Approximation algorithms for SDPs with rank constraints

Frank Vallentin (TU Delf, CWI Amsterdam)
Jop Briët (CWI Amsterdam)
Fernando de Oliveira Filho (UTilburg)

Convex algebraic geometry at Banff February 19, 2010

Overview

I. The problem
2. Classical Grothendieck inequalities
3. New Grothendieck inequalities
4. Approximation algorithm
I.The problem

linear optimization

 over elliptope with rank constraint$$
\left\{X \in \mathcal{S}_{\geq 0}^{n}: X_{11}=\ldots=X_{n n}=1\right\}
$$

$\max \{\langle A, X\rangle: X \in$ elliptope, $\operatorname{rank} X \leq k\}$

 we care about:

I. hardness results,

 2. approximation algorithms depending on the rank and structure of objective matrix
$\operatorname{SDP}_{k}(A)=\max \left\{\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} \cdot x_{j}: x_{i} \in S^{k-1}\right\}$

Grothendieck problem with

 rank constraint
A lot of recent and beautiful work

fundamental and unifying problem in many areas: optimization, functional analysis, complexity theory, combinatorics, quantum information

$$
k=1
$$

2. Classical Grothendieck inequalities

k equals one: difficult

$$
\operatorname{SDP}_{1}(A)=\max \left\{\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} \cdot x_{j}: x_{i} \in S^{0}\right\}
$$

is NP-hard (MAXCUT is special case).

$\operatorname{MAXCUT}(\mathrm{G})=\operatorname{SDP}_{1}\left(L_{G}\right)$

L_{G} - Laplacian matrix of graph G

k large: easy

$$
\operatorname{SDP}_{\infty}(A)=\max \left\{\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} \cdot x_{j}: x_{i} \in S^{\infty}\right\}
$$

How big is the gap?

want to prove theorems like:

Given a property P there is a smallest constant $K_{P, k}$ so that:
For all matrices A having property P :

$$
\operatorname{SDP}_{k}(A) \leq \operatorname{SDP}_{\infty}(A) \leq K_{P, k} \operatorname{SDP}_{k}(A)
$$

A (randomized) polytime ap . Grothendieck inequality Assuming UGC: no polytime algorithm can do better.

Given a property P there is a smallest constant $K_{P, k}$ so that: For all matrices A having property P :

$$
\operatorname{SDP}_{k}(A) \leq \operatorname{SDP}_{\infty}(A) \leq K_{P, k} \operatorname{SDP}_{k}(A)
$$

A (randomized) polytime approximation algorithm achieves K_{P}. Assuming UGC: no polytime algorithm can do better.

problems which have been studied:

1. $K_{G, k}: A$ is of the form $\left(\begin{array}{cc}0 & B \\ B & 0\end{array}\right)$
2. $K_{\succeq 0, k}: A$ is positive semidefinite
3. $K_{m c, k}: A$ is Laplacian matrix of a graph
4. $K_{n, k}: A$ is of size n and $A_{i i}=0$ relations
5. $K_{\Gamma, k}$: support of A gives adjacency matrix of graph Γ
6. $K_{G, k}: A$ is of the form $\left(\begin{array}{cc}0 & B \\ B & 0\end{array}\right)$
inequality: Krivine 1978, Reeds 1993

$$
1.67 \ldots \leq K_{G, 1} \leq \frac{\pi}{2 \log (1+\sqrt{2})}=1.78 \ldots
$$

algorithm: Alon, Naor 2006
UGC hardness: Raghavendra, Steurer 2009
No polytime algorithm attaining $K_{G, 1}-\varepsilon$
2. $K_{\succeq 0, k}: A$ is positive semidefinite
inequality: Rietz 1974, Grothendieck 1953

$$
K_{\succeq 0,1}=\frac{\pi}{2}=1.57 \ldots
$$

algorithm: Nesterov 1997
UGC hardness: Khot, Naor 2008
No polytime algorithm attaining $K_{\succeq 0,1}-\varepsilon$
3. $K_{m c, k}: A$ is Laplacian matrix of a graph
inequality: Goemans, Williamson 1996, Feige, Schechtman 2002

$$
K_{m c, 1}=1.13 \ldots
$$

algorithm: Goemans, Williamson 1996
UGC hardness: Khot, Kindler, Mossel, O'Donnell 2007
No polytime algorithm attaining $K_{m c, 1}-\varepsilon$
4. $K_{n, k}: A$ is of size n and $A_{i i}=0$
inequality: Nemirovski, Roos, Terlaky 1999
Charikar,Wirth 2004,
Alon, Naor, Makarychev, Makarychev 2006

$$
K_{n, 1}=\Theta(\log n)
$$

algorithm: Nemirovski, Roos,Terlaky 1999
Charikar,Wirth 2004,
UGC hardness: not completely settled (but almost)
Arora, Berger, Hazan, Kindler, Safra 2005
5. $K_{\Gamma, k}$: support of A gives adjacency matrix of graph Γ
inequality: Alon, Naor, Makarychev, Makarychev 2006

$$
\Omega(\log \omega(\Gamma)) \leq K_{\Gamma, 1} \leq O(\log \vartheta(\bar{\Gamma}))
$$

algorithm: Alon, Naor, Makarychev, Makarychev 2006
UGC hardness: nothing specific known
given:
M - set of labels
$G=(V \cup W, E)$ - bipartite graph
$\pi_{e}: M \rightarrow M$ - permutation for every edge $e \in E$.

find:

$f: V \cup W \rightarrow M-$ labeling of vertices
satisfying as many permutations as possible:

$$
\pi_{(v, w)}(f(v))=f(w)
$$

Unique games conjecture (Khot 2002):

There is no polynomial time algorithm which distinguishes between instances where almost all or almost none permutations are satisified.

$$
k>1
$$

3. New Grothendieck inequalities

$\operatorname{SDP}_{k}(A)=\max \left\{\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} \cdot x_{j}: x_{i} \in S^{k-1}\right\}$

 introduced in the context of quantum nonlocalityA generalized Grothendieck inequality and entanglement in XOR games
Jop Briët* Harry Buhrman* Ben Toner*

January 14, 2009

Abstract

Suppose Alice and Bob make local two-outcome measurements on a shared entangled state. For any d, we show that there are correlations that can only be reproduced if the local dimension is at least d. This resolves a conjecture of Brunner et al. [Phys. Rev. Lett. 100, 210503 (2008)] and establishes that the amount of entanglement required to maximally violate a Bell inequality must depend on the number of measurement settings, not just the number of measurement outcomes. We prove this result by establishing the first

XY-model

$A_{i j}$ - potential between i and j $u_{1}, \ldots, u_{n} \in S^{1}-$ spins
find ground state $=$ minimize

$$
H=-\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} u_{i} \cdot u_{j}
$$

total energy

1. $K_{G, k}: A$ is of the form $\left(\begin{array}{cc}0 & B \\ B & 0\end{array}\right)$
inequality: Haagerup 1987, Briet, Buhrman, Toner 2009

$$
1.27 \ldots \leq K_{G, 2} \leq 1.40 \ldots
$$

algorithm: Haagerup's argument is algorithmic
UGC hardness: nothing specific known
2. $K_{\succeq 0, k}: A$ is positive semidefinite
inequality: BOV 2009, Briet, Buhrman, Toner 2009

$$
K_{\succeq 0, k}=\frac{k}{2}\left(\frac{\Gamma(k / 2)}{\Gamma((k+1) / 2)}\right)^{2}=1+\Theta(1 / k)
$$

algorithm: BOV 2009

$$
\begin{aligned}
& K_{\succeq 0,1}=\pi / 2=1.57 \ldots \\
& K_{\succeq 0,2}=4 / \pi=1.27 \ldots \\
& K_{\succeq 0,3}=(3 \pi) / 8=1.17 \ldots
\end{aligned}
$$

UGC hardness: BOV 2009
No polytime algorithm attaining $K_{\succeq 0, k}-\varepsilon$
3. $K_{m c, k}: A$ is Laplacian matrix of a graph
inequality: BOV 2009

$$
\begin{aligned}
K_{m c, 1} & =1.13 \ldots \\
K_{m c, 2} & \leq 1.06 \ldots \\
K_{m c, 3} & \leq 1.04 \ldots
\end{aligned}
$$

algorithm: BOV 2009
UGC hardness: nothing specific known
4. $K_{n, k}: A$ is of size n and $A_{i i}=0$
inequality: nothing specific known

algorithm: nothing specific known

UGC hardness: nothing specific known
5. $K_{\Gamma, k}$: support of A gives adjacency matrix of graph Γ
inequality: nothing specific known

algorithm: nothing specific known

UGC hardness: nothing specific known

4. Approximation

 algorithm
Approximation algorithm

1. Solve $\operatorname{SDP}_{\infty}(A)$. Gives vectors $v_{1}, \ldots, v_{n} \in S^{n-1}$.
2. Take random $k \times n$ Gaussian matrix $Z=\left(Z_{i j}\right), Z_{i j} \sim N(0,1)$.
3. Round vectors $x_{i}=\frac{Z v_{i}}{\left\|Z v_{i}\right\|} \in S^{k-1}$.
4. Expected approximation of SDP_{k} is

$$
\begin{array}{r}
\operatorname{SDP}_{k}(A) \geq \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} \cdot x_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} \mathbb{E}\left[x_{i} \cdot x_{j}\right] \\
\geq \gamma(k) \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} v_{i} \cdot v_{j}=\gamma(k) \operatorname{SDP}_{\infty}(A) \\
\gamma(k)=\frac{2}{k}\left(\frac{\Gamma((k+1) / 2)}{\Gamma(k / 2)}\right)^{2}
\end{array}
$$

2 important properties of

$$
E_{k}\left(v_{i}, v_{j}\right)=\mathbb{E}\left[x_{i} \cdot x_{j}\right]=\mathbb{E}\left[\frac{Z v_{i}}{\left\|Z v_{i}\right\|} \cdot \frac{Z v_{j}}{\left\|Z v_{j}\right\|}\right]
$$

1. $E_{k}\left(v_{i}, v_{j}\right)$ only depends on the inner product $v_{i} \cdot v_{j} \in[-1,1]$
2. $E_{k}:[-1,1] \rightarrow \mathbb{R}$ is of positive type, i.e.

$$
\left(\begin{array}{ccc}
E_{k}\left(u_{1} \cdot u_{1}\right) & \ldots & E_{k}\left(u_{1} \cdot u_{m}\right) \\
\vdots & \vdots & \vdots \\
E_{k}\left(u_{m} \cdot u_{1}\right) & \ldots & E_{k}\left(u_{m} \cdot u_{m}\right)
\end{array}\right) \in \mathcal{S}_{\geq 0}^{m}
$$

for all choices of $u_{1}, \ldots, u_{m} \in S^{n-1}$

Schoenberg's characterization (1942)

A continuous function $f:[-1,1] \rightarrow \mathbb{R}$ is of positive type
\Longleftrightarrow it can be represented as

$$
f(z)=\sum_{i=0}^{\infty} f_{i} z^{i} \quad f_{0}, f_{1}, f_{2}, \ldots \geq 0 \quad \sum_{i=0}^{\infty} f_{i}<\infty
$$

\Longleftarrow follows from Schur product
if $X \in \mathcal{S}_{\geq 0}^{n}$

$$
f(X)=\sum_{i=0}^{\infty} f_{i} \underbrace{(X \circ \ldots \circ X)}_{i \text { times }} \in \mathcal{S}_{\geq 0}^{n}
$$

subtracting the linear term
 $$
E_{k}(z)=\sum_{i=0}^{\infty} f_{i} z^{i} \quad f_{0}, f_{1}, f_{2}, \ldots \geq 0
$$

Hence,

$$
z \mapsto E_{k}(z)-f_{1} z \quad \text { is of positive type }
$$

Hence,

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} E_{k}\left(v_{i} \cdot v_{j}\right)=\left\langle A,\left(E_{k}\left(v_{i} \cdot v_{j}\right)\right)_{i j}\right\rangle \\
\geq & \left\langle A, f_{1}\left(v_{i} \cdot v_{j}\right)_{i j}\right\rangle=f_{1} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} v_{i} \cdot v_{j}
\end{aligned}
$$

What's f_{1} ?

Now the real work starts...

$$
\begin{array}{r}
E_{k}(z)=\frac{1}{2^{k} \Gamma_{2}(k / 2)} \int_{\mathcal{S}_{\geq 0}^{2}} \frac{x^{\top} Y y}{\sqrt{\left(x^{\top} Y x\right)\left(y^{\top} Y y\right)}} e^{\operatorname{Tr}(Y) / 2}(\operatorname{det} Y)^{(k-3) / 2} d Y \\
x=(1,0)^{\top}, \quad y=\left(z, \sqrt{1-z^{2}}\right)^{\top}
\end{array}
$$

$Y \in \mathcal{S}_{\geq 0}^{2}$ - distributed according to Wishart distribution

$$
\begin{aligned}
& Y=Z^{\top} Z \\
& Z=\left(Z_{i j}\right) \in \mathbb{R}^{k \times 2}, \quad Z_{i j} \sim N(0,1)
\end{aligned}
$$

$$
\begin{aligned}
f_{1} & =\frac{\partial E_{k}}{\partial z}(0) \\
& =\ldots \\
& =\frac{k-1}{2 \pi} \int_{0}^{1} \int_{0}^{2 \pi} \frac{r\left(1-r^{2}\right)^{(k-1) / 2}}{\left(1-r^{2}(\sin \phi)^{2}\right)^{3 / 2}} d \phi d r \\
& =\ldots \\
& =\frac{2}{k}\left(\frac{\Gamma((k+1) / 2)}{\Gamma(k / 2)}\right)^{2} \\
& =\gamma(k)
\end{aligned}
$$

Reference

THE POSITIVE SEMIDEFINITE GROTHENDIECK PROBLEM WITH RANK CONSTRAINT

JOP BRIËT, FERNANDO MÁRIO DE OLIVEIRA FILHO, AND FRANK VALLENTIN

AbSTRACT. Given a positive integer n and a positive semidefinite matrix $A=$ $\left(A_{i j}\right) \in \mathbb{R}^{m \times m}$ the positive semidefinite Grothendieck problem with rank-nconstraint is

$$
\left(\mathrm{SDP}_{n}\right) \text { maximize } \sum_{i=1}^{m} \sum_{j=1}^{m} A_{i j} x_{i} \cdot x_{j}, \text { where } x_{1}, \ldots, x_{m} \in S^{n-1} .
$$

