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1. The problem



linear optimization
over elliptope
with rank constraint

{

X ∈ S
n

≥0 : X11 = . . . = Xnn = 1
}



max {〈A, X〉 : X ∈ elliptope, rank X ≤ k}

we care about:

1. hardness results,
2. approximation algorithms

depending on the rank 
and structure of objective matrix



SDPk(A) = max

{ n
∑

i=1

n
∑

j=1

Aij xi · xj : xi ∈ S
k−1

}

Grothendieck problem with 
rank constraint



fundamental and unifying problem in many areas: 
optimization, functional analysis, complexity theory, combinatorics, 
quantum information

A lot of recent and beautiful work



2. Classical Grothendieck inequalities

k = 1



xi ∈ {−1,+1}

SDP1(A) = max

{ n
∑

i=1

n
∑

j=1

Aij xi · xj : xi ∈ S
0

}

is NP-hard (MAXCUT is special case).

k equals one: difficult

MAXCUT(G) = SDP1(LG)

LG — Laplacian matrix of graph G



k large: easy

SDP∞(A) = max

{ n
∑

i=1

n
∑

j=1

Aij xi · xj : xi ∈ S
∞

}

is an SDP without rank constraint.



For all matrices A having property P :

A (randomized) polytime approximation algorithm achievesKP .
Assuming UGC: no polytime algorithm can do better.

How big is the gap?

want to prove theorems like:

Grothendieck inequality

Given a property P there is a smallest constantKP,k so that:

SDPk(A) ≤ SDP∞(A) ≤ KP,k SDPk(A)



problems which have been studied:

For all matrices A having property P :

A (randomized) polytime approximation algorithm achievesKP .
Assuming UGC: no polytime algorithm can do better.

Given a property P there is a smallest constantKP,k so that:

SDPk(A) ≤ SDP∞(A) ≤ KP,k SDPk(A)

1. KG,k : A is of the form
(

0 B

B 0

)

2. K!0,k : A is positive semidefinite

3. Kmc,k : A is Laplacian matrix of a graph

4. Kn,k : A is of size n and Aii = 0

5. KΓ,k : support of A gives adjacency matrix of graph Γ

relations



1. KG,k : A is of the form
(

0 B

B 0

)

inequality:  Krivine 1978, Reeds 1993

algorithm:  Alon, Naor 2006

UGC hardness:  Raghavendra, Steurer 2009

No polytime algorithm attainingKG,1 − ε

1.67 . . . ≤ KG,1 ≤ π

2 log(1+
√

2)
= 1.78 . . .



2. K!0,k : A is positive semidefinite

inequality:  Rietz 1974, Grothendieck 1953

algorithm:  Nesterov 1997

UGC hardness:  Khot, Naor 2008

K!0,1 =
π

2
= 1.57 . . .

No polytime algorithm attainingK!0,1 − ε



inequality:  Goemans, Williamson 1996, Feige, Schechtman 2002

algorithm:  Goemans, Williamson 1996

UGC hardness:  Khot, Kindler, Mossel, O’Donnell 2007

3. Kmc,k : A is Laplacian matrix of a graph

Kmc,1 = 1.13 . . .

No polytime algorithm attainingKmc,1 − ε



4. Kn,k : A is of size n and Aii = 0

inequality:  Nemirovski, Roos, Terlaky 1999
                    Charikar, Wirth 2004, 
                    Alon, Naor, Makarychev, Makarychev 2006

algorithm:  Nemirovski, Roos, Terlaky 1999
                    Charikar, Wirth 2004, 

UGC hardness:  not completely settled (but almost)

Arora, Berger, Hazan, Kindler, Safra 2005

Kn,1 = Θ(log n)



5. KΓ,k : support of A gives adjacency matrix of graph Γ

inequality:   Alon, Naor, Makarychev, Makarychev 2006

algorithm:  Alon, Naor, Makarychev, Makarychev 2006

UGC hardness:  nothing specific known

Ω(log ω(Γ)) ≤ KΓ,1 ≤ O(log ϑ(Γ))



1

2

3

4

3

1

4

2

π1

π2

π3

π4

π5

π6

given:

πe : M → M — permutation for every edge e ∈ E.

find:
f : V ∪ W → M — labeling of vertices
satisfying as many permutations as possible:

π(v,w)(f(v)) = f(w)

Unique games conjecture (Khot 2002):
There is no polynomial time algorithm which distinguishes between
instances where almost all or almost none permutations are satisified.

M — set of labels
G = (V ∪ W,E)— bipartite graph



k > 1

3. New Grothendieck
    inequalities



SDPk(A) = max

{ n
∑

i=1

n
∑

j=1

Aij xi · xj : xi ∈ S
k−1

}

introduced in the context of quantum nonlocality
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Abstract

Suppose Alice and Bob make local two-outcome measurements on a shared entangled state. For any d,

we show that there are correlations that can only be reproduced if the local dimension is at least d. This
resolves a conjecture of Brunner et al. [Phys. Rev. Lett. 100, 210503 (2008)] and establishes that the amount

of entanglement required to maximally violate a Bell inequality must depend on the number of measure-
ment settings, not just the number of measurement outcomes. We prove this result by establishing the first
lower bounds on a new generalization of Grothendieck’s constant.

1 Introduction

Grothendieck’s inequality first arose in the study of norms on tensor products of Banach spaces [11]. It
has since found many applications in mathematics and computer science, including approximation al-
gorithms [3, 6] and communication complexity [15, 14]. In quantum information, it quantifies the dif-
ference between the classical and quantum values of certain simple Bell inequalities, as established by
Tsirelson [22]. Tsirelson’s work has been the starting point for considerable recent research into quantum
nonlocality [5, 1, 7, 19].

We start by stating the inequality in its strongest form, in terms of the real Grothendieck constant KG.

Definition 1. The real Grothendieck constant of order n, is the smallest real number KG(n) such that: For all
positive integers r and for all real r × r matrices M = (Mij), the inequality

max
a1,...,ar
b1,...,br

∑
i,j

Mijai · bj ≤ KG(n) max
α1,...,αr
β1,...,βr

∑
i,j

Mijαiβ j (1)

holds, where the maximum on the left-hand side is taken over all sequences a1, . . . , ar , b1, . . . , br of n-
dimensional real unit vectors, ai · bj denotes the Euclidean inner product of ai and bj, and the maximum
on the right-hand side is taken over all for all sequences α1, . . . , αr, β1, . . . , βr of real numbers in the set
{−1, +1}.

The real Grothendieck constant, denoted KG, is defined as limn→∞ KG(n).

The tightest version of the inequality known is due to Krivine [13], who proved that KG ≤ π/(2 ln(1 +√
2)) ≈ 1.78. Davie [8] and, independently, Reeds [18] are responsible for the best lower bounds: they

showed that KG ! 1.68. The exact value of KG is unknown.

∗Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands. Supported by Vici grant 639-023-
302 from the Netherlands Organization for Scientific Research (NWO), by the European Commission under the Integrated Project
Qubit Applications (QAP) funded by the IST directorate as Contract Number 015848, and by the Dutch BSIK/BRICKS project. BT is
also supported by BQP Solutions Pty Ltd. Email: jop.briet@cwi.nl, buhrman@cwi.nl, bentoner@bentoner.com.
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XY-model

Aij — potential between i and j

total energy

H = −

n∑

i=1

n∑

j=1

Aij ui · uj

u1, . . . , un ∈ S1 — spins

find ground state = minimize



1. KG,k : A is of the form
(

0 B

B 0

)

inequality:  Haagerup 1987, Briet, Buhrman, Toner 2009

algorithm:  Haagerup’s argument is algorithmic

UGC hardness:  nothing specific known

1.27 . . . ≤ KG,2 ≤ 1.40 . . .



2. K!0,k : A is positive semidefinite

inequality:  BOV 2009, Briet, Buhrman, Toner 2009

algorithm:  BOV 2009

UGC hardness:  BOV 2009

K!0,k =
k

2

(

Γ(k/2)

Γ((k + 1)/2)

)2

= 1 + Θ(1/k)

No polytime algorithm attainingK!0,k − ε

K!0,1 = π/2 = 1.57 . . .

K!0,2 = 4/π = 1.27 . . .

K!0,3 = (3π)/8 = 1.17 . . .



inequality:  BOV 2009

algorithm:  BOV 2009

UGC hardness:  nothing specific known

3. Kmc,k : A is Laplacian matrix of a graph

Kmc,1 = 1.13 . . .

Kmc,2 ≤ 1.06 . . .

Kmc,3 ≤ 1.04 . . .



4. Kn,k : A is of size n and Aii = 0

inequality:  nothing specific known

algorithm:  nothing specific known

UGC hardness:  nothing specific known



5. KΓ,k : support of A gives adjacency matrix of graph Γ

inequality:  nothing specific known

algorithm:  nothing specific known

UGC hardness:  nothing specific known



4.  Approximation
    algorithm



Approximation algorithm

2. Take random k × n Gaussian matrix Z = (Zij), Zij ∼ N(0, 1).

3. Round vectors xi =
Zvi

‖Zvi‖
∈ Sk−1.

4. Expected approximation of SDPk is

SDPk(A) ≥ E





n
∑

i=1

n
∑

j=1

Aijxi · xj



 =
n

∑

i=1

n
∑

j=1

AijE [xi · xj ]

≥ γ(k)
n

∑

i=1

n
∑

j=1

Aijvi · vj = γ(k)SDP∞(A)

1. Solve SDP∞(A). Gives vectors v1, . . . , vn ∈ Sn−1.

γ(k) =
2

k

(

Γ((k + 1)/2)

Γ(k/2)

)2



2 important properties of

Ek(vi, vj) = E [xi · xj ] = E

[

Zvi

‖Zvi‖
·

Zvj

‖Zvj‖

]

1. Ek(vi, vj) only depends on the inner product vi · vj ∈ [−1, 1]

2. Ek : [−1, 1] → R is of positive type, i.e.

for all choices of u1, . . . , um ∈ Sn−1







Ek(u1 · u1) . . . Ek(u1 · um)
...

...
...

Ek(um · u1) . . . Ek(um · um)






∈ S

m
≥0



Schoenberg’s characterization (1942)

A continuous function f : [−1, 1] → R is of positive type

f(z) =
∞∑

i=0

fiz
i

f0, f1, f2, . . . ≥ 0

∞∑

i=0

fi < ∞

⇐⇒ it can be represented as

i times

⇐= follows from Schur product

f(X) =
∞
∑

i=0

fi (X ◦ . . . ◦ X)
︸ ︷︷ ︸

∈ S
n

≥0

if X ∈ Sn

≥0



subtracting the linear term
Ek(z) =

∞∑

i=0

fiz
i f0, f1, f2, . . . ≥ 0

n∑

i=1

n∑

j=1

AijEk(vi · vj) = 〈A, (Ek(vi · vj))ij〉

≥ 〈A, f1(vi · vj)ij〉 = f1

n∑

i=1

n∑

j=1

Aijvi · vj

Hence,

z !→ Ek(z) − f1z is of positive type
Hence,



What’s f1?
Now the real work starts. . .

S
2

≥0

Y = ZTZ,

Z = (Zij) ∈ R
k×2, Zij ∼ N(0, 1)

x = (1, 0)T, y = (z,

√

1 − z2)T

Ek(z) =
1

2kΓ2(k/2)

∫

S2

≥0

xTY y
√

(xTY x)(yTY y)
eTr(Y )/2(detY )(k−3)/2dY

Y ∈ S2
≥0
— distributed according to Wishart distribution



f1 =
∂Ek

∂z
(0)

= . . .

= . . .

= γ(k)

=
2

k

(

Γ((k + 1)/2)

Γ(k/2)

)2

=
k − 1

2π

∫ 1

0

∫ 2π

0

r(1 − r2)(k−1)/2

(1 − r2(sinφ)2)3/2
dφdr



THE POSITIVE SEMIDEFINITE GROTHENDIECK PROBLEM
WITH RANK CONSTRAINT

JOP BRIËT, FERNANDO MÁRIO DE OLIVEIRA FILHO, AND FRANK VALLENTIN

Abstract. Given a positive integer n and a positive semidefinite matrix A =
(Aij) ∈ Rm×m the positive semidefinite Grothendieck problem with rank-n-
constraint is

(SDPn) maximize
mX

i=1

mX

j=1

Aij xi · xj , where x1, . . . , xm ∈ Sn−1.

In this paper we design a polynomial time approximation algorithm for SDPn

achieving an approximation ratio of

γ(n) =
2

n

„
Γ((n + 1)/2)

Γ(n/2)

«2

= 1−Θ(1/n).

We show that under the assumption of the unique games conjecture the achieved
approximation ratio is optimal: There is no polynomial time algorithm which
approximates SDPn with a ratio greater than γ(n). We improve the approxi-
mation ratio of the best known polynomial time algorithm for SDP1 from 2/π
to 2/(πγ(m)) = 2/π + Θ(1/m), and we determine the optimal constant of the
positive semidefinite case of a generalized Grothendieck inequality.

1. Introduction

Given a positive integer n and a positive semidefinite matrix A = (Aij) ∈ Rm×m,
the positive semidefinite Grothendieck problem with rank-n-constraint is defined as

SDPn(A) = max
� m�

i=1

m�

j=1

Aij xi · xj : x1, . . . , xm ∈ Sn−1

�
,

where Sn−1 = {x ∈ Rn : x · x = 1} is the unit sphere; the inner product ma-
trix of the vectors x1, . . . , xm has rank n. This problem was introduced by Briët,
Buhrman, and Toner [5] in the context of quantum nonlocality where they applied
it to nonlocal XOR games.

The case n = 1 is the classical positive semidefinite Grothendieck problem where
x1, . . . , xm ∈ {−1,+1}. It was introduced by Grothendieck [7] in the study of
norms of tensor products of Banach spaces. It is an NP-hard problem: If A is the
Laplacian matrix of a graph then SDP1(A) coincides with the value of a maximum
cut of the graph. The maximum cut problem (MAX CUT) is one of Karp’s 21
NP-complete problems.
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