Approximation algorithms for SDPs with rank constraints

Frank Vallentin (TU Delft, CWI Amsterdam)

Jop Briët (CWI Amsterdam) Fernando de Oliveira Filho (UTilburg)

Convex algebraic geometry at Banff February 19, 2010

Overview

I. The problem

2. Classical Grothendieck inequalities

3. New Grothendieck inequalities

4. Approximation algorithm

I.The problem

linear optimization over elliptope with rank constraint

 $\{X \in S_{\geq 0}^n : X_{11} = \ldots = X_{nn} = 1\}$

$\max\left\{\langle A, X \rangle : X \in \text{elliptope}, \text{rank } X \leq k\right\}$

we care about:

I. hardness results,2. approximation algorithms

depending on the rank and structure of objective matrix

$$SDP_k(A) = \max\left\{\sum_{i=1}^n \sum_{j=1}^n A_{ij} \ x_i \cdot x_j : x_i \in S^{k-1}\right\}$$

Grothendieck problem with rank constraint

A lot of recent and beautiful work

fundamental and unifying problem in many areas: optimization, functional analysis, complexity theory, combinatorics, quantum information

k = 1

2. Classical Grothendieck inequalities

k equals one: difficult $SDP_1(A) = \max\left\{\sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i \cdot x_j : x_i \in S^0\right\}$ $x_i \in \{-1, +1\}$

is NP-hard (MAXCUT is special case).

 $MAXCUT(G) = SDP_1(L_G)$

 L_G — Laplacian matrix of graph G

k large: easy

$$SDP_{\infty}(A) = \max\left\{\sum_{i=1}^{n}\sum_{j=1}^{n}A_{ij} x_i \cdot x_j : x_i \in S^{\infty}\right\}$$

is an SDP without rank constraint.

How big is the gap?

want to prove theorems like:

Given a property P there is a smallest constant $K_{P,k}$ so that: For all matrices A having property P:

 $SDP_k(A) \leq SDP_{\infty}(A) \leq K_{P,k} SDP_k(A)$

A (randomized) polytime apple Grothendieck inequality

Assuming UGC: no polytime algorithm can do better.

Given a property P there is a smallest constant $K_{P,k}$ so that: For all matrices A having property P:

 $SDP_k(A) \leq SDP_{\infty}(A) \leq K_{P,k} SDP_k(A)$

A (randomized) polytime approximation algorithm achieves K_P . Assuming UGC: no polytime algorithm can do better.

problems which have been studied:

1. $K_{G,k}$: *A* is of the form $\begin{pmatrix} 0 & B \\ B & 0 \end{pmatrix}$

- 2. $K_{\geq 0,k}$: A is positive semidefinite
- 3. $K_{mc,k}$: A is Laplacian matrix of a graph
- 4. $K_{n,k}: A \text{ is of size } n \text{ and } A_{ii} = 0$

relations

5. $K_{\Gamma,k}$: support of A gives adjacency matrix of graph Γ

1. $K_{G,k}$: *A* is of the form $\begin{pmatrix} 0 & B \\ B & 0 \end{pmatrix}$

inequality: Krivine 1978, Reeds 1993

 $1.67\ldots \leq K_{G,1} \leq \frac{\pi}{2\log(1+\sqrt{2})} = 1.78\ldots$

algorithm: Alon, Naor 2006

UGC hardness: Raghavendra, Steurer 2009

No polytime algorithm attaining $K_{G,1} - \varepsilon$

inequality: Rietz 1974, Grothendieck 1953

 $K_{\geq 0,1} = \frac{\pi}{2} = 1.57\dots$

algorithm: Nesterov 1997

UGC hardness: Khot, Naor 2008

No polytime algorithm attaining $K_{\succ 0,1} - \varepsilon$

inequality: Goemans, Williamson 1996, Feige, Schechtman 2002

 $K_{mc,1} = 1.13...$

algorithm: Goemans, Williamson 1996

UGC hardness: Khot, Kindler, Mossel, O'Donnell 2007

No polytime algorithm attaining $K_{mc,1} - \varepsilon$

4. $K_{n,k}$: A is of size n and $A_{ii} = 0$

inequality: Nemirovski, Roos, Terlaky 1999 Charikar, Wirth 2004, Alon, Naor, Makarychev, Makarychev 2006

 $K_{n,1} = \Theta(\log n)$

algorithm: Nemirovski, Roos, Terlaky 1999 Charikar, Wirth 2004,

UGC hardness: not completely settled (but almost)

Arora, Berger, Hazan, Kindler, Safra 2005

inequality: Alon, Naor, Makarychev, Makarychev 2006 $\Omega(\log \omega(\Gamma)) \le K_{\Gamma,1} \le O(\log \vartheta(\overline{\Gamma}))$

algorithm: Alon, Naor, Makarychev, Makarychev 2006

given:

M — set of labels $G = (V \cup W, E)$ — bipartite graph $\pi_e : M \to M$ — permutation for every edge $e \in E$.

find:

 $f: V \cup W \to M$ — labeling of vertices satisfying as many permutations as possible: $\pi_{(v,w)}(f(v)) = f(w)$

Unique games conjecture (Khot 2002):

There is no polynomial time algorithm which distinguishes between instances where almost all or almost none permutations are satisified.

 π -

 π_2

 π_4

 π_6

 π_5

k > 1

3. New Grothendieck inequalities

$$SDP_k(A) = \max\left\{\sum_{i=1}^n \sum_{j=1}^n A_{ij} \ x_i \cdot x_j : x_i \in S^{k-1}\right\}$$

introduced in the context of quantum nonlocality

A generalized Grothendieck inequality and entanglement in XOR games

Jop Briët*

Harry Buhrman*

Ben Toner*

January 14, 2009

Abstract

Suppose Alice and Bob make local two-outcome measurements on a shared entangled state. For any *d*, we show that there are correlations that can only be reproduced if the local dimension is at least *d*. This resolves a conjecture of Brunner et al. [*Phys. Rev. Lett.* 100, 210503 (2008)] and establishes that the amount of entanglement required to maximally violate a Bell inequality must depend on the number of measurement settings, not just the number of measurement outcomes. We prove this result by establishing the first

inequality: Haagerup 1987, Briet, Buhrman, Toner 2009

$1.27... \le K_{G,2} \le 1.40...$

algorithm: Haagerup's argument is algorithmic

2. $K_{\geq 0,k}$: A is positive semidefinite

inequality: BOV 2009, Briet, Buhrman, Toner 2009

$$K_{\geq 0,k} = \frac{k}{2} \left(\frac{\Gamma(k/2)}{\Gamma((k+1)/2)} \right)^2 = 1 + \Theta(1/k)$$

algorithm: BOV 2009
$$K_{\geq 0,1} = \pi/2 = 1.57...$$

$$K_{\geq 0,2} = 4/\pi = 1.27...$$

$$K_{\geq 0,3} = (3\pi)/8 = 1.17...$$

UGC hardness: BOV 2009

No polytime algorithm attaining $K_{\geq 0,k} - \varepsilon$

3. $K_{mc,k}$: A is Laplacian matrix of a graph

inequality: BOV 2009

 $K_{mc,1} = 1.13...$ $K_{mc,2} \le 1.06...$ $K_{mc,3} \le 1.04...$

algorithm: BOV 2009

inequality: nothing specific known

algorithm: nothing specific known

5. $K_{\Gamma,k}$: support of A gives adjacency matrix of graph Γ

inequality: nothing specific known

algorithm: nothing specific known

4. Approximation algorithm

Approximation algorithm

- 1. Solve $SDP_{\infty}(A)$. Gives vectors $v_1, \ldots, v_n \in S^{n-1}$.
- 2. Take random $k \times n$ Gaussian matrix $Z = (Z_{ij}), Z_{ij} \sim N(0, 1)$.
- 3. Round vectors $x_i = \frac{Zv_i}{\|Zv_i\|} \in S^{k-1}$.

4. Expected approximation of SDP_k is

$$SDP_k(A) \geq \mathbb{E}\left[\sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i \cdot x_j\right] = \sum_{i=1}^n \sum_{j=1}^n A_{ij} \mathbb{E}\left[x_i \cdot x_j\right]$$

 $\sum \gamma(k) \sum \sum A_{ij} v_i \cdot v_j = \gamma(k) \mathrm{SDP}_{\infty}(A)$

 $\gamma(k) = \frac{2}{k} \left(\frac{\Gamma((k+1)/2)}{\Gamma(k/2)} \right)^2$

2 important properties of

$$E_k(v_i, v_j) = \mathbb{E} \left[x_i \cdot x_j \right] = \mathbb{E} \left[\frac{Zv_i}{\|Zv_i\|} \cdot \frac{Zv_j}{\|Zv_j\|} \right]$$

1. $E_k(v_i, v_j)$ only depends on the inner product $v_i \cdot v_j \in [-1, 1]$ 2. $E_k : [-1, 1] \rightarrow \mathbb{R}$ is of *positive type*, i.e.

$$\begin{pmatrix} E_k(u_1 \cdot u_1) & \dots & E_k(u_1 \cdot u_m) \\ \vdots & \vdots & \vdots \\ E_k(u_m \cdot u_1) & \dots & E_k(u_m \cdot u_m) \end{pmatrix} \in \mathcal{S}_{\geq 0}^m$$

for all choices of $u_1, \ldots, u_m \in S^{n-1}$

Schoenberg's characterization (1942)

A continuous function $f: [-1, 1] \rightarrow \mathbb{R}$ is of positive type

 \iff it can be represented as

$$f(z) = \sum_{i=0}^{\infty} f_i z^i$$
 $f_0, f_1, f_2, \dots \ge 0$ $\sum_{i=0}^{\infty} f_i < \infty$

 \Leftarrow follows from Schur product

if
$$X \in \mathcal{S}_{\geq 0}^{n}$$

$$f(X) = \sum_{i=0}^{\infty} f_{i} \underbrace{(X \circ \ldots \circ X)}_{i \text{ times}} \in \mathcal{S}_{\geq 0}^{n}$$

subtracting the linear term $E_k(z) = \sum_{i=0}^{\infty} f_i z^i \qquad f_0, f_1, f_2, \dots \ge 0$

Hence,

 $z \mapsto E_k(z) - f_1 z$ is of positive type

Hence,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} E_k(v_i \cdot v_j) = \langle A, (E_k(v_i \cdot v_j))_{ij} \rangle$$

$$n = n$$

$$\geq \langle A, f_1(v_i \cdot v_j)_{ij} \rangle = f_1 \sum_{i=1}^n \sum_{j=1}^n A_{ij} v_i \cdot v_j$$

What's f_1 ?

Now the real work starts...

$$E_k(z) = \frac{1}{2^k \Gamma_2(k/2)} \int_{\mathcal{S}_{\geq 0}^2} \frac{x^{\mathsf{T}} Y y}{\sqrt{(x^{\mathsf{T}} Y x)(y^{\mathsf{T}} Y y)}} e^{\operatorname{Tr}(Y)/2} (\det Y)^{(k-3)/2} dY$$
$$x = (1,0)^{\mathsf{T}}, \ y = (z,\sqrt{1-z^2})^{\mathsf{T}}$$

 $Y \in S_{\geq 0}^2$ — distributed according to Wishart distribution $Y = Z^{\mathsf{T}}Z,$ $Z = (Z_{ij}) \in \mathbb{R}^{k \times 2}, \ Z_{ij} \sim N(0, 1)$

$$f_{1} = \frac{\partial E_{k}}{\partial z}(0)$$

= ...
$$= \frac{k-1}{2\pi} \int_{0}^{1} \int_{0}^{2\pi} \frac{r(1-r^{2})^{(k-1)/2}}{(1-r^{2}(\sin\phi)^{2})^{3/2}} d\phi dr$$

= ...
$$= \frac{2}{k} \left(\frac{\Gamma((k+1)/2)}{\Gamma(k/2)}\right)^{2}$$

$$= \gamma(k)$$

Reference

THE POSITIVE SEMIDEFINITE GROTHENDIECK PROBLEM WITH RANK CONSTRAINT

JOP BRIËT, FERNANDO MÁRIO DE OLIVEIRA FILHO, AND FRANK VALLENTIN

ABSTRACT. Given a positive integer n and a positive semidefinite matrix $A = (A_{ij}) \in \mathbb{R}^{m \times m}$ the positive semidefinite Grothendieck problem with rank-n-constraint is

(SDP_n) maximize
$$\sum_{i=1}^{m} \sum_{j=1}^{m} A_{ij} x_i \cdot x_j$$
, where $x_1, \dots, x_m \in S^{n-1}$

Thank you

