
((

z+S(z)
2

)
,
(
z−S(z)

2i

))
= 0 , Γ = {F (x, y) = 0}

• Boundary Γ : S(z) = z̄

• Singularities: branch points S′(z)→∞, double points S1(z) = S2(z)



Examples

Ellipse z(w) = rw + t̄2rw
−1

zS − 2(t2z2 + t̄2S
2)

1 + 4|t2|2
− t0

1− 4|t2|2

1 + 4|t2|2
= 0.

Hypocycloid z(w) = rw + 3t̄3r2w−2

(zS)2− S
3

3t3
− z3

3t̄3
+

(1− 9|t3|2r2)(1 + 18|t3|2r2)
9|t3|2

zS− r
2(1− 9|t3|2r2)3

9|t3|2
= 0.

Joukowski z(w) = rw + u0 + u
w−a

z2S2−z2Sβ̄−zS2β+
(
|β̄|2 + α+ ᾱ− t0

)
zS+zβ̄(t0−α)+Sβ(t0−ᾱ)+h = 0.



Cusps as higher critical points

X

X

X

b<1/2 b=1/2

Coalescence of 2k + 1 branch points: x2k+1 ∼ y2 – cusp



The generic cusp singularity

Generic boundary singularity: branch point (inside) meets double point
(outside). Consider the “reduced” Riemann surface.

• Local boundary: elliptic curve

y2 = −4(ζ − u)2(ζ + 2u), u→ 0



Poisson structure of Laplacian growth

Poisson brackets:

{f, g}(t0,logw) = w

(
∂f

∂w

∂g

∂t0
− ∂g

∂w

∂f

∂t0

)
.

Hamiltonian:
df
dt

= {logw, f}
Polubarinova-Kochina’s theorem:

{z(w, t), z](w, t)} = 1

where z](w, t) = z̄(w−1, t).



Integrability from the Schwarz potential

(Khavinson-Shapiro/Krichever-Mineev-Wiegmann-Zabrodin)

dW = Sdz + pdt0, d2W = 0, {tk} fixed.

W (z, t0, {tk}) = t0 log |z|2 +
∑
k≥1

tkz
k(w)+ + . . . ,

zk(w)+ = regular part of Laurent expansion in w

∂z

∂tk
= {zk+, z},

∂zp+
∂tk
−
∂zk+
∂tp

= {zk(w)+, z
p(w)+}

Theorem As generating function for deformations in {tk}, the total
differential of the Schwarz potential is the Hirota 1-form of the K-P
hierarchy, with the canonical Poisson bracket of Laplacian growth.



Review of integrable hierarchies

Let A be the algebra of differential polynomials of the type P = ∂n

+un−2∂
n−2 + . . .+ u1∂ + u0, where ∂ = differential symbol, and work in

the ring of pseudo-differential operators:

L =
n∑
−∞

ck∂
k, ∂−1( .) ≡

∫
( .)dx,

L+ ≡
n∑
0

ck∂
k, L = L+ + L−.

Then the Kadomtsev-Petriashvilii hierarchy is given by

L = ∂ + u0∂
−1 + u1∂

−2 + . . .



Review of integrable hierarchies

∂L
∂tk

= [Lk+,L], k = 1, 2, . . .

Zakharov − Shabat : [∂tk − L
k
+, ∂tp − L

p
+] = 0, (∀) tk, tp.

Reductions: assume
(L2)− = 0

Then
L = L1/2, L = ∂2 + 2u0.

Korteweg-de Vries equation:

(L)3
+ ≡ P = ∂3 +

3
2

[u0∂ + ∂u0] ,
∂L

∂t3
= [P,L]⇒ ut3 = 6uux + uxxx.



Boundary asymptotics from the Baker-Akhiezer function

(Krichever/Novikov)

Lψ = zψ,
∂ψ

∂tk
= Lk+ψ, ∀k ≥ 1.

g(z, t1, . . .) = exp

[ ∞∑
1

tkz
k

]

ψ(z, t1, . . .) = g·
τ(t1 − 1

z , t2 −
1

2z2, . . .)
τ(t1, t2, . . .)

= g·
exp

[∑∞
1 −

1
kzk

∂
∂tk

]
τ(t1, t2, . . .)

τ(t1, t2, . . .)

Krichever’s solutions for the K-P hierarchy (fixed finite-genus torus):

ψ = g ·
θ(A(z) +

∑
q tqπq)−A(D)−K)θ(A(∞)−A(D)−K)

θ(A(z)−A(D)−K)θ(A(∞) +
∑
q tqπq −A(D)−K)



Dimensional reduction of integrable hierarchies: cusp

asymptotics

ψLGWKB(λ, t) =
σ(τ + λ)
σ(λ)σ(τ)

e−ζ(τ)λ · e
Pq=5
q=1 tqωq√
℘′(λ)



The Airy-Stokes-Liouville-Green-Wentzell-Kramers-Brillouin

method

Hamilton-Jacobi equation for a particle in 1D potential:

∂S

∂t
+ V (q) +

1
2m

(
∂S

∂q

)2

= 0,

Schrödinger equation[
(−i~)2

2m
∂2

∂q2
+ V (q)

]
Ψ~(q, t) = i~

∂

∂t
Ψ~(q, t),

for the semiclassical wave-function

Ψ~(q, t) = e
i
~S(q,t),



which is missing only the terms of order ~ when compared to the
Hamilton-Jacobi equation,[

(−i~)2

2m
∂2

∂q2
+ V (q)− i~ ∂

∂t

]
Ψ~(q, t) =

=

[
1

2m

(
∂S

∂q

)2

+ V (q) +
∂S

∂t

]
Ψ~(q, t)−

− i~
2m

∂2S

∂q2
Ψ~(q, t).

Therefore, as long as ~
2m

∂2S
∂q2 � 1, we can safely ignore that term and use

the classical Hamilton-Jacobi equation to solve mechanics problems.

However, if ~
2m

∂2S
∂q2 = O(1), the classical approximation breaks down and

the Schrödinger equation must be used: precisely what happens at a cusp.



Hydrodynamics of the (2, 3)-cusp from wave-function

Y 2 = −4(X − u)2(X + 2u), u→ 0

Parametrize: X(k) = ℘(k|g2,3), Y (k) = ℘′(k|g2,3), g2(t) = u2

For physical pressure:

log Ψ =
∫

(pdt+ Sdz)⇒ p(k, t) = iζ(k)− i3g3

2t
k.



Elliptic case: details

Consider the linear problem[
∂2

∂t2
− u
]
ψ(t, λ) = X(λ)ψ(t, λ),

[
∂3
t −

3
4
{∂t, u}, ∂2

t − u
]

= ε.

Perturbatively in ε, the solution is

u(t) = 2℘(t|g2,3(t)),

where
X(λ|g2,3) = ℘(λ|ω), Y (λ) = ∂λX(λ),



or equivalently represented in “Mumford-style”

L̇ =
( ü

6 −u̇3...
u
6 + 2ζu̇−4uu̇

9 −ü6

)
, A′ =

(
0 0
2
3 0

)
,

and

[A, L] =
( ü

6 −u̇3
2(ζ+u)u̇

9 −ü6

)
.

Thus,

0 = L̇−A′ − [A, L] =
(

0 0
...
u
6 −

6uu̇
9 −

2
3 0

)
.

The only non-trivial element of the matrix gives Painlevé I equation.

...
u −4uu̇− 4 = 0,

Regularized solution: modulated elliptic-functions solution of Painlevé I.



Hyperelliptic case: Mumford’s recipe

Take a pair of 2× 2 operators L, A, solving the linear problem

LΨ = µΨ, ∂tΨ = AΨ, ∂tL = [A, L]

Assume

L(λ) =
[
a(λ) b(λ)
c(λ) −a(λ)

]
⇒ µ2 + detL = 0, µ(λ) = ±i

√
detL(λ).

Isomonodromic deformation:

LΨ = µΨ + ε∂λΨ, [ε∂λ − L, ∂t −A] = 0, 0 ≤ ε� 1.

[ε∂λ − L, ∂t −A] = 0⇒ ε(∂νL− ∂λA) + ∂τL− [A,L] = 0,

where ∂t → ∂τ + ε∂ν (fast/slow variables). New solution: uε(τ, ki(ν)).



Hyperelliptic case: Abel-Jacobi inverse problems

µi = λg−i
dλ

y
, Mij =

∫
αj

µi, ω = M−1µ.

Period matrix Bij =
∫
βj
ωi is symmetric and has positively defined

imaginary part. The Riemann θ function:

θ(z|B) =
∑

n∈zg

e2πi(ntz+1
2ntBn).

The g vectors Bk and vectors ek define a lattice in Cg. The Jacobian
variety of the curve Γ, is the quotient J(Γ) = Cg/(Zg +BZg).

The Abel-Jacobi map associates to any point P on Γ, a point (g−
dimensional complex vector) on the Jacobian variety, through

A(P ) =
∫ P
∞ω.


