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The Laplacian Growth problem

Let D, (t) be a simply-connected, bounded domain in C, 0D (t) a real
algebraic curve and D_ :=C\ D (t):

[ Ap=0 on D_(t) \ {00},
p=20 on D (t)

(LG) Laplacian Growth: <
Vio=—0.,p ondD_(t),

| p— —log|z] z— 0

Question: s it possible to find a monotonic chain {D, (¢)} such that
D(s) C D(t), (V)0 < s <te|0,T] CR, satisfying (LG)?






Solutions from conformal mapping

Theorem [Polubarinova-Kochina, Galin, Kufarev cca. 1945] Let z(w,t) be

the conformal map C\ D — ) —" D_(t), such that z'(c0,t) = r(t) € R,
2(00,t) = oo and denote w(z,t) its inverse:

z(w, tw + Zuk yw™,  |w| > 1.

LG solution: | p(z,t) = —log |w(z,t)|, Vi, = |w'(z,1)|

Consequence: Solutions exist as long as |w'(z4,t)| — oo only at points



Real fluid dynamics

Navier-Stokes: 9
P <a—: +v- Vv) = —Vp + puV3v,

Small gap limit b — 0 = Re = pVb/u — 0, just Stokes:

uV2i = Vp.
Poisseuille profile, averaging over the vertical direction:

b2 R
)= ——Vp=—-KVp.
V=15, VP p



Richardson’s theorem

Theorem [Richardson, 1972] Harmonic moments of D_(t) do not change
In time.
1

Moments : t;(t) = —— 2 RPA(2), to=t= —/ dA(z).
kT Jp_@) ™ JD. ()

% — % KZ’CM — j{ (panz—k—z—kﬁnp)dg = —/ z—kAp dA(Z)
dt aD(t) ? dD(t) D_(t)

Solutions revisited: | z(w, to, {tx}) = 7(to, {tk})w + > _p 51 uk(to, {trHw™F.

Note: Interior Richardson theorem by inversion: fD+ zFdA(z) preserved.



Conformal map — harmonic moments relationships: an inverse
moment problem

Area formula: to =12 — Zkzl klug|?

Example: the Joukowski map z(w) = rw + ug +

w—a
Correspondence:
4 2
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to = 77~ TPy
_ 2 ur
= to—’l“ —|—?,
ua
U0 TP

— ’L_L(),

Vi(z) := Ztkzk = vz + alog (1 — i) :
k>1 o
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Existence of infinite-time solutions

Question: For which sets of values {t;}7° ; is it possible to find a
solution valid for arbitrary ¢ — oco?

Example: t3 # 0, all others vanish:

1
z(w) = rw + 3tgriw ™2, to=r? — 18|t3|*r*, to <t.= 5
dto dz
— =0, attp=t, —=0, atw=1.
dr A dw aw

Known cases: circle, ellipse.



Schwarz function

e Schwarz function S(z) = Z on boundary I' = 9D, with Laurent expansion
around I:

t v
S(z) =) ktpz"! +;O+ZZ—§

k>0 p>0
atOS(Z7 tO) — _azp(z7 tO)

e meromorphic - quadrature domains: Sakai, Gustafsson, Putinar

f(2)dA(z) =) ) appfP (), (V)f € L'(Dy), analytic.



Inverse moment problem as determination of equilibrium
measure (the Maxwell problem)

Find the support D of distribution p(z) solving [, p(2)dA(z) = to, and

5
op(2)

[ o2 [—\z|2+v<z>+m+ [ 010812~ ¢Paa)| aa(z) =0

e Smooth solution: characteristic function of D, | p(z) = xp(z2)

e Equivalent exterior potential created by distribution of singularities of the
Schwarz function (poles, cuts) ps(z)

/ f(z)p(z)d?z = / f(2)ps(2)d%z, f(z) L1 — integrable



Schottky doubles: Laplacian Growth on Riemann surfaces

: z+S5(z z—S(z
e Riemann surface: F (( +2( )) : (#)) =0,={F(z,y) =0}
e Boundary I': S(z) =2

e Singularities: branch points S’(z) — oo, double points S1(z) = Sa(2)




Examples

Ellipse z(w) = rw + torw™!

2(toz? + 125?) 1 — 4ta]?
zS — — to =
1+ 4[ts)? 1+ 4fto?

Hypocycloid z(w) = rw + 3t3r?w =2

o 5% 27 (1 =9ts*r?) (1 + 18\t3|2r2)zs_r2(1 — 9t3|?r?)3

_ = 0.
3t3 3t3+ 9|t3|? 9ts]*

(25)

U

Joukowski z(w) = rw + ug +

w—a

2282 —22SB—2S7B+(|8]* + a4+ @ — ty) 2S+2B(to—a)+S5B(to—a)+h = 0.



Cusps as higher critical points

b=1/2

/
/
/

2k+1

Coalescence of 2k + 1 branch points: x ~ y? — cusp



The generic cusp singularity
Generic boundary singularity: branch point (inside) meets double point
(outside). Consider the “reduced” Riemann surface.

e Local boundary: elliptic curve

y* = —4(C—u)*(C+2u), u—0

2u(1) Branch Cut

y(x)
Reflexion Axis



Poisson structure of Laplacian growth

Poisson brackets:

B Jf Og B dg Of
U b toguy = w (810 Otg  Ow 8750) '

Hamiltonian:

df
i {logw, f}
Polubarinova-Kochina’'s theorem:

{z(w,t), 24 (w,t)} =1

where 2% (w,t) = Z(w™ 1, 1).



Integrability from the Schwarz potential
(Khavinson-Shapiro/Krichever-Mineev-Wiegmann-Zabrodin)

dW = Sdz + pdty, d°W =0, {t;} fixed.

W (z,to, {tx}) = tolog |z[> + > txz"(w)s + ...,
k>1

2*(w)4 = | regular part of Laurent expansion in w

0z 0z 92k
(‘9—tk = {Z-km z}, (%Z — (’9t+ — {Zk(w)+azp(w)+}
p

Theorem As generating function for deformations in {ty}, the total
differential of the Schwarz potential is the Hirota 1-form of the K-P
hierarchy, with the canonical Poisson bracket of Laplacian growth.



Review of integrable hierarchies

Let A be the algebra of differential polynomials of the type P = 0"
+ 20" 2% + ...+ u10 + ug, where O = differential symbol, and work in

the ring of pseudo-differential operators:

L= chﬁk, 071 = /(.)daz,

n

Ly=) 0", L=Li+L_.
0
Then the Kadomtsev-Petriashvilii hierarchy is given by

L=0+u0 ' +ud?+...



Review of integrable hierarchies

oL y
— = kE=1,2,...
8tk [£—|—7£]7 ) <

Zakharov — Shabat : [0, — L% O, — L] =0, (V) tk,1p.

Reductions: assume
(£%)-=0
Then
L=LY2 L=08%+2u,.
Korteweg-de Vries equation:

L
L)3 EP=83+§ un0 + Oug] , 8_ = |P, L] = us, = 6uty + Ugzy-
+ 2 Ot 3



Boundary asymptotics from the Baker-Akhiezer function
(Krichever/Novikov)

_ M

g(z,t1,...) = exp [Z tkzk]

w(Zt )_gT(tl_%7t2_2—i2,...) exXp [Zl kzkatki| (tl,tQ,...)
Jt1,...) = Q-

T(tl,tg,...) -9 (tl,tg,...)

Krichever's solutions for the K-P hierarchy (fixed finite-genus torus):

O(A(2) + 2 tgmg) — A(D) = K)0(A(o0) — A(D) — K)

V=9 G(A(2) — AD) - K)B(A(o0) + 5, tamg — A(D) — K)




Dimensional reduction of integrable hierarchies:

asymptotics
L0
Ta Sﬂ{‘
Su' / rs
S €]

1
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q=>5
Zq:l tqwq

cusp



The Airy-Stokes-Liouville-Green-Wentzell-Kramers-Brillouin
method

Hamilton-Jacobi equation for a particle in 1D potential:

oS 1 /05\°

Schrodinger equation

(—ih)? 02
2m  0q?

+ V(Q)] Wr(q,t) = iﬁg%(q, t),

ot

for the semiclassical wave-function

Uy (g, t) = er¥(@),



which is missing only the terms of order h when compared to the
Hamilton-Jacobi equation,

(—ih)? O? .0 B
V) - i | waant) =
1 /9S\? oS
- [2m (%) +vi+5 | mia.o-
ih 0%S
—%8—612‘117@(%15)-

2 .
Therefore, as long as %% < 1, we can safely ignore that term and use

the classical Hamilton-Jacobi equation to solve mechanics problems.
. 2 : o
However, if %% = O(1), the classical approximation breaks down and

the Schrodinger equation must be used: precisely what happens at a cusp.




Hydrodynamics of the (2, 3)-cusp from wave-function

V2= -4(X —uw?*X+2u), u—0
Parametrize: X (k) = p(k|g23), Y (k) = ¢'(k|g2.3), g2(t) = u?

For physical pressure:

log U — / (pdt + Sdz) = p(k, t) = iC(k) — 232—%




Elliptic case: details

Consider the linear problem

[57 . u] Bt ) = X (N (L, N),

3
[8753 — Z{ﬁt, U}, (9752 — ’LL] = €.
Perturbatively in €, the solution is

u(t) = 2p(t[g2,3(1)),

where
X (Alg2,3) = p(Aw), Y (A) = hX(A),



or equivalently represented in “Mumford-style”

. i —u 0 0
LZ('U“ 2c?z—4uu 3)»14/:(2 >7
61T 9 6 3 0
and , )
A, L] = ( 2Actu)yn i ) :
9 6
Thus,

: 0 0
O:L_A/—[AaL]:<'u' 6ut _ 2 O)-

The only non-trivial element of the matrix gives Painlevé | equation.

u —4ut — 4 = 0,

Regularized solution: modulated elliptic-functions solution of Painlevé I.




Hyperelliptic case: Mumford's recipe

Take a pair of 2 x 2 operators L, A, solving the linear problem
LY = puV, 0,0 = AV, O,L = [A, L]

Assume

LO\) = [ i&? _;’8)) ] 2t det L =0, p(A) = +iy/det L(N).

Isomonodromic deformation:
LY =pVU +ed\V, [edy—L,0;—A]=0, 0<ex 1.
€0y — L, 0y — Al =0=¢€(0,L —0\A) +0,L —[A, L] =0,

where 0; — 0, + €0, (fast/slow variables). New solution: u.(7, k;(v)).



Hyperelliptic case: Abel-Jacobi inverse problems

) )
:u’i:)‘g ?7 MZ]:/ pi, w=M 1“-
@
Period matrix B;; = fﬁ, w; 1s symmetric and has positively defined
J

imaginary part. The Riemann 6 function:

H(ZlB) _ Z eZwi(ntz—k%ntBn).

nez9

The g vectors By, and vectors e, define a lattice in C9. The Jacobian
variety of the curve I, is the quotient J(I') = CY9/(Z9 + BZ9).

The Abel-Jacobi map associates to any point P on I', a point (g—
dimensional complex vector) on the Jacobian variety, through

AP) = [ w.



