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General references

The Numerical Solution

of Systems of Polynomials

: ' T.Y. Li, Numerical solution of polynomial
Arising in Engineering and Science

systems by homotopy continuation methods,
in Handbook of Numerical Analysis,
Volume XI, 209-304, North-Holland, 2003.
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General references

D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler,

Bertini: Software for Numerical Algebraic Geometry.
Available at www.nd.edu/~sommese/bertini.
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Homotopy continuation

Main problem in numerical algebraic geometry:
Describe all x € CN where

f(x)= ; . — (

and each f; is polynomial.

AL : 2N
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Homotopy continuation

Basic isolated root finding:
Assume n = N ("square”). Compute the isolated solutions of

f(x)= ; - = 0.
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Homotopy continuation

Algorithm

» Treat f as a member of a parameterized family of polynomial
systems F.

» Compute the isolated roots of g € F (general enough).
» Setup the homotopy H(x,t) = (1 — t)f(x) + tg(x).

» Track the paths x(t) defined by H(x(t),t) = 0.
Since H(x(1),1) = g(x(1)) = 0, paths start at the known
roots of g.
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Homotopy continuation

Algorithm

» Treat f as a member of a parameterized family of polynomial
systems F.

» Compute the isolated roots of g € F (general enough).

» Setup the homotopy H(x,t) = (1 — t)f(x) + tg(x).

» Track the paths x(t) defined by H(x(t),t) = 0.
Since H(x(1),1) = g(x(1)) = 0, paths start at the known
roots of g.

Computing the roots of g is very interesting when nontrivial.

B. Huber and B. Sturmfels, A polyhedral method for solving sparse polynomial
systems, Math. Comp. 64(212), 1541-1555, 1995.
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Homotopy continuation

Example

£ x%+2x — 8
| xy +2x+4y -3

1. Total degree: F = {{ g1(x,y)
g2(x.y)

x? —1
g = [ V21 ] Bound: 4.

10

] - deg(gi) = 2},
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Homotopy continuation

Example

£ X%+ 2x — 8
| xy +2x+4y — 3

1. Total degree: F = H g1(x.) ] - deg(g;) = 2},

g2(x,y)
g — [ ;ij ] Bound: 4.
s ahom: /= H gf(lisz) ] | j:ig)—zdegy(gz) =1 }

2 _
g[( X . ],Bound: 2.

W 11 @
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Homotopy continuation

Example
f_ X2 4+2x — 8
| xy +2x +4y — 3

3. Polytope: F = {{

y —1

|

a1x% + asx + a3
asXy + asX + agy + ay

2 _
g[X 1],Bound:2.

T
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Homotopy continuation

Example

f_ x%+2x — 8
| xy +2x +4y — 3

2
ai X< + a2x + as
3. Polytope: F = a; € Cp,
ytoP {{34)\(_}/%—35){%—86}/4—37} " }

2 _
g[X 1],Bound:2.

2 _
4. “"Optimal”": F = (o + @)X+ a1z a2, € Cy,
(x — a1)y + asx + as

x> —1 _
g = [ (X+1)y2] Bound: 1.

T 1 '™
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Homotopy continuation

easier
start
system

Coefficient-Parameter

U ---U---

|
|

Polynomial
Products

Newton

Polytopes

@ -——U--~

U

Monomial Products

® - -—-—-U--—-—--

Linear Products

U

Multihomogeneous

U

Total Degree

specificity
(fewer paths)

BIRS



Homotopy continuation

N

'.""-l-—_

—4

solutions

/=0

\ known

of ‘W solutions
of
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Homotopy continuation

For a properly constructed homotopy:

» Solution paths x(t) exist

» Solution paths x(t) satisfy the Davidenko differential equation

dH(x(t).t) OH(x(t).t)
e — . x'(t) +

Ox

OH(x(t).t)

0
Ot

» For t #£0, ‘{:’}H(;‘E{r)‘ﬂ is invertible.

» {isolated roots of f} C
{x(0) = lim¢—o x(t) | x(1) is an isolated root of g}

W 16 @
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Homotopy continuation

Track solution paths using a predictor-corrector scheme.

Predict using Davidenko's differential equation:

OH(x(t),
V(o) = M.

X

X(t) W

predict

P I

j? 17
AlM 0 t 1




Example
f(x) = x?+4x+2

Hx.t) = (1 — t)f(x) + t(x2 — 1).




Example

f(x,y) = [ Xi ]




Example
f(x)=—3x>+4x + &

H(x,t) = (1 — t)f(x) + t(x? — 1).

T




Example
f(x)= —%xz + 4x + %

For random ~ € C,
H(x.t) = (1 — t)f(x) +~vt(x* = 1).

T




Homotopy continuation

Singular endpoints occur frequently.

» Endgames: compute the endpoint by staying sufficiently far
away from t = 0.

» Deflation: restore quadratic convergence of Newton iterations.

Example
-XT {xzt]
f = H =
|y y?—t
2x 0
J__O 2y]'

J—0ast—0.

W 22 @
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Homotopy continuation

Endgame algorithms accurately compute
the endpoint of the path by using the
local Puiseux series expansion:

x(t) = x(0) + Z ajti/c.

Jj=1

Im(t)

Nonconvergent
zone

operating
e

= Re(t)
Use high enough precision to ensure lc
reliable numerical computations.

23
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Homotopy continuation

Im(t)

Nonconvergent
zone

x(t) = x(0)+ ) a1/

Jjz1

Endgame joperating

Cauchy integral theorem: et
1 2mc 0
0) = Re'”)d#6. G
<0 =5 [ x(Re")

24 @

BIRS




Homotopy continuation

Deflation for isolated solutions

A. Leykin, J. Verschelde, and A. Zhao, Newton's method with deflation for isolated
singularities of polynomial systems, Theor. Comput. Sci., 359, 111-122, 2006.

— X2 7]
%
[ 52 ] . 2X\1
}/2 2y Ao
f_l’l)\l + Oc"2)"2 —1
(0,0), mult 4 M+ Boda—1

(0._ 0. ’X{ E) .mmult 1
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Homotopy continuation

For a properly constructed homotopy:

» Solution paths x(t) exist

» Solution paths x(t) satisfy the Davidenko differential equation

OH(x(t), t) _ OH(x(t).t)

OH(x(t).t)
ot Ox '

Ot

0

x'(t) +

» For t #£0, BH(;S)’r] is invertible.

» {isolated roots of f} C
{x(0) = lim¢_gx(t) | x(1) is an isolated root of g}

W 26 @
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Homotopy continuation

Near singularities arise often that can make path tracking
numerically challenging.

D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Adaptive
multiprecision path tracking. SIAM J. Num. Anal., 46(2), 722-746, 2008.

D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Stepsize control for
adaptive multiprecision path tracking. Contemp. Math., 496, 21-31, 20009.

T
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Homotopy continuation

Applied the method of

D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Stepsize control for
adaptive multiprecision path tracking. Contemp. Math., 496, 21-31, 2009.

to the nine-point problem for four-bar linkages.

The Four-Bar Linkage

P Path Tracer Point

Out of 143,360 paths,

1184 paths (0.83%) needed higher
precision to successfully track past
near-singularity conditions.

28
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Pracision

Lag of Cond. Mumber

T

il 0. o= o o4 (1] L1 1] e o8

| | | | | | | | |

1 1 1 1 1
i 0. o= 1] o4 o 105 o oe o8
[ | T I | | | T | | ]
— 1 1 1 w 1 1 1 1 il
i 0.i o= o3 o4 (18 (10 o7 oe o8 i

D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Stepsize control for

adaptive multiprecision path tracking. Contemp. Math., 496, 21-31, 20009.

29
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Homotopy continuation

Using only double precision is fast, but can lead to path crossings

T.L. Lee, T.Y. Li, C.H. Tsai, HOM4PS-2.0: a software package for solving

polynomial systems by the polyhedral homotopy continuation method.
Computing, 83(2-3), 109-133, 2008.

and results may not be correct.

H. Tari, H.J. Su, and T.Y. Li, A constrained homotopy technique for excluding
unwanted solutions from polynomial equations arising in kinematics problems.
To appear in Mechanism and Machine Theory.

jrl 30
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Numerical algebraic geometry

Positive-dimensional solution sets
can be handled by intersecting with
random linear spaces to reduce down
to the isolated case.

A.J. Sommese and C.W. Wampler, Numerical
algebraic geometry. The mathematics

of numerical analysis (Park City, UT 1995).

Vol. 32 of Lectures in Appl. Math., °
749-763, AMS, Providence, RI, 1996.

jrl 31
A|M

BIRS



Numerical algebraic geometry

Positive-dimensional solution sets "
can be handled by intersecting with

random linear spaces to reduce down

to the isolated case.

A.J. Sommese and C.W. Wampler, Numerical

algebraic geometry. The mathematics
of numerical analysis (Park City, UT 1995).

Vol. 32 of Lectures in Appl. Math., °
749-763, AMS, Providence, RI, 1996.
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Numerical algebraic geometry

Positive-dimensional solution sets "
can be handled by intersecting with

random linear spaces to reduce down
to the isolated case.

A.J. Sommese and C.W. Wampler, Numerical
algebraic geometry. The mathematics

of numerical analysis (Park City, UT 1995).

Vol. 32 of Lectures in Appl. Math., °
749-763, AMS, Providence, RI, 1996.
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Numerical algebraic geometry

Junk points

34

BIRS



Numerical algebraic geometry

Compute a local Hilbert function

to determine if isolated.

D.J. Bates, J.D. Hauenstein, C. Peterson, and

A.J. Sommese, A numerical local dimension test
for points on the solution set of a system of
polynomial equations. SIAM J. Num. Anal.,
47(5), 3608—-3623, 2009.

Junk points

jrl 35
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Numerical algebraic geometry

Numerical irreducible decomposition algorithm:

1. Compute a witness superset W) for each dimension k.

_ f
» Compute a superset of the isolated roots of [ r ]
k

2. Compute a witness set W, for each k.

f ] from m

» Remove the nonisolated roots of [ r
k

3. Partition W into sets corresponding to the irreducible
components of dimension k.

jrl 36
A|M
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Numerical algebraic geometry

Extension of numerical irreducible decomposition to numerical
primary decomposition:

A. Leykin, Numerical primary decomposition. ISSAC 2008, 165-172, ACM, New
York, 2008.

T . '™

BIRS



Example

f(x,y,z)=

T

~ o m = b = F2 » @ m -
AN A S .




Numerical algebraic geometry

Example

(*+y?+ 22 =1)(x = 1) |
fix,y.z2)=| (xX*+y*+22=1)(y - 1)
(x> +y?+2z2-1)(z—-1)

= —

Dimension 2:

f
Let L1, L[> be random linear polynomials. Solve | [; | = 0.
| Lo
i fi + anfh + a3f3 |
g = L4 has 2 nonsingular roots that
L

W satisfy f = 0. @
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Numerical algebraic geometry

Example

(*+y?+ 22 =1)(x = 1) |
fix,y.z2)=| (xX*+y*+22=1)(y - 1)
(x> +y?+2z2-1)(z—-1)

= —

Dimension 1:

f
Solve [ 3 } = 0.
i f1 + arfh + asf |
g1 = fr + (33f3 has 8 singular roots that
Ly

satisfy f = 0 - all are junk points.

W 40 @
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Numerical algebraic geometry

Example

(*+y?+ 22 =1)(x = 1) |
fix,y.z2)=| (xX*+y*+22=1)(y - 1)
(x> +y?+2z2-1)(z—-1)

= —

Dimension O:

Solve f = 0.

1 nonsingular root and 26 singular roots - all are junk points.

W 41 @
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Numerical algebraic geometry

Decompose into irreducible | NG e T
components by using A _
monodromy and trace test. = ..

T




Numerical algebraic geometry

1= e
TP O PRt

- PR BEMIEE

Bertini: o2 et

Fhddckkdcktdtt lecomposition by Degree

Dimenzion 2: 1 classified component

degree 2t 1 component

Dimenzion 0: 1 classified component

degree 11 1 component

A N S S S N e e
a i el et SN




Given the roots of

T

Regeneration

. regeneration

computes the roots of

J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Regeneration homotopies for
solving systems of polynomials. To appear in Mathematics of Computation.

44
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Regeneration

Regeneration is effective at computing nonsingular isolated
solutions of large scale structured polynomial systems arising in

many applications.

The regenerative cascade algorithm applies regeneration to

i+ aiafh +aisfs+ -+ agf,
g{(f’) _ fg + G"213f3 + -+ (1"2‘,}{,?

In order to compute witness supersets of f.

45 @
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Regeneration

Step 1:

T

Move Lxy; to £1..... Ldeg ., USING

46
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Step 2:

Introduce fx.1 using

T

Regeneration

47
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Regeneration

Adjacent minor system:

Determinants of 2 x 2 adjacent minors of 3 X n matrix with
variable entries.

48
A‘M
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Regeneration

Adjacent minor system:

Determinants of 2 x 2 adjacent minors of 3 X n matrix with

variable entries.

For example: n=3
X1 X2
X4 X§
X7 X8

49
A‘M
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Regeneration

Adjacent minor system:

Determinants of 2 x 2 adjacent minors of 3 X n matrix with

variable entries.

For example: n=3

fl — X1 X5 — X2X4

T

50
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Regeneration

Adjacent minor system:

Determinants of 2 x 2 adjacent minors of 3 X n matrix with

variable entries.

For example: n = 3

fl — X1 X5 — X2X4

fz — XoXp — X3X5

51
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Regeneration

Adjacent minor system:

Determinants of 2 x 2 adjacent minors of 3 X n matrix with

variable entries.

For example: n = 3

fl — X1 X5 — X2X4

fz — XoXp — X3X5

X2 X3
X5 | X6
Xg | X9

f3 — X4Xg — X5X7

52 '™
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Regeneration

Adjacent minor system:

Determinants of 2 x 2 adjacent minors of 3 X n matrix with
variable entries.

For example: n=3 7

X1 X2 X3
X4 | X5 X6

X7 | X8 XQ

fl = X1X5 — X2X4 fs = XaXg — X5X7

fz — XoXp — X3X5 f

X5 X9 — X6 X8

W 53 @
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Regeneration

Adjacent minor system:

Membership test Local dimension test

n | Regen cascade | Dim-by-dim | Cascade | Regen cascade | Dim-by-dim | Cascade
3 0.1s 0.1s 0.2s 0.1s 0.1s 0.2s

4 0.8s 1.1s 1.3s 0.6s 0.8s 1.1s

5 6.2s 11.9s 11.2s 3.1s 4.6s 7.4s

§ Imls 2ml4s 1ma34s 15.6s 29.0s 48.4s
7 10ma36s 25m39s 14mb4s 1m16s 3ma8s Hm23s
8 2h12mb4s 5h21m48s 2h33mbs 6m33s 19m45s 29m22s

T

J.D. Hauenstein, Regeneration, local dimension, and applications in numerical
algebraic geometry. Ph.D. Thesis, University of Notre Dame, Notre Dame, IN,

April 20009.

54
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Rank-deficiency sets

[ a11(x) - ara(x) |

Given A(x) = ; ; , compute the sets

i am._l(x) am__”(x) ]

Sk(A) = {x | rank A(x) < k} and Sk r(A) = Sk(A) N V(f).

55 @
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Rank-deficiency sets

One way to compute Si(A) is by creating a polynomial system

consisting of the (k + 1) x (k + 1) minors of A.
» Could yield impractically large system: (kTI) (kil)'
» Each polynomial could consist of many terms.

» Each polynomial could be of high degree.

W 56 @
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Rank-deficiency sets

ari(x) -+ a1n(x)
Let A(x) = ; ; with m > n.

3rn._1(x) T amﬂ(x)

Our approach uses the fact that

Sk(A) = {x | rank A(x) < k} = {x | nullity A(x) > n— k}.

D.J. Bates, J.D. Hauenstein, C. Peterson, and A.J. Sommese, Numerical
decomposition of the rank-deficiency set of a matrix of multivariate polynomials.
Approximate Commutative Algebra, edited by L. Robbiano and J. Abbott, Texts and
Monographs in Symbolic Computation, Springer, 5577, 20009.

W 57 JAN
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Rank-deficiency sets

A1 ALk
Let A = L ; and B € U(n) be random.

| Akl Akgn—k

We want to solve

Remarks

» Added k(n — k) new variables.

» Consists of m(n — k) functions:

» naturally 2-homogeneous
» degree in x is same as in A(x)
» linearin A's

W » straight-line formulation @
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Rank-deficiency sets

Example

Compute S3(A) for A =

Determinants: Solve 12 cubics on C°.
Nullity: Solve 8 polynomials of type (1.1) on C° x C*.

5:(A) =

0
—a
—b

—C

a
0
—d

—€

59

b
d
0

V(af + cd — be)
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Rank-deficiency sets

Example

Compute the singular points of

X1+ X2 + X3 + Xa

X1X> + XoX3 + X3Xa + XaX1
f(leX2rX3=X4) —
X1X2X3 + X2X3X4 + X3X4X1 + X4X1X2

X1 XoX3Xq4 — 1

on the irreducible component C = {(x1,x2, —x1, —x2) | X120 = 1}.

W 60 @
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Rank-deficiency sets

Note that rank Jf = 3 generically on C.

Starting with a witness set for C, we compute

So(JF)NC = {(1,1, —1, —1), (=1, —1,1,1). (i, —i, —i i), (—ir i iy —i)} .

T ’ '™
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