Integrability and Laplacian growth: another view on the Schwarz potential

Razvan Teodorescu

The Laplacian Growth problem

Let $D_{+}(t)$ be a simply-connected, bounded domain in $\mathbb{C}, \partial D_{+}(t)$ a real algebraic curve and $D_{-}:=\mathbb{C} \backslash D_{+}(t)$:
(LG) Laplacian Growth: $\begin{cases}\Delta p=0 & \text { on } D_{-}(t) \backslash\{\infty\}, \\ p=0 & \text { on } D_{+}(t) \\ V_{n}=-\partial_{n} p & \text { on } \partial D_{-}(t), \\ p \rightarrow-\log |z| & z \rightarrow \infty\end{cases}$

Question: Is it possible to find a monotonic chain $\left\{D_{+}(t)\right\}$ such that $D(s) \subset D(t),(\forall) 0<s<t \in[0, T] \subset \mathbb{R}$, satisfying (LG)?

Solutions from conformal mapping

Theorem [Polubarinova-Kochina, Galin, Kufarev cca. 1945] Let $z(w, t)$ be the conformal map $\mathbb{C} \backslash \mathbb{D} \xrightarrow{z(w, t)} D_{-}(t)$, such that $z^{\prime}(\infty, t)=r(t) \in \mathbb{R}$, $z(\infty, t)=\infty$ and denote $w(z, t)$ its inverse:

$$
z(w, t)=r(t) w+\sum_{k \geq 1} u_{k}(t) w^{-k}, \quad|w| \geq 1
$$

$$
\text { LG solution: } \quad p(z, t)=-\log |w(z, t)|, \quad V_{n}=\left|w^{\prime}(z, t)\right|
$$

Consequence: Solutions exist as long as $\left|w^{\prime}\left(z_{*}, t\right)\right| \rightarrow \infty$ only at points $z_{*} \in D_{+}(t)$.

Real fluid dynamics

Navier-Stokes:

$$
\rho\left(\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \nabla \mathbf{v}\right)=-\nabla p+\mu \nabla^{2} \mathbf{v}
$$

Small gap limit $b \rightarrow 0 \Rightarrow R e=\rho V b / \mu \rightarrow 0$, just Stokes:

$$
\mu \nabla^{2} \vec{v}=\vec{\nabla} p
$$

Poisseuille profile, averaging over the vertical direction:

$$
\vec{v}=-\frac{b^{2}}{12 \mu} \vec{\nabla} p=-K \vec{\nabla} p
$$

Richardson's theorem

Theorem [Richardson, 1972] Harmonic moments of $D_{-}(t)$ do not change in time.

$$
\begin{gathered}
\text { Moments : } t_{k}(t)=-\frac{1}{k \pi} \int_{D_{-}(t)} z^{-k} \mathrm{~d} A(z), \quad t_{0}=t=\frac{1}{\pi} \int_{D_{+}(t)} \mathrm{d} A(z) . \\
\frac{\mathrm{d} t_{k}}{\mathrm{~d} t}=\oint_{\partial D(t)} \frac{V_{n}}{z^{k}} d \ell=\oint_{\partial D(t)}\left(p \partial_{n} z^{-k}-z^{-k} \partial_{n} p\right) d \ell=-\int_{D_{-}(t)} z^{-k} \Delta p \mathrm{~d} A(z) .
\end{gathered}
$$

Solutions revisited:

$$
z\left(w, t_{0},\left\{t_{k}\right\}\right)=r\left(t_{0},\left\{t_{k}\right\}\right) w+\sum_{k \geq 1} u_{k}\left(t_{0},\left\{t_{k}\right\}\right) w^{-k} .
$$

Note: Interior Richardson theorem by inversion: $\int_{D_{+}} z^{k} \mathrm{~d} A(z)$ preserved.

Conformal map - harmonic moments relationships: an inverse moment problem

Area formula:

$$
t_{0}=r^{2}-\sum_{k \geq 1} k\left|u_{k}\right|^{2}
$$

Example: the Joukowski map $z(w)=r w+u_{0}+\frac{u}{w-a}$
Correspondence:

$$
\begin{gathered}
\left\{\begin{aligned}
t_{0} & =r^{2}-\frac{|u|^{2}}{\left(1-|a|^{2}\right)^{2}}, \\
\bar{\alpha} & =t_{0}-r^{2}+\frac{u r}{a^{2}}, \overline{\bar{a}} \\
\beta= & \frac{r}{\bar{a}}+u_{0}+\frac{u}{1-|a|^{2}} \\
\gamma= & \frac{\bar{u}}{\bar{a}}-\bar{u}_{0},
\end{aligned}\right. \\
V(z):=\sum_{k \geq 1} t_{k} z^{k}=\gamma z+\alpha \log \left(1-\frac{z}{\beta}\right) .
\end{gathered}
$$

Existence of infinite-time solutions

Question: For which sets of values $\left\{t_{k}\right\}_{k=1}^{\infty}$ is it possible to find a solution valid for arbitrary $t \rightarrow \infty$?

Example: $t_{3} \neq 0$, all others vanish:

$$
\begin{gathered}
z(w)=r w+3 t_{3} r^{2} w^{-2}, \quad t_{0}=r^{2}-18\left|t_{3}\right|^{2} r^{4}, \quad t_{0} \leq t_{c}=\frac{1}{2} . \\
\frac{\mathrm{d} t_{0}}{\mathrm{~d} r}=0, \quad \text { at } t_{0}=t_{c}, \quad \frac{\mathrm{~d} z}{\mathrm{~d} w}=0, \quad \text { at } w=1 .
\end{gathered}
$$

Known cases: circle, ellipse.

Schwarz function

- Schwarz function $S(z)=\bar{z}$ on boundary $\Gamma=\partial D$, with Laurent expansion around Γ :

$$
\begin{gathered}
S(z)=\sum_{k>0} k t_{k} z^{k-1}+\frac{t_{0}}{z}+\sum_{p>0} \frac{v_{p}}{z^{p}} \\
\partial_{t_{0}} S\left(z, t_{0}\right)=-\partial_{z} p\left(z, t_{0}\right)
\end{gathered}
$$

- meromorphic - quadrature domains: Sakai, Gustafsson, Putinar

$$
\int_{D_{+}} f(z) \mathrm{d} A(z)=\sum_{k=1}^{n} \sum_{p=1}^{n_{k}} a_{k p} f^{(p)}\left(z_{k}\right), \quad(\forall) f \in L^{1}\left(D_{+}\right), \text {analytic. }
$$

Inverse moment problem as determination of equilibrium measure (the Maxwell problem)

Find the support D of distribution $\rho(z)$ solving $\int_{D} \rho(z) \mathrm{d} A(z)=t_{0}$, and
$\frac{\delta}{\delta \rho(z)} \int_{D} \rho(z)\left[-|z|^{2}+V(z)+\overline{V(z)}+\int_{D} \rho(\zeta) \log |z-\zeta|^{2} \mathrm{~d} A(\zeta)\right] \mathrm{d} A(z)=0$

- Smooth solution: characteristic function of $D, \rho(z)=\chi_{D}(z)$
- Equivalent exterior potential created by distribution of singularities of the Schwarz function (poles, cuts) $\rho_{s}(z)$

$$
\int f(z) \rho(z) \mathrm{d}^{2} z=\int f(z) \rho_{s}(z) \mathrm{d}^{2} z, \quad f(z) L_{1}-\text { integrable }
$$

Schottky doubles: Laplacian Growth on Riemann surfaces

- Riemann surface: $F\left(\left(\frac{z+S(z)}{2}\right),\left(\frac{z-S(z)}{2 i}\right)\right)=0, \Gamma=\{F(x, y)=0\}$
- Boundary $\Gamma: S(z)=\bar{z}$
- Singularities: branch points $S^{\prime}(z) \rightarrow \infty$, double points $S_{1}(z)=S_{2}(z)$

Examples

Ellipse $z(w)=r w+\bar{t}_{2} r w^{-1}$

$$
z S-\frac{2\left(t_{2} z^{2}+\bar{t}_{2} S^{2}\right)}{1+4\left|t_{2}\right|^{2}}-t_{0} \frac{1-4\left|t_{2}\right|^{2}}{1+4\left|t_{2}\right|^{2}}=0 .
$$

Hypocycloid $z(w)=r w+3 \bar{t}_{3} r^{2} w^{-2}$
$(z S)^{2}-\frac{S^{3}}{3 t_{3}}-\frac{z^{3}}{3 \bar{t}_{3}}+\frac{\left(1-9\left|t_{3}\right|^{2} r^{2}\right)\left(1+18\left|t_{3}\right|^{2} r^{2}\right)}{9\left|t_{3}\right|^{2}} z S-\frac{r^{2}\left(1-9\left|t_{3}\right|^{2} r^{2}\right)^{3}}{9\left|t_{3}\right|^{2}}=0$.
Joukowski $z(w)=r w+u_{0}+\frac{u}{w-a}$
$z^{2} S^{2}-z^{2} S \bar{\beta}-z S^{2} \beta+\left(|\bar{\beta}|^{2}+\alpha+\bar{\alpha}-t_{0}\right) z S+z \bar{\beta}\left(t_{0}-\alpha\right)+S \beta\left(t_{0}-\bar{\alpha}\right)+h=0$.

Cusps as higher critical points

Coalescence of $2 k+1$ branch points: $x^{2 k+1} \sim y^{2}-$ cusp

The generic cusp singularity

Generic boundary singularity: branch point (inside) meets double point (outside). Consider the "reduced" Riemann surface.

- Local boundary: elliptic curve

$$
y^{2}=-4(\zeta-u)^{2}(\zeta+2 u), \quad u \rightarrow 0
$$

Poisson structure of Laplacian growth

Poisson brackets:

$$
\{f, g\}_{\left(t_{0}, \log w\right)}=w\left(\frac{\partial f}{\partial w} \frac{\partial g}{\partial t_{0}}-\frac{\partial g}{\partial w} \frac{\partial f}{\partial t_{0}}\right) .
$$

Hamiltonian:

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\{\log w, f\}
$$

Polubarinova-Kochina's theorem:

$$
\left\{z(w, t), z^{\sharp}(w, t)\right\}=1
$$

where $z^{\sharp}(w, t)=\bar{z}\left(w^{-1}, t\right)$.

Integrability from the Schwarz potential (Khavinson-Shapiro/Krichever-Mineev-Wiegmann-Zabrodin)

$$
\begin{gathered}
\mathrm{d} W=S \mathrm{~d} z+p \mathrm{~d} t_{0}, \quad \mathrm{~d}^{2} W=0, \quad\left\{t_{k}\right\} \text { fixed. } \\
W\left(z, t_{0},\left\{t_{k}\right\}\right)=t_{0} \log |z|^{2}+\sum_{k \geq 1} t_{k} z^{k}(w)_{+}+\ldots, \\
z^{k}(w)_{+}=\text {regular part of Laurent expansion in } w \\
\frac{\partial z}{\partial t_{k}}=\left\{z_{+}^{k}, z\right\}, \quad \frac{\partial z_{+}^{p}}{\partial t_{k}}-\frac{\partial z_{+}^{k}}{\partial t_{p}}=\left\{z^{k}(w)_{+}, z^{p}(w)_{+}\right\}
\end{gathered}
$$

Theorem As generating function for deformations in $\left\{t_{k}\right\}$, the total differential of the Schwarz potential is the Hirota 1-form of the K-P hierarchy, with the canonical Poisson bracket of Laplacian growth.

Review of integrable hierarchies

Let \mathcal{A} be the algebra of differential polynomials of the type $P=\partial^{n}$ $+u_{n-2} \partial^{n-2}+\ldots+u_{1} \partial+u_{0}$, where $\partial=$ differential symbol, and work in the ring of pseudo-differential operators:

$$
\begin{aligned}
L & =\sum_{-\infty}^{n} c_{k} \partial^{k}, \quad \partial^{-1}(.) \equiv \int(.) d x \\
L_{+} & \equiv \sum_{0}^{n} c_{k} \partial^{k}, \quad L=L_{+}+L_{-} .
\end{aligned}
$$

Then the Kadomtsev-Petriashvilii hierarchy is given by

$$
\mathcal{L}=\partial+u_{0} \partial^{-1}+u_{1} \partial^{-2}+\ldots
$$

Review of integrable hierarchies

$$
\frac{\partial \mathcal{L}}{\partial t_{k}}=\left[\mathcal{L}_{+}^{k}, \mathcal{L}\right], \quad k=1,2, \ldots
$$

Zakharov - Shabat : $\quad\left[\partial_{t_{k}}-\mathcal{L}_{+}^{k}, \partial_{t_{p}}-\mathcal{L}_{+}^{p}\right]=0, \quad(\forall) t_{k}, t_{p}$.
Reductions: assume

$$
\left(\mathcal{L}^{2}\right)_{-}=0
$$

Then

$$
\mathcal{L}=L^{1 / 2}, \quad L=\partial^{2}+2 u_{0}
$$

Korteweg-de Vries equation:

$$
(\mathcal{L})_{+}^{3} \equiv P=\partial^{3}+\frac{3}{2}\left[u_{0} \partial+\partial u_{0}\right], \quad \frac{\partial L}{\partial t_{3}}=[P, L] \Rightarrow u_{t_{3}}=6 u u_{x}+u_{x x x}
$$

Boundary asymptotics from the Baker-Akhiezer function (Krichever/Novikov)

$$
\begin{gathered}
\mathcal{L} \psi=z \psi, \quad \frac{\partial \psi}{\partial t_{k}}=\mathcal{L}_{+}^{k} \psi, \quad \forall k \geq 1 . \\
g\left(z, t_{1}, \ldots\right)=\exp \left[\sum_{1}^{\infty} t_{k} z^{k}\right] \\
\psi\left(z, t_{1}, \ldots\right)=g \cdot \frac{\tau\left(t_{1}-\frac{1}{z}, t_{2}-\frac{1}{2 z^{2}}, \ldots\right)}{\tau\left(t_{1}, t_{2}, \ldots\right)}=g \cdot \frac{\exp \left[\sum_{1}^{\infty}-\frac{1}{k z^{k}} \frac{\partial}{\partial t_{k}}\right] \tau\left(t_{1}, t_{2}, \ldots\right)}{\tau\left(t_{1}, t_{2}, \ldots\right)}
\end{gathered}
$$

Krichever's solutions for the K-P hierarchy (fixed finite-genus torus):

$$
\psi=g \cdot \frac{\left.\theta\left(A(z)+\sum_{q} t_{q} \pi_{q}\right)-A(D)-K\right) \theta(A(\infty)-A(D)-K)}{\theta(A(z)-A(D)-K) \theta\left(A(\infty)+\sum_{q} t_{q} \pi_{q}-A(D)-K\right)}
$$

Dimensional reduction of integrable hierarchies: cusp asymptotics

$$
\psi^{L G W K B}(\lambda, t)=\frac{\sigma(\tau+\lambda)}{\sigma(\lambda) \sigma(\tau)} e^{-\zeta(\tau) \lambda} \cdot \frac{e^{\sum_{q=1}^{q=5} t_{q} \omega_{q}}}{\sqrt{\wp^{\prime}(\lambda)}}
$$

The Airy-Stokes-Liouville-Green-Wentzell-Kramers-Brillouin method

Hamilton-Jacobi equation for a particle in 1D potential:

$$
\frac{\partial S}{\partial t}+V(q)+\frac{1}{2 m}\left(\frac{\partial S}{\partial q}\right)^{2}=0
$$

Schrödinger equation

$$
\left[\frac{(-i \hbar)^{2}}{2 m} \frac{\partial^{2}}{\partial q^{2}}+V(q)\right] \Psi_{\hbar}(q, t)=i \hbar \frac{\partial}{\partial t} \Psi_{\hbar}(q, t),
$$

for the semiclassical wave-function

$$
\Psi_{\hbar}(q, t)=e^{\frac{i}{\hbar} S(q, t)}
$$

which is missing only the terms of order \hbar when compared to the Hamilton-Jacobi equation,

$$
\begin{gathered}
{\left[\frac{(-i \hbar)^{2}}{2 m} \frac{\partial^{2}}{\partial q^{2}}+V(q)-i \hbar \frac{\partial}{\partial t}\right] \Psi_{\hbar}(q, t)=} \\
=\left[\frac{1}{2 m}\left(\frac{\partial S}{\partial q}\right)^{2}+V(q)+\frac{\partial S}{\partial t}\right] \Psi_{\hbar}(q, t)- \\
-\frac{i \hbar}{2 m} \frac{\partial^{2} S}{\partial q^{2}} \Psi_{\hbar}(q, t)
\end{gathered}
$$

Therefore, as long as $\frac{\hbar}{2 m} \frac{\partial^{2} S}{\partial q^{2}} \ll 1$, we can safely ignore that term and use the classical Hamilton-Jacobi equation to solve mechanics problems. However, if $\frac{\hbar}{2 m} \frac{\partial^{2} S}{\partial q^{2}}=O(1)$, the classical approximation breaks down and the Schrödinger equation must be used: precisely what happens at a cusp.

Hydrodynamics of the $(2,3)$-cusp from wave-function

$$
Y^{2}=-4(X-u)^{2}(X+2 u), \quad u \rightarrow 0
$$

Parametrize: $X(k)=\wp\left(k \mid g_{2,3}\right), Y(k)=\wp^{\prime}\left(k \mid g_{2,3}\right), g_{2}(t)=u^{2}$
For physical pressure:

$$
\log \Psi=\int(p d t+S d z) \Rightarrow p(k, t)=i \zeta(k)-i \frac{3 g_{3}}{2 t} k .
$$

Elliptic case: details

Consider the linear problem

$$
\begin{gathered}
{\left[\frac{\partial^{2}}{\partial t^{2}}-u\right] \psi(t, \lambda)=X(\lambda) \psi(t, \lambda),} \\
{\left[\partial_{t}^{3}-\frac{3}{4}\left\{\partial_{t}, u\right\}, \partial_{t}^{2}-u\right]=\epsilon}
\end{gathered}
$$

Perturbatively in ϵ, the solution is

$$
u(t)=2 \wp\left(t \mid g_{2,3}(t)\right)
$$

where

$$
X\left(\lambda \mid g_{2,3}\right)=\wp(\lambda \mid \omega), \quad Y(\lambda)=\partial_{\lambda} X(\lambda),
$$

or equivalently represented in "Mumford-style"

$$
\dot{L}=\left(\begin{array}{cc}
\frac{\ddot{u}}{6} & -\frac{\dot{u}}{3} \\
\frac{\dddot{u}}{6}+\frac{2 \zeta \dot{u}-4 u \dot{u}}{9} & -\frac{\ddot{u}}{6}
\end{array}\right), A^{\prime}=\left(\begin{array}{cc}
0 & 0 \\
\frac{2}{3} & 0
\end{array}\right),
$$

and

$$
[A, L]=\left(\begin{array}{cc}
\frac{\ddot{u}}{6} & -\frac{\dot{u}}{3} \\
\frac{2(\zeta+u) \dot{u}}{9} & -\frac{\dot{u}}{6}
\end{array}\right) .
$$

Thus,

$$
0=\dot{L}-A^{\prime}-[A, L]=\left(\begin{array}{cc}
0 & 0 \\
\frac{\dddot{u}}{6}-\frac{6 u \dot{u}}{9}-\frac{2}{3} & 0
\end{array}\right)
$$

The only non-trivial element of the matrix gives Painlevé I equation.

$$
\dddot{u}-4 u \dot{u}-4=0,
$$

Regularized solution: modulated elliptic-functions solution of Painlevé I.

Hyperelliptic case: Mumford's recipe

Take a pair of 2×2 operators L, A, solving the linear problem

$$
L \Psi=\mu \Psi, \partial_{t} \Psi=A \Psi, \partial_{t} L=[A, L]
$$

Assume

$$
L(\lambda)=\left[\begin{array}{rr}
a(\lambda) & b(\lambda) \\
c(\lambda) & -a(\lambda)
\end{array}\right] \Rightarrow \mu^{2}+\operatorname{det} L=0, \mu(\lambda)= \pm i \sqrt{\operatorname{det} L(\lambda)} .
$$

Isomonodromic deformation:

$$
\begin{gathered}
L \Psi=\mu \Psi+\epsilon \partial_{\lambda} \Psi, \quad\left[\epsilon \partial_{\lambda}-L, \partial_{t}-A\right]=0, \quad 0 \leq \epsilon \ll 1 \\
{\left[\epsilon \partial_{\lambda}-L, \partial_{t}-A\right]=0 \Rightarrow \epsilon\left(\partial_{\nu} L-\partial_{\lambda} A\right)+\partial_{\tau} L-[A, L]=0,}
\end{gathered}
$$

where $\partial_{t} \rightarrow \partial_{\tau}+\epsilon \partial_{\nu}$ (fast/slow variables). New solution: $u_{\epsilon}\left(\tau, k_{i}(\nu)\right.$).

Hyperelliptic case: Abel-Jacobi inverse problems

$$
\mu_{i}=\lambda^{g-i} \frac{d \lambda}{y}, \quad M_{i j}=\int_{\alpha_{j}} \mu_{i}, \boldsymbol{\omega}=M^{-1} \boldsymbol{\mu}
$$

Period matrix $B_{i j}=\int_{\beta_{j}} \omega_{i}$ is symmetric and has positively defined imaginary part. The Riemann θ function:

$$
\theta(\boldsymbol{z} \mid B)=\sum_{\boldsymbol{n} \in \boldsymbol{z}^{g}} e^{2 \pi i\left(\boldsymbol{n}^{t} \boldsymbol{z}+\frac{1}{2} \boldsymbol{n}^{t} B \boldsymbol{n}\right)}
$$

The g vectors \boldsymbol{B}_{k} and vectors \boldsymbol{e}_{k} define a lattice in \mathbb{C}^{g}. The Jacobian variety of the curve Γ, is the quotient $J(\Gamma)=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+B \mathbb{Z}^{g}\right)$.

The Abel-Jacobi map associates to any point P on Γ, a point $(g-$ dimensional complex vector) on the Jacobian variety, through $\boldsymbol{A}(P)=\int_{\infty}^{P} \boldsymbol{\omega}$.

